Under consideration for publication in Theory and Practice of Logic Programming 1

Porting and refactoring Prolog programs:
the PROSYN® case study

EDISON MERA

Process Design Center (PDC), Breda, The Netherlands
(e-mail: mail@edisonm. com)

JAN WIELEMAKER

VU University Amsterdam, The Netherlands
(e-mail: J.Wielemaker@vu.nl)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Operational software systems need to be maintained. Prolog has strengths and weaknesses if it comes
to software maintenance. Its reflexive capabilities and the fact that Prolog programs can be represented
naturally as Prolog data are strengths when it comes to porting and refactoring. On the other side, its
dynamic and untyped nature limit the possibilities for static analysis and safe refactoring. In this paper
we evaluate the practical aspects of these processes based on a large case study. The system studied is
PROSYN® | an expert system consisting of almost 1 million lines of Prolog code written in IF/Prolog IV
and C++ based on Microsoft MFC. This system has been ported to SWI-Prolog, while the Ciao assertion
language is being used to overcome the lack of a type system, to formalize specifications and to establish
the necessary static analysis and run-time checking framework.

KEYWORDS: porting, run-time checking, refactoring

1 Introduction

Some legacy Prolog applications contain a vast amount of knowledge. At the same time, the
world changes with respect to available Prolog infrastructure, operating systems of choice and
expected interaction with users. This changing environment can require major refactoring of the
code. Nowadays there exists vast information about refactoring for different languages (Fowler
2002) with Prolog being one of the tools used for refactoring of applications written in other
languages (Kniesel et al. 2007; [Pau and Kristinsson 1990). In contrast, refactoring Prolog appli-
cations did not receive much attention, being (Serebrenik et al. 2008) one of the few exceptions.

This article describes the refactoring process of a huge expert system called
PROSYN® (Schembecker and Simmrock 1996). It was originally developed by a large
number of (mainly) chemical engineers over a 20 year period. The system still runs, but only
inside a virtual machine running Windows-2000. The system can still be compiled, using
IF/Prolog V, VISUAL FORTRAN and MSVC 6, but neither of which is still on sale. The
knowledge captured in PROSYN® is considered valuable enough to justify investing substantial
resources to port it to a modern infrastructure and make it ready for future maintenance and
extension of the knowledge base.

2 E. Mera and J. Wielemaker

The contribution of this paper is to demonstrate that a combination of previously described
techniques, in particular the YAP/SWI portability framework (Wielemaker and Costa 2011), the
Ciao assertion framework (Hermenegildo et al. 2012)) and its run-time checker (Mera et al. 2009)),
together with some relatively simple new tools can support the porting and refactoring process
of a huge system at acceptable costs. This case is interesting because of the size and poor state
of software maintenance at the start of the project and it is carried out in a commercial setting.

This article is organized as follow: first, we introduce the PROSYN® system and aspects that
are relevant to porting and refactoring. In section [3| we demonstrate how we used the YAP/SWI
portability framework to reach at an initial port. Next, we describe why we need additional anno-
tations about the program and how a modified port of the Ciao assertion language fulfills these
requirements. In section [5| we introduce our custom refactoring tools before we end with related
work and the conclusions.

2 The PROSYN® system

The PROSYN® system is a huge expert system for the design of chemical processes. The software
provides an interesting use case for porting and refactoring because the software is (1) very large
(almost 1 million lines), (2) written over a long period of time by many people to whom we have
no access, (3) many of the authors were not professional computer scientists and (4) the original
system (IF/Prolog IV) differs substantially from the current target system (SWI-Prolog), notably
its module primitives and built-in predicates. PROSYN® consists of the following components:

Expert modules to support a given task in chemical process design. The code of these mod-
ules is a mixture of pure Prolog code, calls to the PROSYN® UI infrastructure, calls to the
PROSYN® data sources infrastructure and rules that are subject to meta interpretation.

User interface subsystem that was initially developed for X11 and later ported to MFC (Mi-
crosoft Foundation Classes). It consists of high level calls that present various styles of input
widgets (select from list, text field, etc.) and feedback (text and graphics).

Data sources about properties of chemical substances. Such data are stored on text files in a
variety of formats, databases or provided by dedicated external programs, and are accessed by
a mixture of pure Prolog programs, calls to external executables and C interfaces.

