Did you know ... | Search Documentation: |
![]() | Pack logtalk -- logtalk-3.90.1/examples/metapredicates/NOTES.md |
jupyter: jupytext: text_representation: extension: .md format_name: markdown format_version: '1.3' jupytext_version: 1.16.7 kernelspec: display_name: Logtalk language: logtalk name: logtalk_kernel ---
<!--
This file is part of Logtalk https://logtalk.org/ SPDX-FileCopyrightText: 1998-2025 Paulo Moura <pmoura@logtalk.org> SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
This example shows the use of meta-predicates in Logtalk. Meta-predicates are predicates whose head includes arguments that will be called as goals in the body of the predicate definition.
This example defines the following objects:
company
usage example of the map_reduce/5 meta-predicatefibonacci
example of calculating Fibonacci numbers using the fold_left/4
meta-predicatesort(_)
this is a parametric object containing a method that implements the
quicksort sorting algorithm; the parameter is interpreted as the type
of the elements being sortedtracer
this object implements a meta-predicate that is used by sort(_)
to
trace the sorting algorithm stepsmetapreds
, descendant
, and test
objects used for illustrating the use of closures as meta-argumentspredicates
object defining some predicates for testing meta-predicates defined
in the Logtalk librarygrammar
object illustrating using phrase/2 as a meta-predicate meta-argument
Print Logtalk, Prolog backend, and kernel versions (if running as a notebook):
%versions
Start by loading the example and the required library files:
logtalk_load(metapredicates(loader)).
Try the simple meta-predicate definitions from the "goals.lgt" file:
simple_client::test_whatever.
<!-- true. -->
simple_client::test_whatever_all.
<!-- Hello world!
true. -->
Alternatively:
simple_client_alt::test_whatever.
<!-- true. -->
simple_client_alt::test_whatever_all.
<!-- Hello world!
true. -->
Note that user is a pseudo-object representing the Prolog database; therefore, the integer comparisons are performed using the standard Prolog built-in predicates:
sort(user)::sort([3, 1, 4, 2, 9], Sorted).
<!--
call: partition([1,4,2,9],3,_358,_359)
exit: partition([1,4,2,9],3,[1,2],[4,9])
call: sort([1,2],_740)
call: partition([2],1,_967,_968)
exit: partition([2],1,[],[2])
call: sort([],_1300)
exit: sort([],[])
call: sort([2],_1539)
call: partition([],2,_1765,_1766)
exit: partition([],2,[],[])
call: sort([],_2093)
exit: sort([],[])
call: sort([],_2332)
exit: sort([],[])
exit: sort([2],[2])
exit: sort([1,2],[1,2])
call: sort([4,9],_2831)
call: partition([9],4,_3058,_3059)
exit: partition([9],4,[],[9])
call: sort([],_3391)
exit: sort([],[])
call: sort([9],_3630)
call: partition([],9,_3856,_3857)
exit: partition([],9,[],[])
call: sort([],_4184)
exit: sort([],[])
call: sort([],_4423)
exit: sort([],[])
exit: sort([9],[9])
exit: sort([4,9],[4,9])
Sorted = [1,2,3,4,9]. -->
Test the setof/3 wrapper:
wrappers_client::p(L).
<!-- L = [1, 2, 3]. -->
wrappers_client::q(L).
<!-- L = [1, 2, 3]. -->
Call the meta-predicate apply/2 directly:
metapreds::test_this.
<!-- 1, metapreds
true. -->
Send an apply/2 message to self:
descendant::test_self.
<!-- 2, descendant
true. -->
Send an apply/2 message from another object:
test::test_obj.
<!-- 3, test
true. -->
Use the partition/4 meta-predicate with a predicate defined in the
pseudo-object user
:
meta::partition(even_integer, [1,2,3,4,5], Included, Excluded).
<!-- Included = [2, 4], Excluded = [1, 3, 5]. -->
Get a visual illustration of the differences between left and right folds:
folds::left(Left).
<!-- Left = '(((((((((0+1)+2)+3)+4)+5)+6)+7)+8)+9)'. -->
folds::right(Right).
<!-- Right = '(1+(2+(3+(4+(5+(6+(7+(8+(9+0)))))))))'. -->
Walk a list using left and right folds (note the lambda parameters order):
meta::fold_left([Y, X, [X|Y]]>>true, [], [1,2,3,4,5,6,7,8,9], R).
<!-- R = [9, 8, 7, 6, 5, 4, 3, 2, 1] -->
meta::fold_right([X, Y, [X|Y]]>>true, [], [1,2,3,4,5,6,7,8,9], R).
<!-- R = [1, 2, 3, 4, 5, 6, 7, 8, 9]. -->
We can compose left folds:
meta::fold_left([X,Y,Z]>>(Z is X + Y), 0, [1,2,3], Sum).
