Did you know ... | Search Documentation: |
Query the RDF database |
Triples consist of the following three terms:
Alias:Local
,
where Alias and Local are atoms. Each abbreviated IRI is expanded by the
system to a full IRI.
^
^
Type
Datatype IRI Prolog term xsd:float float xsd:double float xsd:decimal float (1) xsd:integer integer XSD integer sub-types integer xsd:boolean true
orfalse
xsd:date date(Y,M,D)
xsd:dateTime date_time(Y,M,D,HH,MM,SS)
(2,3)xsd:gDay integer xsd:gMonth integer xsd:gMonthDay month_day(M,D)
xsd:gYear integer xsd:gYearMonth year_month(Y,M)
xsd:time time(HH,MM,SS)
(2)
Notes:
(1) The current implementation of xsd:decimal
values as
floats is formally incorrect. Future versions of SWI-Prolog may
introduce decimal as a subtype of rational.
(2) SS fields denote the number of seconds. This can either be an integer or a float.
(3) The date_time
structure can have a 7th field that
denotes the timezone offset in seconds as an integer.
In addition, a ground object value is translated into a properly typed RDF literal using rdf_canonical_literal/2.
There is a fine distinction in how duplicate statements are handled in rdf/[3,4]: backtracking over rdf/3 will never return duplicate triples that appear in multiple graphs. rdf/4 will return such duplicate triples, because their graph term differs.
S | is the subject term. It is either a blank node or IRI. |
P | is the predicate term. It is always an IRI. |
O | is the object term. It is either a
literal, a blank node or IRI (except for true and false
that denote the values of datatype XSD boolean). |
G | is the graph term. It is always an IRI. |
inverse_of
and
symmetric
. See rdf_set_predicate/2.inverse_of
and
symmetric
predicate properties. The version rdf_reachable/5
maximizes the steps considered and returns the number of steps taken.
If both S and O are given, these predicates are semidet
.
The number of steps D is minimal because the implementation
uses
breadth first search.
Constraints on literal values
->
), the
semantics of the goal remains the same. Preferably, constraints are
placed before the graph pattern as they often help the RDF
database to exploit its literal indexes. In the example below, the
database can choose between using the subject and/or predicate hash or
the ordered literal table.
{ Date >= "2000-01-01"^^xsd:date }, rdf(S, P, Date)
The following constraints are currently defined:
>
,
>=
,==
,=<
,<
The predicates rdf_where/1
and {}/1 are identical. The
rdf_where/1 variant is provided
to avoid ambiguity in applications where {}/1 is used for other
purposes. Note that it is also possible to write rdf11:{...}
.