General infrastructure that takes care of saving and loading collected facts on the current ses-
sion and meta-interpretation of rules. The core facilities also provide a subsystem that achieves
demand loading of modules, to overcome memory limitations of the former hardware.

Portability framework PROSYN® was initially written in IF/Prolog IV on Unix/X11 and later
ported to IF/Prolog V on Windows-NT/MFC. A large part of the Prolog portability issues was
resolved by renaming predicates to *V4, e.g., clauseV4/2 throughout the application and
providing a module that emulates the version IV functionality in version V. The X11/MFC
portability was realized using a module with generic GUI calls that are used throughout the
application. Depending on a setting, dynamic predicates are generated that relay these calls to
an X11 or MFC layer.

IF/Prolog V comes with a module system that is close to ISO/IEC 13211-2:2000 (Prolog —
Part 2: Modules). Meta-calling is facilitated by a directive meta/1, which behaves similar to the
deprecated SWI-Prolog module_transparent/1 directiveﬂ In addition, it uses : /2 to qualify

Uhttp://wuw.swi-prolog.org/pldoc/doc_for?object=(module_transparent)/1

http://www.swi-prolog.org/pldoc/doc_for?object=(module_transparent)/1

Theory and Practice of Logic Programming 3

predicates and @/2 to provide a calling context for goals. For example, m: p@c executes the predi-
cate p/0 of the module m in the calling context c. Modules have a distinct declaration section that
provides the module name, exports declared using export/1 and additional declarations such as
dynamic/1. In contrast, the SWI-Prolog module system is based on Quintus Prolog.

A disadvantage of the meta/1 declaration is that it does not specify which argument is used as
a module sensitive argument, nor whether arguments are used as calls or not. E]The PROSYN®
infrastructure defines a large collection of meta-predicates. Lacking meta-predicate information
that allows for locating arguments that are goals, even simple program analysis such as depen-
dency tracking becomes a challenge.

Many predicates in PROSYN® have meta declarations while their arguments are not module
sensitive or have dynamic declarations while they are not asserted nor retracted. Some of the
dynamic declarations seem to be related to the debugging facilities of IF/Prolog. It is unclear
why the superfluous meta declarations appear in the program.

3 Porting PROSYN®

The minimal requirement to revive PROSYN® was to migrate it to currently available compilers
running on a currently available operating system. In addition, the owner (PDC) wants to replace
the UI with a web-based UI to be able to offer PROSYN® as a service to its customers and it wants
to make it easier to inspect and extend the knowledge captured in the system. We considered two
options: (1) restart from scratch after selecting an appropriate expert system shell or (2) realize a
minimal port to a modern environment and perform gradual refactoring steps from there.

It was estimated that it would require too many resources and there would be a too long
period without any usable result at all to make (1) a serious option. Instead, we decided on a
pilot project of three weeks, carried out by one of the authors (Wielemaker) and Johan Romme,
who had studied the existing code base and has basic knowledge about running PROSYN® as
well as building PROSYN® using the original infrastructure. The purpose was to port the core
of PROSYN® to SWI-Prolog following the emulation technique described in (Wielemaker and
Costa 201 1)). Below we briefly introduce the compatibility framework and the results of this pilot.

3.1 The SWI/YAP portability framework

The SWI/YAP portability framework introduces a directive : - expects_dialect(Dialect).
that states that the file is written for the given Prolog Dialect. If the target Prolog is not Dialect, it
performs the following steps: (1) load the file library(dialect/Dialect), and (2) make the expected
dialect available to macro expansion hooks through the predicate prolog_load_context/2.

The file library(dialect/Dialect) typically pushes a directory holding a (partial) library that is
compatible to Dialect to the front of the 1ibrary search path. In addition, it exports emulations
for built-in predicates of the target system and rewrites goals and directives conditionally on
the expected dialect using term_expansion/2 and goal_expansion/2. For example, calls to
conflicting built-in predicates are mapped like this:

2 Most todays Prolog systems whose module system is derived from Quintus use the meta_predicate/1 declaration
where an integer in the head implies that the argument is called with N additional arguments and a : annotation implies
that the argument is module-sensitive without specifying how.

