Did you know ... | Search Documentation: |
![]() | Pack logtalk -- logtalk-3.90.1/examples/searching/NOTES.md |
jupyter: jupytext: text_representation: extension: .md format_name: markdown format_version: '1.3' jupytext_version: 1.16.7 kernelspec: display_name: Logtalk language: logtalk name: logtalk_kernel ---
<!--
This file is part of Logtalk https://logtalk.org/ SPDX-FileCopyrightText: 1998-2025 Paulo Moura <pmoura@logtalk.org> SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
Some code in this folder is adapted, with permission, from the book "Prolog Programming for Artificial Intelligence" by Ivan Bratko.
For a description of the search problems, please see a classical AI book (such as the one above) or visit http://www.plastelina.net/games.
This example defines two hierarchies of objects, one for representing state-spaces and another for representing search methods:
state_space farmer water_jug salt(Quantity, Measure1, Measure2) heuristic_state_space bridge eight_puzzle miss_cann search_strategy blind_search(Bound) breadth_first(Bound) depth_first(Bound) heuristic_search(Threshold) best_first(Threshold) hill_climbing(Threshold)
Taken together, these two hierarchies implement a framework for solving
state-space search problems in Logtalk. There is also a monitor object,
performance
, which tries to measure the time taken to find a solution,
the branching factor while searching for a solution, and the number of
transitions made to find a solution.
Print Logtalk, Prolog backend, and kernel versions (if running as a notebook):
%versions
Start by loading the example and the required library files:
logtalk_load(searching(loader)).
The farmer, cabbage, goat and wolf problem:
farmer::initial_state(Initial), depth_first(10)::solve(farmer, Initial, Path), farmer::print_path(Path).
<!-- cgwf.<>.......... c_w_..........<>.f_g_ c_wf.<>..........g_ w_..........<>.fcg_ _gwf.<>.........._c _g..........<>.fc_w _g_f.<>.........._c_w ..........<>.fcgw
Path = [(north,north,north,north),(north,south,north,south),(north,south,north,north),(south,south,north,south),(south,north,north,north),(south,north,south,south),(south,north,south,north),(south,south,south,south)], Initial = (north,north,north,north) ?
true. -->
Missionaries and cannibals problem, solved using a hill-climbing strategy:
miss_cann::initial_state(Initial), hill_climbing(16)::solve(miss_cann, Initial, Path, Cost), miss_cann::print_path(Path).
<!-- MMMCCC.<>.......... MMCC..........<>.MC MMMCC.<>..........C MMM..........<>.CCC MMMC.<>..........CC MC..........<>.MMCC MMCC.<>..........MC CC..........<>.MMMC CCC.<>..........MMM C..........<>.MMMCC CC.<>..........MMMC ..........<>.MMMCCC
Cost = 15, Path = [((3,3),left,0,0),((2,2),right,1,1),((3,2),left,0,1),((3,0),right,0,3),((3,1),left,0,2),((1,1),right,2,2),((2,2),left,1,1),((0,2),right,3,1),((0,3),left,3,0),((0,1),right,3,2),((0,2),left,3,1),((0,0),right,3,3)], Initial = ((3,3),left,0,0)
true. -->
Same problem as above with the addition of a monitor to measure hill-climbing performance:
performance::init, miss_cann::initial_state(Initial), hill_climbing(16)::solve(miss_cann, Initial, Path, Cost), miss_cann::print_path(Path), performance::report.
<!-- MMMCCC.<>.......... MMCC..........<>.MC MMMCC.<>..........C MMM..........<>.CCC MMMC.<>..........CC MC..........<>.MMCC MMCC.<>..........MC CC..........<>.MMMC CCC.<>..........MMM C..........<>.MMMCC CC.<>..........MMMC ..........<>.MMMCCC solution length: 12 number of state transitions: 26 ratio solution length / state transitions: 0.461538 minimum branching degree: 1 average branching degree: 2.30769 maximum branching degree: 3 time: 0.02
Cost = 15, Path = [((3,3),left,0,0),((2,2),right,1,1),((3,2),left,0,1),((3,0),right,0,3),((3,1),left,0,2),((1,1),right,2,2),((2,2),left,1,1),((0,2),right,3,1),((0,3),left,3,0),((0,1),right,3,2),((0,2),left,3,1),((0,0),right,3,3)], Initial = ((3,3),left,0,0) ?
true. -->
Bridge problem, solved using a hill climbing strategy:
performance::init, bridge::initial_state(Initial), hill_climbing(30)::solve(bridge, Initial, Path, Cost), bridge::print_path(Path), performance::report.
