1/*
    2  comprehension.pl
    3  
    4@author Francois Fages
    5@email Francois.Fages@inria.fr
    6@license LGPL-2
    7@version 1.1.5
    8
    9  List comprehension for constraint quantifiers, aggregates, and let bindings.
   10  
   11*/
   12
   13
   14:- module(
   15	  comprehension,
   16	  [
   17	   for_all/2,
   18	   list_of/3,
   19	   aggregate_for/6,
   20
   21	   exists/2,	   let/2,	   	   op(501, xfx, ..),	   op(502, yfx, \/),	   	   op(700, xfx, in),	   op(990, xfx, where)	  ]).

List comprehension for constraint quantifiers, aggregates, and let bindings.

author
- Francois Fages
version
- 1.1.5

Prolog metapredicates for set comprehension like setof/3 were introduced by David Warren in 1982 to collect goal instantiations by backtracking. This necessitated indeed a special mechanism to add to Prolog, which is used for bagof/3, findall/3, forall/2, foreach/2, or aggregate/3 for instance.

This approach to set comprehension is correct for the goal success semantics of Prolog, but incorrect for the answer constraint semantics, e.g. universal quantifier constraint for_all/2 defined here compared to standard forall/2 foreach/2 metapredicates:

?- L=[A, B, C], for_all(X in L, X=1). % constraint posted for all elements
L = [1, 1, 1],
A = B, B = C, C = 1.

?- L=[A, B, C], forall(member(X, L), X=1). % satisfiability test for all elements
L = [A, B, C].

?- L=[A, B, C], foreach(member(X, L), X=1). % idem
L = [A, B, C].

?- L=[A, B, C], for_all([X, Y] in L, X=Y).
L = [C, C, C],
A = B, B = C.

?- L=[A, B, C], forall((member(X, L), member(Y, L)), X=Y).
L = [A, B, C].

?- use_module(library(clpfd)).
true.

?- L=[A, B, C], forall(member(X, L), X#>1).
L = [A, B, C].

?- L=[A, B, C], for_all(X in L, X#>1).
L = [A, B, C],
clpfd:(A in 2..sup),
clpfd:(B in 2..sup),
clpfd:(C in 2..sup).

?- forall(member(X, [1, 2, 3]), Y#>X).
true.

?- for_all(X in [1, 2, 3], Y#>X).
clpfd:(Y in 4..sup).

We provide here metapredicates for comprehension by iteration, instead of backtracking, which

  • rename comprehension variables and raise an error if they are instantiated (they can be attributed and will be renamed without attributes),
  • constrain the calling context variables,
  • possibly non-deterministically, if the conditions or goal are non-deterministic.

The comprehension variables must be given with a mandatory "in" domain, and optionally a "where" condition.

The "in" domain must be either a domain of integers (i.e. union \/ of intervals ..) or a list of terms. Shorthand notations are evaluated in the domain.

?- for_all([I, J] in 1..3 where I<J, writeln(I-J)).
1-2
1-3
2-3
true.

?- for_all([I in 1..3, J in I+1..3], writeln(I-J)).
1-2
1-3
2-3
true.

list_of/3 collects the elements defined by comprehension in a list:

?- list_of([I, J] in 1..3 where I<J, I-J, List).
List = [1-2, 1-3, 2-3].

aggregate_for/6 expresses a relation on the application of a binary operator between elements defined by comprehension:

?- aggregate_for(X in 1..5, X+1, +, 0, =, Term).
Term = 1+1+(2+1+(3+1+(4+1+(5+1+0)))).

?- use_module(library(clpfd)).
true.
  
?- aggregate_for(X in 1..5, X+1, +, 0, #=, Result).
Result = 20.

The "where" condition in intensional definitions can bind or constrain context variables. In particular, if the "where" condition is a constraint, the constraint is posted and thus tested for satisfiability, not entailment. The example below illustrates the difference: X=Y is satisfiable and posted for all X, Y, whereas in the second query, the condition X==Y is just a test and succeeds on the elements where it is satisfied without changing L:

?- L=[A, B, C], for_all([X, Y] in L where X=Y, true).
L = [C, C, C],
A = B, B = C.

?- L=[A, B, C], for_all([X, Y] in L where X==Y, true).
L = [A, B, C].

The "where" condition goal can also be non-deterministic, making the comprehension metapredicate non-deterministic in this case.

*/

  143:- reexport(shorthand).  144
  145
  146				% BOUNDED UNIVERSAL QUANTIFIER
 for_all(+VarDomains, +Goal)
universal quantifier for iteratively executing Goal on all instances defined in comprehension with mandatory "in" domain and optional "where" condition, both allowing shorthand/3 functional notations. An error is raised a universally quantified variable to be renamed is instantiated. The "in" domain must be either a domain of integers (i.e. union of intervals) or a list of terms.