4 E. Mera and J. Wielemaker

goal_expansion (concat_atom (List ,Delim,Atom),if_concat_atom (List ,Delim,Atom)) :—
prolog_load_context(dialect, ifprolog).
if_concat_atom (List ,Delim,Atom) :—
maplist(write_term_to_atom , List ,AtomL),atomic_list_concat (AtomL, Delim , Atom).
write_term_to_atom (Term, Atom) :—
(atomic (Term)—>Atom = Term ; with_output_to(string (Atom), write(Term))).

The power of the SWI/YAP compatible framework is amplified by the flexibility of
SWI-Prolog. SWI-Prolog poses few restrictions on source code layout. For example, most
directives may be executed as goals, often even after providing clauses for a predicate, system
predicates may be redefined, it is possible to make cross-module calls to private predicates and
definitions can in general be resolved lazily. While these features give great freedom to the pro-
grammer, they make program analysis from the source code nearly impossible. For this reason,
analysis of SWI-Prolog programs is executed on the loaded program rather than the source.

The typical process to port a Prolog application that was originally written for a system for
which no portability framework exists consists of the steps below, repeating steps 2 to 4 until the
program is loaded without errors: (1) create an initial library(dialect/Dialect) and Dialect library
directory, (2) try loading the main file, (3) if library files are reported missing, add a dummy
library file to the dialect library, (4) try to resolve issues with conflicting built-in predicates,
directives, operators and other syntax issues by adding rules to library(dialect/Dialect).

After these steps, missing predicates can be identified using 1ist_undefined/0 and can be
added to library(dialect/Dialect) as well as the compatibility libraries. From this moment, (static)
analysis and testing must be used to identify further issues. Section 4| elaborates on this process
after the obvious issues were resolved by running and debugging the program.

3.2 Evaluation of porting PROSYN®

Porting PROSYN® turned out to be relatively complex. The main file provides only a minimal
infrastructure. The interesting parts of the system are loaded on demand as explained in sec-
tion 2] It took about a week with two persons to get enough of IF/Prolog emulated to get the first
operational module loaded.

The aim with PROSYN® was to migrate rather than to port it, i.e., the result did not need to
run on IF/Prolog anymore. This implies that the port can be realized as a mixture of emulation
and rewriting, with a delicate tradeof between both. Emulation is generally more complicated,
but has two advantages: (1) it leaves the code as-is, so it is guaranteed not to introduce new bugs
into the existing code base and (2) it deals with all places where the construct is used together.

The disadvantage is that the code remains in its poor state using the *V4 (see section [2) emu-
lation of IF/Prolog IV and the lack of proper meta-predicate declarations limit the usability of the
SWI-Prolog IDE tools. Notably they prevent the editor to jump to source code and often make
the source-level debugger revert to showing decompiled code rather than the original source be-
cause it fails to relate the compiled code to the detailed source layoutﬂ In practice, we made a
quick assessment for each predicate, considering the following factors: (a) the number of places
it was used, (b) estimated time to create an emulation, (c) is a complete emulation easy and pos-
sible? (d) estimated time to rewrite the calling clause, (e) estimated risk to introduce errors with
either approach, (f) estimated consequences of such errors, e.g., how easy is it to detect them?

3 Just adding meta-predicate declarations instead of the module_transparent declarations does not work because it causes
the run-time system to qualify the meta-argument with : /2 in an implementation not prepared to handle such : /2 term.

Theory and Practice of Logic Programming 5

It took two weeks with two developers to reach at a state where we could execute some par-
tial examples from the PROSYN® manual. During this period we implemented the IF/Prolog
dialect emulation, some of which required low-level modifications to SWI-Prolog to make the
emulation precise. Below are our most relevant conclusions.

e The PROSYN® code frequently uses include/1 to include files. This was poorly sup-
ported in SWI-Prolog. Notably it was not possible to have the module header in an in-
cluded file and detailed source-code location information was not available for included
code. Although it is rather easy to replace include/1 by one of other SWI-Prolog load-
ing predicates, it was eventually decided to improve the support for include/1.

e The @/2 was added to the kernel, it calls a qualified predicate with a given calling contexﬂ>
being too critical in the original code that partial emulations caused too many subtle errors.

e Code that was calling external executables and MFC code was generally rewritten. Full
emulation was hard or impossible due to its dependency on MFC, which is not available
on Linux, or its dependencies on Windows path-names. Many cases allowed for simple
replacements with SWI-Prolog’s operating system access primitives. In some places, ex-
ternal C-code to access specific data sources was replaced with a pure Prolog alternative.

e The X11/MFC user interface switch was extended with two alternatives, one with predi-
cates to provide terminal/text-based interaction and other to provide a web-based interface.