<!--
lamp 1 3 6 8 12
1 3 lamp 6 8 12
3 lamp 1 6 8 12
1 3 6 lamp 8 12
3 6 lamp 1 8 12
3 6 8 12 lamp 1
6 8 12 lamp 1 3
1 3 6 8 12 lamp
solution length: 8
state transitions (including previous solutions): 555
ratio solution length / state transitions: 0.014414414414414415
minimum branching degree: 1
average branching degree: 7.32579185520362
maximum branching degree: 15
time: 0.012381000000000086
Initial = s([], right, [1, 3, 6, 8, 12])
,
Path = [s([], right, [1, 3, 6, 8, 12])
, s([1, 3], left, [6, 8, 12])
, s([3], right, [1, 6, 8, 12])
, s([1, 3, 6], left, [8, 12])
, s([3, 6], right, [1, 8, 12])
, s([3, 6|...], left, [1])
, s([6|...], right, [1|...])
, s([...|...], left, [])
],
Cost = 29
true. -->
Water jugs problem solved using a breadth and a depth first strategy, with performance monitors it's interesting to compare the results:
performance::init, water_jug::initial_state(Initial), breadth_first(6)::solve(water_jug, Initial, Path), water_jug::print_path(Path), performance::report.
<!-- 4-gallon jug: 0 3-gallon jug: 0
4-gallon jug: 0 3-gallon jug: 3
4-gallon jug: 3 3-gallon jug: 0
4-gallon jug: 3 3-gallon jug: 3
4-gallon jug: 4 3-gallon jug: 2
4-gallon jug: 0 3-gallon jug: 2
solution length: 6 number of state transitions: 109 ratio solution length / state transitions: 0.0550459 minimum branching degree: 2 average branching degree: 3.63158 maximum branching degree: 4 time: 0.02
Path = [(0,0),(0,3),(3,0),(3,3),(4,2),(0,2)], Initial = (0,0) ?
true. -->
performance::init, water_jug::initial_state(Initial), depth_first(10)::solve(water_jug, Initial, Path), water_jug::print_path(Path), performance::report.
<!-- 4-gallon jug: 0 3-gallon jug: 0
4-gallon jug: 4 3-gallon jug: 0
4-gallon jug: 4 3-gallon jug: 3
4-gallon jug: 0 3-gallon jug: 3
4-gallon jug: 3 3-gallon jug: 0
4-gallon jug: 3 3-gallon jug: 3
4-gallon jug: 4 3-gallon jug: 2
4-gallon jug: 0 3-gallon jug: 2
solution length: 8 number of state transitions: 12 ratio solution length / state transitions: 0.666667 minimum branching degree: 1 average branching degree: 2 maximum branching degree: 3 time: 0.00
Path = [(0,0),(4,0),(4,3),(0,3),(3,0),(3,3),(4,2),(0,2)], Initial = (0,0) ?
true. -->
Salt puzzle using breadth first search
performance::init, salt(100, 500, 200)::initial_state(Initial), breadth_first(6)::solve(salt(100, 500, 200), Initial, Path), salt(100, 500, 200)::print_path(Path), performance::report.
<!--
(0, 0, 0) all_empty
(0, 500, 0) fill(m1)
(0, 300, 200) transfer(m1, m2)
(0, 300, 0) empty(m2)
(0, 100, 200) transfer(m1, m2)
(100, 0, 200) transfer(m1, acc)
solution length: 6
state transitions (including previous solutions): 405
ratio solution length / state transitions: 0.0148148
minimum branching degree: 1
average branching degree: 4.06863
maximum branching degree: 6
time: 0.03
Initial = (0, 0, 0, all_empty),
Path = [ (0, 0, 0, all_empty), (0, 500, 0, fill(m1)
), (0, 300, 200, transfer(m1, m2)
), (0, 300, 0, empty(m2)
), (0, 100, 200, transfer(m1, m2)
), (100, 0, 200, transfer(..., ...)
