Did you know ... Search Documentation:
Pack genutils -- prolog/data/tree.pl
PublicShow source

This module provides predicates for manipulated trees. The tree data-type is defined polymorphically over payload data types A as:

tree(A) ---> node(A, list(tree(A))).

Thus, in this representation, data of type A is associated with each node including the root node, and every node has list of child nodes, which will be empty for leaf nodes.

 empty_tree(?N:A, ?T:tree(A)) is det
Unify T with a root node tree containing N.
 tree_node(+T:tree(A), -N:tree(A)) is nondet
Unifies N with all the nodes in a tree.
 node_label(+N:tree(A), -X:A) is det
 node_children(+N:tree(A), -C:list(tree(A))) is det
 maptree(P:pred((?X:A)), ?TA:tree(A)) is nondet
 maptree(P:pred((?X:A),(?Y:B)), ?TA:tree(A), ?TB:tree(B)) is nondet
Map over tree using unary or binary predicate P.
 tree_depth(+T1:tree(_), -D:natural) is det
Maximum depth of tree.
 tree_canonical(+T1:tree(A), -T2:tree(A)) is det
Construct canonical form of a given trie by sorting all children into standard order.
 print_tree(+T:tree(A)) is det
 print_tree(+Pre:atom, +T:tree(A)) is det
Prints a drawing of the tree. It uses unicode box-drawing characters to draw the edges so your terminal must be set-up correctly to show these properly. A node with data X is labeled with whatever print(node(X)) produces and so can be customised by declaring clauses of portray/1. If the prefix Pre is supplied, the tree is started at the current position in the output stream, but subsequent new lines are prefixed with Pre, to allow arbitrary indenting.

If the child list for any node is a frozen variable, the variable is unfrozen.

 tree_cursor(+T:tree(A), -C:cursor(A)) is det
Constructs a cursor representing the given tree and a current position within that tree. Uses a zipper-like data type, as described in the functional programming literature. Initial position is the root node.
 get_node(-N:tree(A))// is det
Gets the subtree N at the current cursor position.
 set_node(+N:tree(A))// is det
Replaces the subtree at the current cursor with N.
 cursor_node(+C:cursor(A), -N:tree(A)) is det
Relation between a cursor and the subtree at the current position.
 cursor_move(+Dir:oneof([down,up,left,right]), +C1:cursor(A), -C2:cursor(A)) is semidet
Move a cursor around the tree. Dir can be one of:
  • up - move to the parent of the current node if not at the root already.
  • down - move to the current node's first child if it exists.
  • right - move to the current node's next sibling if there is one.
  • left - move to the previous sibling if not already the first.
 cursor_add_sibling(?N:tree(A), +C1:cursor(A), -C2:cursor(A)) is det
Add a N sibling after the current node and move the cursor to it.
 cursor_ins_sibling(?N:tree(A), +C1:cursor(A), -C2:cursor(A)) is det
Insert a sibling N before the current node and move the cursor to it.
 cursor_ins_child(?N:tree(A), +C1:cursor(A), -C2:cursor(A)) is det
Insert a child of the current node as first in the list of children and move down to the newly inserted node.

Undocumented predicates

The following predicates are exported, but not or incorrectly documented.

 print_tree(Arg1, Arg2)
 maptree(Arg1, Arg2, Arg3)