4 Debugging the PROSYN® system

As described in section two weeks of classical debugging achieved that only some basic
functionality became operational. The code was unstable. Some of the errors had been introduced
long ago while porting to IF/Prolog V and Windows, others by incomplete emulation of IF/Prolog
and some by reimplementing the user and operating system interaction. This, combined with a
lack of knowledge about the program, implementation and program comments that are largely in
German and often outdated caused progress to be slow. With the first author of this article (Mera)
taking over the project, the situation got even worse because he was less familiar with the tools
and the system at that moment. There was need for a more automated process.

Static analysis is a candidate to reduce the need for the laborious run-time debugging route.
Despite the progress in the field of static analysis, software validation and run-time verification,
there is a lack of even basic static analysis tools for Prolog programs, targeted at large systems.
Rigorous static analysis of PROSYN® is impossible due to the lack of machine readable annota-
tions of the sources as well as the lack of a scalable effective global analysis framework.

The Ciao assertion language (Hermenegildo et al. 2005) is one of the strongest systems for
describing program properties and doing both static and run-time verification of these properties.
We established a subset of the Ciao framework that scales and is useful even if only a tiny frac-
tion of the code is annotated with assertions: the Ciao run-time checker and a subset of static
validation tools. This was realized with a mixture of porting using the YAP/SWI portability frame-
work and reimplementation. In the subsequent section we provide more details on the simplified
Ciao assertion language that we use. We provide examples on how the assertion system helped
in making explicit program properties and debugging PROSYN®.

4http://www.swi-prolog.org/pldoc/doc_for?object=(context_module)/1

http://www.swi-prolog.org/pldoc/doc_for?object=(context_module)/1

6 E. Mera and J. Wielemaker

4.1 The Ciao Assertion Language

The Ciao assertion language (Hermenegildo et al. 2005) allows expressing computational
properties of a program that can be run-time checked. Currently, we only use the class of
pred assertions, which describes a particular predicate and, in general, follows the schema
:— pred Pred [: Precond] [=> Postcond] [+ Comp-Props] .
where Pred is a predicate symbol applied to distinct free variables and Precond and Postcond
are logic formulae about execution states. Precond is the precondition under which the pred as-
sertion is applicable. Postcond expresses that in any call to Pred, if Precond holds in the calling
state and the computation of the call succeeds, then Postcond also holds in the success state.
Finally, the Comp-Props field is used to describe properties of the whole computation of the calls
to predicate Pred that meet Precond. For example, the assertion:
:—pred p(A,B):(list(A,num),var(B))=>(list (A,num), list(B,num))+(not_fails ,is_det).
states that for any call to predicate p/2 with the first argument bound to a list of numbers and the
second one a free variable, if the call succeeds, then the second argument is also bound to a list
of numbers. Additionally, not_fails and is_det express that the previous calls do not finitely
fail (i.e., they produce at least one solution or do not terminate) and are deterministic.

An instrumental part of the implementation is the assertion language reader, which reads
assertion declarations, normalizes them, and save them as a set of easy to handle Prolog facts.
Differences in the module system as well as the fact that assertions only depend on the compiled
file in Ciao, but on the the whole program in SWI-Prolog made us decide to implement a
dedicated assertion reader whose syntax is more inspired by SWI-Prolog’s PIDoc conventions.
We also allow to define the same set of global properties for several predicates. The example
below states that the predicates p/1, q/2 and r/2 are det (the composition of not_fails and
is_det), and the arguments of r/2 are compatible with int/1 and atm/1:

:— pred [p/1, q/2, r(int, atm)] is det.

