| Search Documentation: |
![]() | Pack logtalk -- logtalk-3.90.1/examples/logic/NOTES.md |
jupyter: jupytext: text_representation: extension: .md format_name: markdown format_version: '1.3' jupytext_version: 1.16.7 kernelspec: display_name: Logtalk language: logtalk name: logtalk_kernel ---
<!--
This file is part of Logtalk https://logtalk.org/ SPDX-FileCopyrightText: 1998-2025 Paulo Moura <pmoura@logtalk.org> SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -->
This folder contains an object which implements a translator from first-order predicate logic propositions to conjunctive normal form and to clausal form. The translator code is partially based on code published in the book "Programming in Prolog" by W. F. Clocksin and C. S. Mellish.
The following operators are used for representing logic connectives:
Print Logtalk, Prolog backend, and kernel versions (if running as a notebook):
%versions
Start by loading the example:
logtalk_load(logic(loader)).
Translate a single logic proposition:
translator::translate((p v ~q) => (r & k), Cs).
<!-- r :- p. k :- p. q; r :- . q; k :- .
Cs = [cl([r],[p])
,cl([k],[p])
,cl([q,r],[])
,cl([q,k],[])
].
-->
Translate a single logic proposition printing each translation step:
translator::step_by_step((p v ~q) => (r & k), Cs).
<!-- Processing proposition: p v ~q=>r&k
cl([r],[p])
,cl([k],[p])
,cl([q,r],[])
,cl([q,k],[])
]Clauses in Prolog-like notation: r :- p. k :- p. q; r :- . q; k :- .
Cs = [cl([r],[p])
,cl([k],[p])
,cl([q,r],[])
,cl([q,k],[])
].
-->
Translate a single logic proposition printing each translation step:
translator::step_by_step(all(X, exists(Y, p(X) v ~q(X) => r(X, Y))), Cs).
<!--
Processing proposition: all(X, exists(Y, p(X)
v~q(X)
=>r(X, Y)
))
p(X)
v~q(X)
)v r(X, Y)
))p(X)
&q(X)
v r(X, Y)
))p(X)
&q(X)
v r(X, f1(X))
)p(X)
&q(X)
v r(X, f1(X))
)p(X)
&q(X)
v r(X, f1(X))
p(X)
v r(X, f1(X))
)& (q(X)
v r(X, f1(X))
)cl([r(X, f1(X))], [p(X)])
, cl([q(X), r(X, f1(X))], [])
]
Clauses in Prolog-like notation:
r(X, f1(X))
:- p(X)
.
q(X)
; r(X, f1(X))
:- .
X = X, Y = f1(X)
, Cs = [cl([r(X, f1(X))], [p(X)])
, cl([q(X), r(X, f1(X))], [])
].
-->
Translate a single logic proposition printing each translation step:
translator::step_by_step(all(X, men(X) => mortal(X)), Cs).
<!--
Processing proposition: all(X, men(X)=>mortal(X))
men(X)
v mortal(X)
)men(X)
v mortal(X)
)men(X)
v mortal(X)
)men(X)
v mortal(X)
)men(X)
v mortal(X)
men(X)
v mortal(X)
cl([mortal(X)], [men(X)])
]
Clauses in Prolog-like notation:
mortal(X)
:- men(X)
.
X = X, Cs = [cl([mortal(X)], [men(X)])
].
-->