
˜

˜

Reference Manual
Updated for version 9.3.24, April 2025

SWI-Prolog developers
https://www.swi-prolog.org

SWI-Prolog is a comprehensive and portable implementation of the Prolog programming
language. SWI-Prolog aims to be a robust and scalable implementation supporting a wide
range of applications. In particular, it ships with a wide range of interface libraries, pro-
viding interfaces to other languages, databases, graphics and networking. It provides ex-
tensive support for managing HTML/SGML/XML, JSON, YAML and RDF documents.
The system is particularly suited for server applications due to robust support for multi-
threading and HTTP server libraries.

SWI-Prolog extends Prolog with tabling (SGL resolution). Tabling provides better ter-
mination properties and avoids repetitive recomputation. Following XSB, SWI-Prolog’s
tabling supports sound negation using the Well Founded Semantics. Incremental tabling
supports usage as a Deductive database.

SWI-Prolog is designed in the ‘Edinburgh tradition’. In addition to the ISO Prolog stan-
dard it is largely compatible to Quintus, SICStus and YAP Prolog. SWI-Prolog provides
a compatibility framework developed in cooperation with YAP and instantiated for YAP,
SICStus, IF/Prolog and XSB.

SWI-Prolog aims at providing a rich development environment, including extensive ed-
itor support, graphical source-level debugger, autoloading, a ‘make’ facility to reload
edited files and much more. GNU-Emacs, SWI-Prolog editor for Windows, the PDT plu-
gin for Eclipse or a Visual Studio Code plugin provide alternative environments. SWISH
provides a web based environment.

This document gives an overview of the features, system limits and built-in predicates.

https://www.swi-prolog.org
https://swish.swi-prolog.org

˜

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

1 Introduction 15
1.1 Positioning SWI-Prolog . 15
1.2 Status and releases . 16
1.3 Should I be using SWI-Prolog? . 16
1.4 Support the SWI-Prolog project . 18
1.5 Implementation history . 18
1.6 Acknowledgements . 19

2 Overview 20
2.1 Getting started quickly . 20

2.1.1 Starting SWI-Prolog . 20
2.1.2 Adding rules from the console . 21
2.1.3 Executing a query . 22
2.1.4 Examining and modifying your program . 22
2.1.5 Stopping Prolog . 23

2.2 The user’s initialisation file . 23
2.3 Initialisation files and goals . 24
2.4 Command line options . 25

2.4.1 Informational command line options . 25
2.4.2 Command line options for running Prolog 26
2.4.3 Controlling the stack sizes . 28
2.4.4 Running goals from the command line . 29
2.4.5 Compilation options . 29
2.4.6 Maintenance options . 30

2.5 UI Themes . 30
2.5.1 Status of theme support . 30

2.6 GNU Emacs Interface . 31
2.7 Online Help . 31

2.7.1 library(help): Text based manual . 31
2.7.2 library(explain): Describe Prolog Terms . 33

2.8 Command line history . 34
2.9 Reuse of top-level bindings . 34
2.10 Overview of the Debugger . 35

2.10.1 The Byrd Box Model And Ports . 36
2.10.2 Trace Mode Example . 37
2.10.3 Trace Mode Options: leash/1 and visible/1 39
2.10.4 Trace Mode Commands When Paused . 40
2.10.5 Trace Mode vs. Trace Point . 42
2.10.6 Spy Points and Debug Mode . 43
2.10.7 Breakpoints . 45

SWI-Prolog 9.3 Reference Manual

2

2.10.8 Command Line Debugger Summary . 47
2.11 Loading and running projects . 48

2.11.1 Running an application . 49
2.12 Environment Control (Prolog flags) . 53
2.13 An overview of hook predicates . 76
2.14 Automatic loading of libraries . 77
2.15 The SWI-Prolog syntax . 79

2.15.1 ISO Syntax Support . 79
2.16 Rational trees (cyclic terms) . 86
2.17 Just-in-time clause indexing . 87

2.17.1 Deep indexing . 88
2.17.2 Future directions . 89
2.17.3 Indexing for body code . 89
2.17.4 Indexing and portability . 90