Unlike forall/2, foreach/2, the conjunction of Goal instances constrains context variables (answer constraint semantics)

?- L=[A, B, C], for_all(X in L, X=1).
L = [1, 1, 1],
A = B, B = C, C = 1.

The "where" condition goal can be non-deterministic.

for_all/2 is similar to maplist/2 but using a Goal pattern with arguments defined by comprehension.

  166for_all(Var, _Goal) :-
  167    var(Var),
  168    !,
  169    must_be(nonvar, Var). % bounded quantification only
  170
  171for_all([VarDomain | VarDomains], Goal) :-
  172    (VarDomains = []
  173    ->
  174     (VarDomain = (_ where _)
  175     ->
  176      for_all_complete(VarDomain, Goal)
  177     ;
  178      for_all_complete(VarDomain where true, Goal))
  179    ;
  180     for_all(VarDomain, for_all(VarDomains, Goal))).
  181
  182for_all(Vars in Domain, Goal) :-
  183    for_all(Vars in Domain where true, Goal).
  184
  185for_all(VarDomains where Condition, Goal) :-
  186    must_be(nonvar, VarDomains),
  187    (VarDomains = (Vs in Domain)
  188    ->
  189     (var(Vs) -> Vars=[Vs] ; must_be(list(var), Vs), Vars=Vs),
  190     for_all_complete(Vars in Domain where Condition, Goal)
  191    ;
  192     VarDomains = [VarDomain1 | VarDomains2],
  193     (VarDomains2 = []
  194     ->
  195      (VarDomain1 = (VarDom1 where Cond)
  196      ->
  197       for_all_complete(VarDom1 where (Cond, Condition), Goal)
  198      ;
  199       for_all_complete(VarDomain1 where Condition, Goal))
  200     ;
  201      for_all(VarDomain1, for_all(VarDomains2 where Condition, Goal)))).
  202
  203
  204% VarDomains is a flat list of variables given with their domain
  205for_all_complete(VarDomains where Condition, Goal) :-
  206    var_domains(VarDomains where Condition, VarDoms, Condition),
  207    variables(VarDoms, Vars),
  208    copy_term_nat(Vars, f(VarDoms, Condition, Goal), _, f(VDoms, Cond, G)), % needed in VarDoms since e.g. X in [Y] unifies X=Y
  209    call_comprehension(VDoms, [], [], Cond, G).
  210
  211
  212
  213var_domains(VarDomains, _VarDoms, _Condition) :-
  214    var(VarDomains),
  215    !,
  216    must_be(nonvar,VarDomains). 
  217
  218var_domains(Var where Condition, [Var], Condition) :-
  219    var(Var),
  220    !.
  221
  222var_domains(Vars in Domain where Condition, VarDoms, Condition) :-
  223    !,
  224    (var(Vars)
  225    ->
  226     VarDoms=[Vars in Domain]
  227    ;
  228     distribute(Vars, Domain, VarDoms)).
  229
  230var_domains(Vars in Domain, VarDoms, Condition) :-
  231    !,
  232    var_domains(Vars in Domain where true, VarDoms, Condition).
  233
  234var_domains(VarDomains where Condition, VarDomains, Condition) :-
  235    !.
  236
  237var_domains(VarDomains, VarDoms, Condition) :-
  238    must_be(list, VarDomains),
  239    var_domains(VarDomains where true, VarDoms, Condition).
  240
  241
  242variables([], []).
  243variables([VarDom | VarDoms], [V | Vars]):-
  244    (var(VarDom)
  245    ->
  246     V=VarDom
  247    ;
  248     VarDom = (V in _)
  249    ->
  250     must_be(var, V)
  251    ;
  252     must_be(var, VarDom) % instantiated variable 
  253    ),
  254    variables(VarDoms, Vars).
  255
  256
  257% allow only variables to distribute domain to.
  258distribute([], _, []).
  259distribute([Var | Vars], Domain, [Var in Domain | Domains]):-
  260    must_be(var, Var),
  261    distribute(Vars, Domain, Domains).
  262
  263
  264				% GENERATOR COMPREHENSION
  265
  266    
  267% iteratively calls Goal on valuations of Vars in Domains satisfying a possibly non-deterministic where Condition
  268% VarDomains is a list of (Var in Domain) terms
  269% Vars and Values are built in reversed order
  270call_comprehension([VarD | VarDomains], Vars, Values, Condition, Goal) :-
  271    must_be(nonvar, VarD),
  272    VarD = (V in VarDomain),
  273    expand(VarDomain, VarDom),
  274    (next_value(VarDom, Min, Greater)
  275    ->
  276     Vs = [V | Vars],
  277     Vals = [Min | Values],
  278     copy_term_nat([V], VarDomains, [Min], VarDoms), % partial evaluation
  279     call_comprehension(VarDoms, Vs, Vals, Condition, Goal), % to append to next valuations
  280     (Greater=[]
  281     ->
  282      true
  283     ;
  284      call_comprehension([V in Greater | VarDomains], Vars, Values, Condition, Goal)
  285     )
  286    ;
  287     true).
  288
  289call_comprehension([], Vars, Values, Condition, Goal) :-
  290    copy_term_nat(Vars, Condition, Values, Cond),
  291    (expand(Cond)		% one great use of soft cut at last !
  292    *->
  293     copy_term_nat(Vars, Goal, Values, G),
  294     G
  295    ;
  296     true).
  297
  298
  299next_value(Min .. Max, Mi, Greater):-
  300    Mi is Min, % shorthand expansions of domains are already done
  301    Ma is Max,
  302    (Mi < Ma
  303    ->
  304     Mi1 is Mi+1,
  305     Greater = Mi1..Ma
  306    ;
  307     Mi = Ma, % otherwise fail, empty domain
  308     Greater = []).
  309
  310next_value(Domain1 \/ Domain2, Min, Greater):-
  311    next_value(Domain1, Min, Great),
  312    (Great = []
  313    ->
  314     Greater = Domain2
  315    ;
  316     Greater = Great \/ Domain2).
  317
  318next_value([Min | List], Mi, List):-
  319    catch(evaluate(Min, Mi), _, Mi=Min). % just to allow non numerical values in a domain list
  320
  321
  322
  323				% LIST OF VALUATIONS DEFINED BY IN AND WHERE CONDITIONS
 list_of(+VarDomains, +Term, ?List)
List is the list of instances of Term defined in comprehension with mandatory "in" domain and optional "where" condition both allowing shorthand/3 functional notations.