4.1.1 Run-time checking port to SWI-Prolog

The run-time checking (Mera et al. 2009) for Ciao was implemented as part of the CiaoPP
unified framework for static-verification, run-time checking and unit-testing. We ported the run-
time checker using the portability framework described in section The existing minimal
Ciao dialect support was extended with the following features:

Basic emulation of the Ciao package system (Gras and Hermenegildo 2000). This was re-
alized by (1) mapping :- use_package(Alias) to :- include(Alias), (2) emulation
of :- load_compilation module(Alias) by loading it into a unique context to avoid
name conflicts with already imported predicates and (3) emulate : - add_goal_trans/2 and
:— add_sentence_trans/2 on top of goal_expansion/2 and term_expansion/2.

Argument rearranging of meta-arguments in meta-predicates In Ciao the arguments of a
meta-predicate are interpreted differently, by moving the first meta-argument to the first posi-
tion to facilitate indexing, however it is not compatible with the ISO standardE] For example,
call(p(a,b),c,d,e) must be converted to p(c,a,b,d,e).

5 ISO/IEC 13211-1:1995/Cor 2:2012., section 8.15.4 call/2..8

Theory and Practice of Logic Programming 7

Message printing infrastructure The run-time checking system generates messages using
Ciao’s io_aux:messages/1 predicate. Proper integration with the SWI-Prolog IDE tools
requires usage of the Quintus-derived message infrastructure realized by print_message/2,
and was implemented with conditional compilationE]

4.1.2 Using the assertion language for debugging PROSYN®

Often, we want to detect why a predicate is failing silently. The way to debug this is to add
an assertion with the right types and global properties to inform the system about the expected
behavior of the program. Consider the program below:

1 :— module(m, [p/1, q/1]).| 3
2 q(a) :— p(b). 4

==l
PEO=N
—
e —

We would like to see why a call to q/1 fails. Suppose we also know that p/1 only accepts
numbers and should not fail. We can now add the following assertions:
5 :— pred q/1 is multi.
6 :— pred p(+int) is multi.
By executing the program q/1 we see:
?7- call_rtc(q(A)).
ERROR: /tmp/m.pl:5: Run-Time failure in assertion for m:p(_1).
ERROR: In *calls*, unsatisfied properties: [int(_1)]. Because: [’_1’=b].
ERROR: /tmp/m.pl:3: Failed in m:p(_1).
ERROR: /tmp/m.pl:2: Failed during invocation of q(_)
ERROR: /tmp/m.pl:6: Run-Time failure in assertion for m:q(_1).

ERROR: In *comp*, unsatisfied properties: [multi]. Because: [fails(q(_1))].
ERROR: /tmp/m.pl:2: Failed in m:q(_1).

call_rtc/1 is a meta-predicate used to report all the violations that where found. In this case

two run-time errors are reported, one related with the multi property and other with the type of
p/1 argument (int). The Ciao assertions can also be used for static analysis, currently a small
set of assertions that can be checked at compile time, by compiling the previous example we get:
?- use_module(m) .

ERROR: /tmp/m.pl:6: In assertions for [m:p/1]

/tmp/m.pl:2: Compile-Time failure in assertion for m:p(a).

In *compat*, unsatisfied properties: [int(a)].

ERROR: /tmp/m.pl:6: In assertions for [m:p/1]

/tmp/m.pl:4: Compile-Time failure in assertion for m:p(b).
In *compat*, unsatisfied properties: [int(b)].

4.1.3 Improving the Knowledge Base with assertions

The assertion language also allows for specifying application specific properties about predi-
cates, for example the rules as they appear in PROSYN®. We improved the consistency of the
knowledge base by providing declarations about its configuration as assertions rather than the
ad-hoc multi-file facts used in the original PROSYN® implementation. This formalization as as-
sertions allows for checking the rule syntax statically and, in terms of performance is lighter. For
example, the original code contained the following declarations (translated from German):

6 Due to Ciao and SWI-Prolog have different message infrastructures, a more elegant integration was difficult.

8 E. Mera and J. Wielemaker

explainable_rules (-, [rulel(-,-),rule2(-,-),rule3(-,-,-)]).
target_mask (rulel (A, _),rulel (A,_)). target_mask(rule3(A,B,_),rule3(A,B,_)).
hidden_rules ([rulel (_,_),rule2(_-,_)]).
These declarations were translated into the following assertionsﬂ
:— true pred [[rulel/2 + kbmask([+,—]), rule2/2] is kbhidden,

rule3/3 + kbmask([+,+,—])] is kbrule.
For PROSYN®, 200 assertions where generated by refactorizing the knowledge base, and some
inconsistencies in the facts where made evident and fixed. The number of modified lines of code
was approximately 3000 and the number of lines removed 1000.