)] .
true. -->
performance::init, salt(200, 250, 550)::initial_state(Initial), breadth_first(7)::solve(salt(200, 250, 550), Initial, Path), salt(200, 250, 550)::print_path(Path), performance::report.
<!--
(0, 0, 0) all_empty
(0, 250, 0) fill(m1)
(0, 0, 250) transfer(m1, m2)
(0, 250, 250) fill(m1)
(0, 0, 500) transfer(m1, m2)
(0, 250, 500) fill(m1)
(0, 200, 550) transfer(m1, m2)
(200, 0, 550) transfer(m1, acc)
solution length: 8
state transitions (including previous solutions): 2475
ratio solution length / state transitions: 0.00323232
minimum branching degree: 1
average branching degree: 4.21042
maximum branching degree: 6
time: 0.29
Initial = (0, 0, 0, all_empty),
Path = [ (0, 0, 0, all_empty), (0, 250, 0, fill(m1)
), (0, 0, 250, transfer(m1, m2)
), (0, 250, 250, fill(m1)
), (0, 0, 500, transfer(m1, m2)
), (0, 250, 500, fill(...)
), (0, 200, ..., ...), (200, ..., ...)] .
true. -->
performance::init, salt(100, 250, 550)::initial_state(Initial), breadth_first(11)::solve(salt(100, 250, 550), Initial, Path), salt(100, 250, 550)::print_path(Path), performance::report.
<!--
(0, 0, 0) all_empty
(0, 0, 550) fill(m2)
(0, 250, 300) transfer(m2, m1)
(0, 0, 300) empty(m1)
(0, 250, 50) transfer(m2, m1)
(50, 250, 0) transfer(m2, acc)
(50, 0, 0) empty(m1)
(50, 0, 550) fill(m2)
(50, 250, 300) transfer(m2, m1)
(50, 0, 300) empty(m1)
(50, 250, 50) transfer(m2, m1)
(100, 250, 0) transfer(m2, acc)
solution length: 12
state transitions (including previous solutions): 189914
ratio solution length / state transitions: 6.31865e-05
minimum branching degree: 1
average branching degree: 4.47592
maximum branching degree: 6
time: 94.44
Initial = (0, 0, 0, all_empty),
Path = [ (0, 0, 0, all_empty), (0, 0, 550, fill(m2)
), (0, 250, 300, transfer(m2, m1)
), (0, 0, 300, empty(m1)
), (0, 250, 50, transfer(m2, m1)
), (50, 250, 0, transfer(..., ...)
), (50, 0, ..., ...), (50, ..., ...), (..., ...)|...] .
true. -->
Eight puzzle solved using a hill-climbing strategy:
performance::init, eight_puzzle::initial_state(five_steps, Initial), hill_climbing(25)::solve(eight_puzzle, Initial, Path, Cost), eight_puzzle::print_path(Path), performance::report.
<!-- 283 164 7 5
283 1 4 765
2 3 184 765
23 184 765
123 84 765
123 8 4 765 solution length: 6 number of state transitions: 15 ratio solution length / state transitions: 0.4 minimum branching degree: 2 average branching degree: 3.13333 maximum branching degree: 4 time: 0.01
Cost = 5, Path = [[2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3],[2/2,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/3],[2/3,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/3,1/2,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]], Initial = [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ?
true. -->
Eight puzzle solved using a best-first strategy:
performance::init, eight_puzzle::initial_state(five_steps, Initial), best_first(25)::solve(eight_puzzle, Initial, Path, Cost), eight_puzzle::print_path(Path), performance::report.
<!-- 283 164 7 5
283 1 4 765
2 3 184 765
23 184 765
123 84 765
123 8 4 765 solution length: 6 number of state transitions: 15 ratio solution length / state transitions: 0.4 minimum branching degree: 2 average branching degree: 3.13333 maximum branching degree: 4 time: 0.02
Cost = 5, Path = [[2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3],[2/2,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/3],[2/3,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/3,1/2,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]], Initial = [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ?
true. -->
Turn off performance monitor
performance::stop.
<!-- true. -->