list_of(VarDomains, Expr, List) is defined by aggregate_for(VarDomains, Expr, [|], [], =, List).

An error is raised if the comprehension variables to be renamed are instantiated (they can be attributed and will be renamed without attributes).

The "where" condition goal can be non-deterministic.

  337list_of(VarDomains, Expr, List):-
  338    aggregate_for(VarDomains, Expr, '[|]', [], =, List).
  339
  340
  341
  342				% GENERAL AGGREGATE_FOR PREDICATE
  343
  344%! aggregate_for(+VarDomains, +Expression, +Op, +E, +Relation, ?Term)
  345%
  346% true iff Relation(Term, Aggregate) holds where Aggregate is the application of binary operation Op with starting element E,
  347% to all instances of Expression defined in comprehension by VarDomains with mandatory "in" domain and optional "where" condition.
  348% An error is raised if a comprehension variable is instantiated (if it is attributed it is renamed without attributes).
  349%
  350% For example, list_of(VarDomains, Expression, List) is defined here by ``aggregate_for(VarDomains, Expression, [|], [], =, List)``.
  351%
  352% The instances of Expression are not evaluated unless Expression is of the form "Variable where Goal" in which case the Goal is executed.
  353% It is an error if the first argument of where is not a variable. The variable is existentially quantified and renamed in the Goal.
  354% 
  355% The list of arguments of a term could be defined by
  356% ==
  357% ?- Term=f(a,g(X),Y), functor(Term, _, N),  aggregate_for([I in 1..N], Arg where arg(I, Term, Arg), '[|]', [], =, Args).
  358% Term = f(a, g(X), Y),
  359% N = 3,
  360% Args = [a, g(X), Y].
  361% ==
  362%
  363% aggregate_for/6 is similar to foldl/4 but more general and using Goal pattern with arguments defined in comprehension.
  364%
  365% Used in library(clp) to define some hybrid global constraints.
  366
  367aggregate_for(VarDomains, Expression, Op, E, Relation, Term):-
  368    (compound(Expression), Expression=(X where _Goal)
  369    ->
  370     must_be(var, X),
  371     copy_term_nat([X], Expression, _, Expr)
  372    ;
  373     Expr=Expression),
  374    var_domains(VarDomains, VarDoms, Condition),
  375    variables(VarDoms, Vars),
  376    copy_term_nat(Vars, f(VarDoms, Condition, Expr), Vs, f(VDoms, Cond, Exp)), % needed in VarDoms since X in [Y] unifies X=Y
  377    values(VDoms, [], [], Cond, ValuesList),
  378    aggregate_rec(ValuesList, Vs, Exp, Op, E, Aggregate),
  379    Rel =.. [Relation, Term, Aggregate],
  380    expand(Rel).
  381
  382aggregate_rec([], _, _, _, E, E).
  383aggregate_rec([Values | ValuesList], Vars, Expression, Op, E, Term) :-
  384    copy_term_nat(Vars, Expression, Values, Expr),
  385    (compound(Expr), Expr=(X where _Goal)
  386    ->
  387     must_be(var, X),
  388     copy_term_nat([X], Expr, _, Exp where Goal),
  389     expand(Goal) % binding or constraining X in Expr renamed
  390    ;
  391     expand(Expr, Exp)), %Exp=Expr),
  392    Term =.. [Op, Exp, Aggregate], % TODO do not construct the full aggregate_for expression
  393    aggregate_rec(ValuesList, Vars, Expression, Op, E, Aggregate).
  394
  395
  396% computes the List of valuations of Vars in Domains satisfying a, possibly non-deterministic, where Condition
  397values([], Vars, Values, Condition, List):-
  398    copy_term_nat(Vars, Condition, Values, Cond),
