DEE
-3
B0E

A second life for
Prolog

Prolog as unifying framework

Jan Wielemaker
J.Wielemaker@cwi.nl

This research was partially supported by the VRE4EIC project, a project that has received funding from the European Union's Horizon
2020 research and innovation program under grant agreement No 676247.

mailto:J.Wielemaker@cwi.nl

Overview

- YASL: Yet Another Scripting Language. Why?
- Interfaces to systems and languages

- Web services

- Exercises

YASL

- Scripting languages make low-level efficient algorithms available in a much

more versatile manner than packed as command line tools. Notably, they
allow for smaller granularity.

- Virtually all scripting languages combine imperative, functional and object-

oriented aspects:

v Versatile and familiar

X Object-relational impedance mismatch

x Single moded functions vs. multi-moded relations

X No declarative reading

x Generally more verbose

x Weaker for defining DSLs (Domain Specific Languages)

Prolog as scripting language

v'Relational data model is core

v Tree and graph models fit naturally

v Pattern matching (popular, see e.g., awk, sed, Perl)

v Sequence/gammars on arbitrary objects

v Excelent DSL definition capabilites

v Concise programs make it easy to graps semantics

x Poor handling of arrays

X Not widely known, very different from imperative languages

RDF (Linked Data, Knowledge Graphs)

- AP
- rdf(?Subject, ?Predicate, ?Object, ?Graph)
- { Filters }
- For example
.- rdf_prefix(dbo, 'http://dbpedia.org/ontology/").
?-{ Born > 2000 },
rdf(Person, dbo:birthDate, Born).
- Filters are constraints

- Allows low-level database to exploit indexing
- Allows combining multiple filters efficiently

RDF Backends

- Built-in library(semweb/rdf11)

- C-based in-memory graph store
- Aims at volatile RDF. Supports transactions and snapshots.
- Limited to approx. 100,000,000 triples

- HDT (Header Dictionary Triples)

- C++ library to compile and query static triple collections
- Small memory footprint for very large graphs

RDF Misc

- ClioPatria web server

- Management and exploration web interface
- SPARQL server

- RDF parsers (RDF/XML, Turtle, ntriples, nquads, ...)

- SPARQL client
- Native: spargl_query(+Query, -Row, +Options)
- Sparkle:

?- dbp ?? rdf(Person,rdf:type,foaf:'Person’),
rdf(Person,foaf:Name,Name),
filter(regex('Colt.*',Name)).

Accessing databases

- ODBC

- Native: odbc_query(DB, SQLQuery, Row)

- CQL: high level specification that is compiled to SQL
- Key-Value stores

- RocksDB
- BerkeleyDB

Document processing

- SGML/XML/HTMLS5 parser

- Document based: element(Tag, Attributes, Content)
- Callback based: on_begin, on_cdata, etc.
- Mixed: trap on_begin for e.g., a record and read the record

- Xpath/3 finds nodes in a document tree
- https://swish.swi-prolog.org/p/LTC2017.swinb

https://swish.swi-prolog.org/p/LTC2017.swinb

R integration

- R provides access to a vast amount of statistical and machine learning

algorithms and is capable of producing graphical output in many formats.

- Three interfaces
- Rsession (Nicos Angelopoulos)

- Uses piped to connect to R console. Mostly outdated.

- Real (Nicos Angelopoulos, Vitor Santos Costa)

- Uses Prolog and R C-interfaces. Great for local usage.

- Rserve-client (Jan Wielemaker)
- Uses binary Rserve client/server protocol. Great for (web) servers.

- https://swish.swi-prolog.org/example/Rdownload.swinb

10

https://swish.swi-prolog.org/example/Rdownload.swinb

DEE
-3
B0E

R interface strategy

- Rsession: pure Prolog, tries to capture as much as possible of

R.

- Real: SWI-Prolog 7 extensions, allowing for native support of

a.b, f() and v[i]. Tries to capture as much as possible of R.

- Rserve-client: SWI-Prolog 7 extensions. Handles more

advanced R through Quasi Quotations:

{Ir(Param,...)
|| R code

|}

11

Native (Web) services

- HTTP server library with pluggable components

- OpenSSL (HTTPS)

- Authentication (Basic, Digest, Oauth?2, ...)