2.18 Wide character support . 90
2.18.1 Wide character encodings on streams . 91

2.19 System limits . 93
2.19.1 Limits on memory areas . 93
2.19.2 Other Limits . 93
2.19.3 Reserved Names . 95

2.20 SWI-Prolog and 32-bit machines . 95
2.21 Binary compatibility . 95

3 Initialising and Managing a Prolog Project 97
3.1 The project source files . 97

3.1.1 File Names and Locations . 97
3.1.2 Project Special Files . 98
3.1.3 International source files . 99

3.2 Using modules . 99
3.3 The test-edit-reload cycle . 100

3.3.1 Locating things to edit . 100
3.3.2 Editing and incremental compilation . 101

3.4 Using the PceEmacs built-in editor . 101
3.4.1 Activating PceEmacs . 101
3.4.2 Bluffing through PceEmacs . 102
3.4.3 Prolog Mode . 104

3.5 The Graphical Debugger . 106
3.5.1 Invoking the window-based debugger . 106

3.6 The Prolog Navigator . 107
3.7 Cross-referencer . 107
3.8 Accessing the IDE from your program . 109
3.9 Summary of the IDE . 110

4 Built-in Predicates 111
4.1 Notation of Predicate Descriptions . 111

4.1.1 The argument mode indicator . 111
4.1.2 Predicate indicators . 112

SWI-Prolog 9.3 Reference Manual

Contents 3

4.1.3 Predicate behaviour and determinism . 113
4.2 Character representation . 113
4.3 Loading Prolog source files . 114

4.3.1 Conditional compilation and program transformation 127
4.3.2 Reloading files, active code and threads . 133
4.3.3 Quick load files . 136

4.4 Editor Interface . 137
4.4.1 Customizing the editor interface . 137

4.5 Verify Type of a Term . 139
4.6 Comparison and Unification of Terms . 140

4.6.1 Standard Order of Terms . 141
4.6.2 Special unification and comparison predicates 143

4.7 Control Predicates . 145
4.8 Meta-Call Predicates . 148
4.9 Delimited continuations . 153
4.10 Exception handling . 155

4.10.1 Unwind exceptions . 157
4.10.2 Urgency of exceptions . 157
4.10.3 Debugging and exceptions . 158
4.10.4 The exception term . 159

4.11 Printing messages . 161
4.11.1 Printing from libraries . 165

4.12 Handling signals . 166
4.12.1 Notes on signal handling . 167

4.13 DCG Grammar rules . 168
4.14 Database . 170

4.14.1 Managing (dynamic) predicates . 171
4.14.2 The recorded database . 179
4.14.3 Flags . 180
4.14.4 Tries . 181

4.15 Declaring predicate properties . 183
4.16 Examining the program . 186
4.17 Input and output . 193

4.17.1 Predefined stream aliases . 193
4.17.2 ISO Input and Output Streams . 194
4.17.3 Edinburgh-style I/O . 203
4.17.4 Switching between Edinburgh and ISO I/O 205
4.17.5 Adding IRI schemas . 205
4.17.6 Write onto atoms, code-lists, etc. 206
4.17.7 Fast binary term I/O . 207

4.18 Status of streams . 207
4.19 Primitive character I/O . 209
4.20 Term reading and writing . 212
4.21 Analysing and Constructing Terms . 223

4.21.1 Non-logical operations on terms . 227
4.22 Analysing and Constructing Atoms . 228
4.23 Localization (locale) support . 233

SWI-Prolog 9.3 Reference Manual

4

4.24 Character properties . 234
4.24.1 Case conversion . 236
4.24.2 White space normalization . 237
4.24.3 Language-specific comparison . 237

4.25 Operators . 237
4.26 Character Conversion . 240
4.27 Arithmetic . 240

4.27.1 Special purpose integer arithmetic . 240
4.27.2 General purpose arithmetic . 241

4.28 Misc arithmetic support predicates . 255
4.29 Built-in list operations . 256
4.30 Finding all Solutions to a Goal . 259
4.31 Forall . 261
4.32 Formatted Write . 262