5 The Refactoring Tool

We have three key requirements for our refactoring tool. First, it must be capable of dealing
with the fact that the program state cannot be derived easily from the sources but needs to be
analyzed in the materialized (loaded) program as explained in section [3.1] Second, it must be
capable of dealing with meta-calling and third, it must scale well. Our strategy is to provide
generic primitives that match Prolog terms in the compiled code and provides rules similar to
term_expansion/2 and goal_expansion/2, where we can use the full power of Prolog to
construct the target term based on the context and reflexive capabilities of Prolog. This tool uses
the source-location capabilities of SWI-Prolog to replace the matching term in the source ﬁlesﬂ
The primitives are described informally below. They operate on sentences (i.e., declarations and
clauses) or partial sentences in the source and therefore cannot easily split or join sentences.

expand_term(Module:Sentence, Pattern, Replacement, :Expander, +Action) [det]
In all modules that match Module, in all sentences that subsume Sentence, replace each sub-
term that subsumes Pattern with the term Replacement, provided that the goal Expander
succeeds. Expander can be used to finalize the shape of Replacement as well as to veto the
expansion (see section [5.2] for an example). The Action argument is one of show to show the
changes that would be made or save to actually apply the changes.

expand_goal(Module:Caller, M:Goal, Replacement, :Expander, +Action) [det]
Similar to expand_term/4. Replace in each clause whose head subsumes Caller each call to
Goal that resolves to a predicated defined in the module M. It uses the code walker to find
goals and resolve the predicate called by Goal.

expand_sentence(Module: Pattern, Replacement, : Expander, +Action) [det]
Similar to expand_term/4, but only applies to the entire sentence.

Prolog is a powerful term rewriting language, that enables us to define both complex generic
and application-specific transformations in a few lines of code, as we will see further, for exam-
ple, some possible replacements are shown in table[I] for the given program:

5.1 Scenarios

This section demonstrates the power of our primitives and how these predicates suffice for most
refactorings, first on general refactoring tasks that can also be found in e.g., (Serebrenik et al.
2008) and then in section [5.2]for application-specific transformations.

7 The Ciao assertion framework allows for the definition of new properties using the :- prop declaration.
8 http://www.swi-prolog.org/pldoc/doc_for?object=(prolog_walk_code)/1

http://www.swi-prolog.org/pldoc/doc_for?object=(prolog_walk_code)/1

Theory and Practice of Logic Programming 9

Program Command Replacements
:— module(pl, []). expand_term (pl:(e(-,-):—_),[—e(A,Z):—f(t(Al/x1x/),t(A/*x2x/)),
e(A,Z):—f(t(A/x1%/),t(A/x2%/)), f(X,Y),f(Y,X),true,show).|+e(A,Z): —f(t (A/*2x/) , t (A/*x1x%/)),
p(Z). —e(AZ):—f(t(A/x1x/),t(A/*2x/)),
f(A,B):—p(A),p(B). expand_term (pl:_, +e (A, Z): —f(t(A/*2x/) , t(A/x1x%/)),
f(X,Y),f(Y.X) ., true,show).|—f(A,B):=p(A),p(B).
+f(B.,A):—p(A).p(B).

Table 1. Possible replacements made by expand_term/4 depending on the specified scope.

Removal of superfluous exports A method to remove the export declaration in predicates that
are not being used in any place follows:

remove_useless_exports (M, Action) :— list_sequence ([E[L],S) :—
expand_sentence (Module:(: —module (M0O,L)) , I_sequence_2(L,E,S).
(: —module (MO,N)) ,include (is_used ,L,N), l_sequence_2 ([E|L],E0,(E0,S)): —
Action), I_sequence_2(L,E,S).
expand_sentence (M:(: —export(K)), Exp, I_sequence-2 ([],E.E).
(list_sequence (L,K),include (is_used ,L,N),|is_used (F/A ,M): —functor (H,F,A),
(N==[] —Exp="$RM’ predicate_property (_:H,
;list_.sequence (N,S) ,Exp=(:—export(S)))), imported_from (M)) ,
Action). M\::user.