- Sessions

- Logging

- Websockets

- Static file service

- Location dispatching (bind path to predicate)
- JSON and XML read/write

- HTML replies (generate HTML pages)

12

Native webservice

- http_handler('/hello’, hello, []).
" Link /hello to the predicate hello/1
hello(_Request) :-
format('Content-type: text/plain~n~n"),

format('Hello world!~n"). _ Write GCI body

13

Native webservice (HT'ML)

.- http_handler('/hello’, hello, []).

hello(_Request) :- - Stylehandle
reply_html_page(navigation, / - Head elements

titte("Hello world"),
[h1(*Hello world"),

\say hello

Body

D

say_hello -->
html([p(class(intro), "This is my first paragraph’)]).

14

Native webservice (Ajax)

.- http_handler(‘/compute’, compute, []).

compute(Request) :-
http_read_json_dict(Request, JSONIn),
compute(JSONIn, JSONOut),
http_reply_json(JSONOut).

15

Pengines: Prolog Engines on the Web

- Access Prolog toplevel using HTTP and JSON (or Prolog)

- Create (from source)

- Returns ID
- Ask (query, N)

- Returns error or first N answers
- Next (N)/Stop/Abort

- Returns error or next N answers
- Destroy

- Dispose of the engine

16

DEE
-3
B0E

Pengines

- Bring program to the data. Configuration chooses between authenticated

or anonymous access. Anonymous access is always sandboxed.

- Universal API to any service.

- Clients:
- Prolog
- JavaScript (nodejs)
- Java
- Erlang
- Ruby
- Shell (curl, returning all answers)

17

Pengines and SWISH

- SWISH is a JavaScript application using Pengines
- Server provides storage, highlighting support, help, etc.
- Allows shared web-based development of programs

specific to data stored on the SWISH instance

- Pengine clients can access the stored programs

18

Wrap up

What went wrong with Prolog 1.0

- Politics (Japan/US)?
- Too alien for people with CS background?

- No functions, no ,normal“ variables, no arrays, no loops, ...
- Not scalable / toy language / only for puzzles?

- Fragmentation / poor standardization?
- Relational impedance also applies for embedding Prolog

20

SWI-Prolog

gprolog
YAP

XSB

ECLIPSe
SICStus

Prolog niches (speculative)

Networking, system interfaces, (WEB) Ul, IDE, concurrency,
scalibility, robustness

clp(fd), native code embedding
Performance, integration with machine learning, scalability

SGL-WAM, deductive database, negation, well formed
semantics

Constraint solving
Constraints, performance, standard compliance, robustness

21

Some recent projects

+ Business rule enforcements in finance
Watson: interpret NLP parse trees
Robotics: connect to large knowledge graphs

+ Understanding changes in satelite images

+ Program verification and test generation
(Java) program analysis and refactoring

+ Control parcel sorting equipment

+ Natural language understanding

22

Future developments

- Technical

- Improved indexing
- High performance exchange and storage of terms

- Improve SWISH

- Ul enhancements
- Support for reproducible results (permalinks)

- Long term
- Scalable concurrent and distributed computing
- Combine symbolic and statistical techniques

23

Prolog 2.0?

- Prolog is still as alien and the relational impedance

mismatch that harms low-granularity embedding is not gone.

- The connection to statistical Al is unclear, but the need to

unite symbolic and statistical Al is widely recognised.

- Prolog has evolved from pure SLD inference to a platform

where SLD resolution is used to integrate more powerful
Inference machanisms (declarative islands)

- (SWI-)Prolog has rich interfaces to languages, document

formats and protocols.

- (SWI-)Prolog supports service based architectures well.

24

Take home

- Alain Colmerauer’s invention is very much alive
- Modern Prolog systems

- Are scalable in terms of storage and concurrency
- Extend SLD with (in part programmable) control

-+ Have a rich set of interfaces to languages, network protocols and
document formats

25

26

pue|dd " geuzod ‘L 103 6T-/T JoqUIeAON
aJualajuo) ABojouyoa] » abenbue] Y18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