4.32.1 Writef . 262
4.32.2 Format . 263
4.32.3 Programming Format . 267

4.33 Global variables . 268
4.33.1 Compatibility of SWI-Prolog Global Variables 270

4.34 Terminal Control . 270
4.35 Operating System Interaction . 271

4.35.1 Windows-specific Operating System Interaction 272
4.35.2 Apple specific Operating System Interaction 274
4.35.3 Dealing with time and date . 274
4.35.4 Controlling the swipl-win.exe console window 280

4.36 File System Interaction . 281
4.37 User Top-level Manipulation . 288
4.38 Creating a Protocol of the User Interaction . 290
4.39 Debugging and Tracing Programs . 290
4.40 Debugging and declaring determinism . 293
4.41 Obtaining Runtime Statistics . 294
4.42 Execution profiling . 295

4.42.1 library(prolog profile): Execution profiler 295
4.42.2 Visualizing profiling data . 299
4.42.3 Information gathering . 300

4.43 Memory Management . 300
4.43.1 Garbage collection . 300
4.43.2 Heap memory (malloc) . 302

4.44 Windows DDE interface . 304
4.44.1 DDE client interface . 305
4.44.2 DDE server mode . 306

4.45 Miscellaneous . 307

SWI-Prolog 9.3 Reference Manual

Contents 5

5 SWI-Prolog extensions 309
5.1 Lists are special . 309

5.1.1 Motivating ‘[|]’ and [] for lists . 310
5.2 The string type and its double quoted syntax . 310

5.2.1 Representing text: strings, atoms and code lists 311
5.2.2 Predicates that operate on strings . 312
5.2.3 Why has the representation of double quoted text changed? 317
5.2.4 Adapting code for double quoted strings . 317
5.2.5 Predicates to support adapting code for double quoted strings 318

5.3 Syntax changes since SWI-Prolog 7 . 319
5.3.1 Operators and quoted atoms . 319
5.3.2 Compound terms with zero arguments . 320
5.3.3 Block operators . 321

5.4 Dicts: structures with named arguments . 321
5.4.1 Functions on dicts . 322
5.4.2 Predicates for managing dicts . 325
5.4.3 When to use dicts? . 328
5.4.4 A motivation for dicts as primary citizens 330
5.4.5 Implementation notes about dicts . 330

5.5 Integration of strings and dicts in the libraries . 331
5.5.1 Dicts and option processing . 331
5.5.2 Dicts in core data structures . 331
5.5.3 Dicts, strings and XML . 331
5.5.4 Dicts, strings and JSON . 331
5.5.5 Dicts, strings and HTTP . 332

5.6 Single Sided Unification rules . 332
5.6.1 Single Sided Unification Guards . 335
5.6.2 Consequences of => single sided unification rules 336
5.6.3 Single sided unification for Definite Clause Grammars 336
5.6.4 SSU: Future considerations . 337

5.7 Remaining issues . 337

6 Modules 338
6.1 Why Use Modules? . 338
6.2 Defining a Module . 338
6.3 Importing Predicates into a Module . 339
6.4 Controlled autoloading for modules . 341
6.5 Defining a meta-predicate . 342
6.6 Overruling Module Boundaries . 344

6.6.1 Explicit manipulation of the calling context 345
6.7 Interacting with modules from the top level . 345
6.8 Composing modules from other modules . 345
6.9 Operators and modules . 346
6.10 Dynamic importing using import modules . 347
6.11 Reserved Modules and using the ‘user’ module . 348
6.12 An alternative import/export interface . 348
6.13 Dynamic Modules . 349

SWI-Prolog 9.3 Reference Manual

6

6.14 Transparent predicates: definition and context module 349
6.15 Module properties . 351
6.16 Compatibility of the Module System . 352

7 Tabled execution (SLG resolution) 354
7.1 Example 1: using tabling for memoizing . 354
7.2 Example 2: avoiding non-termination . 356
7.3 Answer subsumption or mode directed tabling . 357
7.4 Tabling for impure programs . 358
7.5 Variant and subsumptive tabling . 359
7.6 Well Founded Semantics . 360

