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Overview

- YASL: Yet Another Scripting Language. Why?
- Interfaces to systems and languages

- Web services

- Exercises



YASL

- Scripting languages make low-level efficient algorithms available in a much

more versatile manner than packed as command line tools. Notably, they
allow for smaller granularity.

- Virtually all scripting languages combine imperative, functional and object-

oriented aspects:

v Versatile and familiar

X Object-relational impedance mismatch

x Single moded functions vs. multi-moded relations

X No declarative reading

x Generally more verbose

x Weaker for defining DSLs (Domain Specific Languages)



Prolog as scripting language

v'Relational data model is core

v Tree and graph models fit naturally

v Pattern matching (popular, see e.g., awk, sed, Perl)

v Sequence/gammars on arbitrary objects

v Excelent DSL definition capabilites

v Concise programs make it easy to graps semantics

x Poor handling of arrays

X Not widely known, very different from imperative languages



RDF (Linked Data, Knowledge Graphs)

- AP
- rdf(?Subject, ?Predicate, ?Object, ?Graph)
- { Filters }
- For example
.- rdf_prefix(dbo, 'http://dbpedia.org/ontology/").
?-{ Born > 2000 },
rdf(Person, dbo:birthDate, Born).
- Filters are constraints

- Allows low-level database to exploit indexing
- Allows combining multiple filters efficiently



RDF Backends

- Built-in library(semweb/rdf11)

- C-based in-memory graph store
- Aims at volatile RDF. Supports transactions and snapshots.
- Limited to approx. 100,000,000 triples

- HDT (Header Dictionary Triples)

- C++ library to compile and query static triple collections
- Small memory footprint for very large graphs



RDF Misc

- ClioPatria web server

- Management and exploration web interface
- SPARQL server

- RDF parsers (RDF/XML, Turtle, ntriples, nquads, ...)

- SPARQL client
- Native: spargl_query(+Query, -Row, +Options)
- Sparkle:

?- dbp ?? rdf(Person,rdf:type,foaf:'Person’),
rdf(Person,foaf:Name,Name),
filter(regex('Colt.*',Name)).



Accessing databases

- ODBC

- Native: odbc_query(DB, SQLQuery, Row)

- CQL: high level specification that is compiled to SQL
- Key-Value stores

- RocksDB
- BerkeleyDB



Document processing

- SGML/XML/HTMLS5 parser

- Document based: element(Tag, Attributes, Content)
- Callback based: on_begin, on_cdata, etc.
- Mixed: trap on_begin for e.g., a record and read the record

- Xpath/3 finds nodes in a document tree
- https://swish.swi-prolog.org/p/LTC2017.swinb


https://swish.swi-prolog.org/p/LTC2017.swinb

R integration

- R provides access to a vast amount of statistical and machine learning

algorithms and is capable of producing graphical output in many formats.

- Three interfaces
- Rsession (Nicos Angelopoulos)

- Uses piped to connect to R console. Mostly outdated.

- Real (Nicos Angelopoulos, Vitor Santos Costa)

- Uses Prolog and R C-interfaces. Great for local usage.

- Rserve-client (Jan Wielemaker)
- Uses binary Rserve client/server protocol. Great for (web) servers.

- https://swish.swi-prolog.org/example/Rdownload.swinb
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R interface strategy

- Rsession: pure Prolog, tries to capture as much as possible of

R.

- Real: SWI-Prolog 7 extensions, allowing for native support of

a.b, f() and v[i]. Tries to capture as much as possible of R.

- Rserve-client: SWI-Prolog 7 extensions. Handles more

advanced R through Quasi Quotations:

{Ir(Param,...)
|| R code

|}
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Native (Web) services

- HTTP server library with pluggable components

- OpenSSL (HTTPS)

- Authentication (Basic, Digest, Oauth?2, ...)

- Sessions

- Logging

- Websockets

- Static file service

- Location dispatching (bind path to predicate)
- JSON and XML read/write

- HTML replies (generate HTML pages)
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Native webservice

- http_handler('/hello’, hello, []).
" Link /hello to the predicate hello/1
hello(_Request) :-
format('Content-type: text/plain~n~n"),

format('Hello world!~n"). _ Write GCI body
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Native webservice (HT'ML)

.- http_handler('/hello’, hello, []).

hello(_Request) :- - Stylehandle
reply_html_page(navigation, / - Head elements

titte("Hello world"),
[ h1(*Hello world"),

\say hello

Body

D

say_hello -->
html([ p(class(intro), "This is my first paragraph’) ]).
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Native webservice (Ajax)

.- http_handler(‘/compute’, compute, []).

compute(Request) :-
http_read_json_dict(Request, JSONIn),
compute(JSONIn, JSONOut),
http_reply_json(JSONOut).
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Pengines: Prolog Engines on the Web

- Access Prolog toplevel using HTTP and JSON (or Prolog)

- Create (from source)

- Returns ID
- Ask (query, N)

- Returns error or first N answers
- Next (N)/Stop/Abort

- Returns error or next N answers
- Destroy

- Dispose of the engine
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Pengines

- Bring program to the data. Configuration chooses between authenticated

or anonymous access. Anonymous access is always sandboxed.

- Universal API to any service.

- Clients:
- Prolog
- JavaScript (nodejs)
- Java
- Erlang
- Ruby
- Shell (curl, returning all answers)
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Pengines and SWISH

- SWISH is a JavaScript application using Pengines
- Server provides storage, highlighting support, help, etc.
- Allows shared web-based development of programs

specific to data stored on the SWISH instance

- Pengine clients can access the stored programs
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Wrap up



What went wrong with Prolog 1.0

- Politics (Japan/US)?
- Too alien for people with CS background?

- No functions, no ,normal“ variables, no arrays, no loops, ...
- Not scalable / toy language / only for puzzles?

- Fragmentation / poor standardization?
- Relational impedance also applies for embedding Prolog
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SWI-Prolog

gprolog
YAP

XSB

ECLIPSe
SICStus

Prolog niches (speculative)

Networking, system interfaces, (WEB) Ul, IDE, concurrency,
scalibility, robustness

clp(fd), native code embedding
Performance, integration with machine learning, scalability

SGL-WAM, deductive database, negation, well formed
semantics

Constraint solving
Constraints, performance, standard compliance, robustness
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Some recent projects

+ Business rule enforcements in finance
Watson: interpret NLP parse trees
Robotics: connect to large knowledge graphs

+ Understanding changes in satelite images

+ Program verification and test generation
(Java) program analysis and refactoring

+ Control parcel sorting equipment

+ Natural language understanding
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Future developments

- Technical

- Improved indexing
- High performance exchange and storage of terms

- Improve SWISH

- Ul enhancements
- Support for reproducible results (permalinks)

- Long term
- Scalable concurrent and distributed computing
- Combine symbolic and statistical techniques
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Prolog 2.0?

- Prolog is still as alien and the relational impedance

mismatch that harms low-granularity embedding is not gone.

- The connection to statistical Al is unclear, but the need to

unite symbolic and statistical Al is widely recognised.

- Prolog has evolved from pure SLD inference to a platform

where SLD resolution is used to integrate more powerful
Inference machanisms (declarative islands)

- (SWI-)Prolog has rich interfaces to languages, document

formats and protocols.

- (SWI-)Prolog supports service based architectures well.
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Take home

- Alain Colmerauer’s invention is very much alive
- Modern Prolog systems

- Are scalable in terms of storage and concurrency
- Extend SLD with (in part programmable) control

-+ Have a rich set of interfaces to languages, network protocols and
document formats
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