>$RM’ is an escape term that stands for removal of the whole term.

Variable renaming The renaming requires that there are no other variable with the same name
in the sentence being transformed. The predicate refactor_context/2 provides access to
additional context information. The context variable_names provides the variable name dic-
tionary as returned by the variable_names option of read_term/3.

rename_variable (Sentence ,Name(O,Name, Action) :—
expand_term (Sentence , Var, ’$VAR’ (Name) ,
(refactor_context(variable_names, Dict), \+ memberchk(Name =_, Dict),
var (Var), memberchk (NameO=V, Dict),V==Var), Action).
Conjunction replacement To perform replacements in a conjunction of goals we have to con-

sider two cases: one if the target is at the end of the body and other if it is in the middle.

replace_conjunction (Sent,Conj,Repl,Act): —[extend_conj(Var, Rest,(Var, Rest)): —

expand_term (Sent , Conj, Repl, true , Act), var(Var) ,!.
extend_conj (Conj, Rest,Conj2), extend_conj ((A,CO),Rest ,(A,C)): —
extend_conj (Repl, Rest,Repl2), !,extend_conj (CO, Rest, C).

expand_term (Sent ,Conj2 ,Repl2 ,true ,Act).|extend_conj(Last,Rest,(Last,Rest)).

5.2 An application specific refactoring in PROSYN®

PROSYN® contains the predicate clauseV4/2, which is part of the IF/Prolog IV to V migration.
It acts as clause/2 if the argument is qualified and operates on the module xpsfact otherwise.
It is defined as:

clauseV4 (M: Head ,B): —!,clause (M: Head ,B) .| clauseV4 (Head ,B): —clause (xpsfact:Head ,B).

Below are the rules that unfolds calls to this predicate if it is safe to do so, and the table with the
replacements performed in clauseV4/2 and similar predicates.
expand_goal M: _, xif4 :clauseV4 (HO,B),clause (H,B)resolve_head (HO,M,H),save).

resolve_head (H, _, -) :— var(H),!, fail. % unknown head
resolve_headM:_, _, _) :— var(M),!, fail. % unknown module
resolve_head M:H, M, H). % current context
resolve_head (H, _,H) :(—H= (_:_). % qualified
resolve_head (H, xpsfact, H). % context is xpsfact

resolve_head (H, -, xpsfact:H). % otherwise

10 E. Mera and J. Wielemaker

Predicate | Replacement | Amount” Predicate Replacement |Amount
clauseV4/_ clause/2 7680||retractallV4/ Jretractall/1| 3090
assertaV4/. asserta/1 1370||assertzV4/_ |assertz/1 3300
atomic_lengthV4/2\write_length/3 460||1ist_length/2 |length/2 1240
executeV4/1 meta-call unfolde 260|| Total 17400

6 Related work

The most relevant work is described in “Improving Prolog programs: Refactoring for Prolog”
(Serebrenik et al. 2008). Such article describes ViPReSS, a refactoring tool written in SICStus
Prolog and evaluation of this tool in a 53,000 lines in-house application. The article provides
an overview of refactoring operations and pointers to more literature with more comprehensive
refactoring operations. ViPReSS system analyses the source code and creates a series of vi/ed edit
commands to modify the source. In contrast, our discovery and source code location is based on
the loaded executable to overcome the difficulties that result from program transformation to
support the compatibility framework. Where ViPReSS cannot deal with meta-predicates, our
infrastructure must be able to take care of this to support refactoring in PROSYN®. Our set of
available refactoring operations has evolved on ‘as needed’ basis and is less comprehensive than
what is available in ViPReSS.

7 Conclusions

This paper describes our experience with large-scale refactoring of a huge legacy Prolog pro-
gram. We evaluated the YAP/SWI portability infrastructure two times for this project. First, it was
applied by the lead developer (Wielemaker) of SWI-Prolog to port PROSYN® from IF/Prolog V
and next, it was applied by Mera to port the Ciao assertion language. We can safely conclude that
a dynamic Prolog implementation such as SWI-Prolog can accommodate code written for other
systems at modest costs, although the process does require experienced Prolog programmers.