<!-- Sum = 6. -->
meta::fold_left(meta::fold_left([X,Y,Z]>>(Z is X + Y)), 0, [[1,2,3],[4,5,6]], Sum).
<!-- Sum = 21. -->
Use the fold_left/4 meta-predicate with a predicate defined in the pseudo-object user:
meta::fold_left(sum_squares, 0, [1,2,3], Result).
<!-- Result = 34. -->
Use the fold_left/4 and fold_right/4 meta-predicates with the atom_concat/3 Prolog built-in predicate:
meta::fold_left(atom_concat, 'PREFIX', [abc,def,ghi], Result).
<!-- Result = 'PREFIXabcdefghi'. -->
meta::fold_right(atom_concat, 'SUFIX', [abc,def,ghi], Result).
<!-- Result = abcdefghiSUFIX. -->
Use the fold_left/4 meta-predicate with predicates defined in the object
predicates
:
meta::fold_left(predicates::sum, 0, [1,2,3,4,5], Result).
<!-- Result = 15. -->
meta::fold_left(predicates::product, 1, [1,2,3,4,5], Result).
<!-- Result = 120. -->
meta::fold_left(predicates::tuple, (0,0), [(1,2), (3,4), (6,4)], Result).
<!-- Result = (10, 10). -->
Alternatives to fold_left/4 and fold_right/4 when there isn't an initial value:
meta::fold_left_1([X,Y,Z]>>(Z is X+Y), [1,2,3,4,5], R).
<!-- R = 15. -->
meta::fold_right_1([X,Y,Z]>>(Z is X-Y), [1,2,3,4,5], R).
<!-- R = 3. -->
meta::fold_right_1([X,Y,Z]>>(Z is X*Y), [1,2,3,4,5], R).
<!-- R = 120. -->
Use the scan_left/4 and scan_right/4 meta-predicates with predicates
defined in the object predicates
:
meta::scan_left(sum_squares, 0, [1,2,3], Result).
<!-- Result = [0, 1, 5, 34]. -->
meta::scan_right(predicates::sum, 5, [1,2,3,4], Result).
<!-- Result = [15, 14, 12, 9, 5]. -->
Compute a sequence of factorial numbers using a scan of natural numbers using multiplication:
meta::scan_left([X,Y,Z]>>(Z is X*Y), 1, [1,2,3,4,5,6], Result).
<!-- Result = [1, 1, 2, 6, 24, 120, 720]. -->
Use the map/2-3
meta-predicates with some Prolog built-in predicates.
Check that all list elements are integers:
meta::map(integer, [1,2,3,4,5]).
<!-- true. -->
Map characters to character codes:
meta::map(char_code, [a,b,c,d,e], Codes).
<!-- Codes = [97, 98, 99, 100, 101]. -->
Use the fold_left/4 meta-predicate to calculate Fibonacci numbers:
fibonacci::nth(10, Fib).
<!-- Fib = 55. -->
The first six Fibonacci numbers:
%%table integer::between(0, 5, Nth), fibonacci::nth(Nth, Fib).
<!-- Fib = 0, Nth = 0 ? ; Fib = 1, Nth = 1 ? ; Fib = 1, Nth = 2 ? ; Fib = 2, Nth = 3 ? ; Fib = 3, Nth = 4 ? ; Fib = 5, Nth = 5 ? ... -->
Use the map_reduce/5 meta-predicate to give bad news to a company employees:
company::(company(C1), get_salary(company(C1),S1)).
<!--
C1 = [topdept(name('Human Resources'),manager(name('Lisa'),salary(123456)),[])
,topdept(name('Development'),manager(name('Anders'),salary(43210)),[subdept(name('Visual Basic'),manager(name('Amanda'),salary(8888)),[]),subdept(name('Visual C#'),manager(name('Erik'),salary(4444)),[])])
]
S1 = 179998
-->
company::(company(C1), cut_salary(company(C1), C2), get_salary(C2, S2)).
<!--
C1 = [topdept(name('Human Resources'),manager(name('Lisa'),salary(123456)),[])
,topdept(name('Development'),manager(name('Anders'),salary(43210)),[subdept(name('Visual Basic'),manager(name('Amanda'),salary(8888)),[]),subdept(name('Visual C#'),manager(name('Erik'),salary(4444)),[])])
]
C2 = company([topdept(name('Human Resources'),manager(name('Lisa'),salary(61728)),[]),topdept(name('Development'),manager(name('Anders'),salary(21605)),[subdept(name('Visual Basic'),manager(name('Amanda'),salary(4444)),[]),subdept(name('Visual C#'),manager(name('Erik'),salary(2222)),[])])])
S2 = 89999
-->