  399    (expand(Cond)				% one great use of soft cut at last !
  400    *->
  401     reverse(Values, Vals),
  402     List=[Vals]
  403    ;
  404     List = []).
  405
  406values([VarD | VarDomains], Vars, Values, Condition, List):-
  407    must_be(nonvar, VarD),
  408    VarD = (V in VarDomain),
  409    expand(VarDomain, VarDom),
  410    (next_value(VarDom, Min, Greater)
  411    ->
  412     Vs = [V | Vars],
  413     Vals = [Min | Values],
  414     copy_term_nat([V], VarDomains, [Min], VarDoms), % partial evaluation
  415     values(VarDoms, Vs, Vals, Condition, List1), % to append to next valuations
  416     (Greater=[]
  417     ->
  418      List = List1
  419     ;
  420      values([V in Greater | VarDomains], Vars, Values, Condition, List2),
  421      append(List1, List2, List))
  422    ;
  423     List = []).
  424
  425				% EXISTENTIAL QUANTIFIER AND LET EXPRESSIONS
 exists(+Vars, +Goal)
calls Goal with existentially quantified variables Vars. An error is raised if the existential variables to rename are instantiated (they can be attributed though and will be renamed without attributes).
  433exists(Vars, Goal):-
  434    must_be(list(var), Vars), 
  435    copy_term_nat(Vars, Goal, _, RenamedGoal),
  436    RenamedGoal.
 let(+Bindings, +Goal)
calls Goal with Bindings for existentially quantified variables bound to expressions allowing shorthand/3 functional notations. An error is raised if the existential variables to rename are instantiated (they can be attributed and will be renamed without attributes).
  446let(Bindings, Goal):-
  447    must_be(list, Bindings),
  448    var_bindings(Bindings, Vars),
  449    must_be(list(var), Vars), 
  450    copy_term_nat(Vars, f(Bindings, Goal), _, f(BindingsRenamed, GoalRenamed)),
  451    bindings(BindingsRenamed),
  452    GoalRenamed.
  453
  454
  455:- multifile user:shorthand/3.
 user:shorthand(+Term, +Expanded, +Goal)
Multifile user:shorthand predicate from library(shorthand)

Defined here for expanding let/2 inside expressions, by

user:shorthand(let(Bindings, Expr), RenamedExpr, let(Bindings, RenamedExpr=Expr)) :- !.
?- evaluate(2*let([X=3], let([Y=2], X+Y)), R).
R = 10.
  470user:shorthand(let(Bindings, Expr), Ex, (expand(Expr, Exp), let(Bindings, Ex=Exp))) :- !.
  471
  472
  473
  474% constrains the let variables
  475
  476bindings([]).
  477bindings([Binding | Bindings]):-
  478    (var(Binding)
  479    ->
  480     % allows using let/2 for unbound existentially quantified variables as in exists/2
  481     bindings(Bindings)
  482    ;
  483     Binding =.. [Binder, X, Term],
  484     must_be(var, X),
  485     Goal =.. [Binder, X, Term],
  486     (member(Binder, [=, is, =..])
  487     ->
  488      expand(Goal)
  489     ;
  490      member(Binder, [in, ins, #=, #<==>, #<, #>, #=<, #>=, #\=]) % whatever makes sense for a let
  491     ->
  492      Goal
  493     ;
  494      throw(error(unauthorized_let_binder(Binding)))),
  495     bindings(Bindings)).
  496
  497var_bindings([], []).
  498var_bindings([Binding | Bindings], [X |Vars]) :-
  499    (var(Binding)
  500    ->
  501     X=Binding
  502    ;
  503     compound(Binding), Binding =.. [_, X, _]
  504    ->
  505     must_be(var, X)
  506    ;
  507     throw(error(unauthorized_let_expression(Binding)))),
  508    var_bindings(Bindings, Vars)