A test framework was realized using a combination of SWI-Prolog’s unit test framework
and Ciao assertion language based framework. Ciao assertions are being added to the code base
incrementally to help debugging modules of PROSYN®. Finally, a flexible and lightweight infras-
tructure for performing refactoring tasks was developed on top of the SWI-Prolog source infor-
mation primitives and its call-graph analysis. The refactoring process can be expressed naturally
using Prolog rules, leaving the responsibility for minimal and syntactically correct transforma-
tions of the source to the tool. It perform fast changes in huge amounts of code, for example, in
a desktop PC (i7 3.4GHz), a simple term replacement over all PROSYN® sources that modified
156 files in 7743 places took 33 seconds.

The presented work demonstrates that the integration of existing tools from SWI-Prolog and
Ciao, together with a new refactoring tool, provides a good basis for porting and refactoring of
large and poorly structured programs. The new PROSYN® is well on track with implementing
proper quality measures and is being tested by in-house users.

The Ciao assertion port to SWI-Prolog, its run-time checker, and the refactoring tools are
LGPL SWI-Prolog Packages, availables as repositories at: https://github.com/edisonm/

https://github.com/edisonm/

Theory and Practice of Logic Programming 11

References

FOWLER, M. 2002. Refactoring: Improving the design of existing code. In XP/Agile Universe, D. Wells
and L. A. Williams, Eds. Lecture Notes in Computer Science, vol. 2418. Springer, 256.

GRAS, D. C. AND HERMENEGILDO, M. V. 2000. A new module system for prolog. In Computational
Logic, J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv,
and P. J. Stuckey, Eds. Lecture Notes in Computer Science, vol. 1861. Springer, 131-148.

HERMENEGILDO, M. V., BUENO, F., CARRO, M., LOPEZ-GARCIA, P., MERA, E., MORALES, J. F.,
AND PUEBLA, G. 2012. An overview of ciao and its design philosophy. TPLP 12, 1-2, 219-252.

HERMENEGILDO, M. V., PUEBLA, G., BUENO, F., AND LOPEZ-GARCIA, P. 2005. Integrated program
debugging, verification, and optimization using abstract interpretation (and the ciao system preprocessor).
Sci. Comput. Program. 58, 1-2, 115-140.

KNIESEL, G., HANNEMANN, J., AND RHO, T. 2007. A comparison of logic-based infrastructures for
concern detection and extraction. In Proceedings of the 3rd workshop on Linking aspect technology and
evolution. LATE *07. ACM, New York, NY, USA.

MERA, E., LOPEZ-GARCIA, P., AND HERMENEGILDO, M. V. 2009. Integrating software testing and run-
time checking in an assertion verification framework. In /CLP, P. M. Hill and D. S. Warren, Eds. Lecture
Notes in Computer Science, vol. 5649. Springer, 281-295.

PAauU, L. F. AND KRISTINSSON, J. B. 1990. Softm: A software maintenance expert system in prolog.
Journal of Software Maintenance: Research and Practice 2, 2, 87-111.

SCHEMBECKER, G. AND SIMMROCK, K. H. 1996. Heuristic-numeric process synthesis with prosyn. In
AIChE. Symposium series, vol. 92. American Institute of Chemical Engineers, New York, NY, 275-278.

SEREBRENIK, A., SCHRUVERS, T., AND DEMOEN, B. 2008. Improving prolog programs: Refactoring
for prolog. TPLP 8, 2,201-215.

WIELEMAKER, J. AND COSTA, V. S. 2011. On the portability of prolog applications. In PADL, R. Rocha
and J. Launchbury, Eds. Lecture Notes in Computer Science, vol. 6539. Springer, 69—-83.

	Introduction
	The prosyn® system
	Porting prosyn®
	The SWI/yap portability framework
	Evaluation of porting prosyn®

	Debugging the prosyn® system
	The Ciao Assertion Language

	The Refactoring Tool
	Scenarios
	An application specific refactoring in prosyn®

	Related work
	Conclusions
	References