7.6.1 Well founded semantics and the toplevel . 362
7.7 Incremental tabling . 363
7.8 Monotonic tabling . 363

7.8.1 Eager and lazy monotonic tabling . 364
7.8.2 Tracking new answers to monotonic tables 365
7.8.3 Monotonic tabling with external data . 366

7.9 Shared tabling . 367
7.9.1 Abolishing shared tables . 367
7.9.2 Status and future of shared tabling . 368

7.10 Tabling and constraints . 368
7.11 Tabling restraints: bounded rationality and tripwires 369

7.11.1 Restraint subgoal size . 370
7.11.2 Restraint answer size . 370
7.11.3 Restraint answer count . 371

7.12 Tabling predicate reference . 372
7.13 About the tabling implementation . 374

8 Constraint Logic Programming 376
8.1 Attributed variables . 377

8.1.1 Attribute manipulation predicates . 379
8.1.2 Attributed variable hooks . 379
8.1.3 Operations on terms with attributed variables 381
8.1.4 Special purpose predicates for attributes . 381

8.2 Coroutining . 382

9 CHR: Constraint Handling Rules 384
9.1 Introduction to CHR . 384
9.2 CHR Syntax and Semantics . 385

9.2.1 Syntax of CHR rules . 385
9.2.2 Semantics of CHR . 386

9.3 CHR in SWI-Prolog Programs . 387
9.3.1 Embedding CHR in Prolog Programs . 387
9.3.2 CHR Constraint declaration . 388
9.3.3 CHR Compilation . 391

9.4 Debugging CHR programs . 391
9.4.1 CHR debug ports . 392

SWI-Prolog 9.3 Reference Manual

Contents 7

9.4.2 Tracing CHR programs . 392
9.4.3 CHR Debugging Predicates . 393

9.5 CHR Examples . 394
9.6 CHR compatibility . 395

9.6.1 The Old SICStus CHR implementation . 395
9.6.2 The Old ECLiPSe CHR implementation . 396

9.7 CHR Programming Tips and Tricks . 396
9.8 CHR Compiler Errors and Warnings . 397

9.8.1 CHR Compiler Errors . 397

10 Multithreaded applications 399
10.1 Creating and destroying Prolog threads . 399
10.2 Monitoring threads . 404
10.3 Thread communication . 405

10.3.1 Message queues . 405
10.3.2 Waiting for events . 410
10.3.3 Signalling threads . 412
10.3.4 Threads and dynamic predicates . 414

10.4 Thread synchronisation . 415
10.5 Thread support library(threadutil) . 417

10.5.1 Debugging threads . 417
10.5.2 Profiling threads . 418

10.6 Multithreaded mixed C and Prolog applications . 419
10.6.1 A Prolog thread for each native thread (one-to-one) 419
10.6.2 Using Prolog engines from C . 420

10.7 Multithreading and the XPCE graphics system . 421

11 Coroutining using Prolog engines 423
11.1 Examples using engines . 423

11.1.1 Aggregation using engines . 423
11.1.2 State accumulation using engines . 425
11.1.3 Scalable many-agent applications . 427

11.2 Engine resource usage . 427
11.3 Engine predicate reference . 427

12 Foreign Language Interface 430
12.1 Overview of the Interface . 430
12.2 Linking Foreign Modules . 430

12.2.1 What linking is provided? . 431
12.2.2 What kind of loading should I be using? . 431
12.2.3 library(shlib): Utility library for loading foreign objects (DLLs, shared objects) 431
12.2.4 Low-level operations on shared libraries . 434
12.2.5 Static Linking . 435

12.3 Interface Data Types . 435
12.3.1 Type term t: a reference to a Prolog term 435
12.3.2 Other foreign interface types . 438

12.4 The Foreign Include File . 440

SWI-Prolog 9.3 Reference Manual

8

12.4.1 Argument Passing and Control . 440
12.4.2 Atoms and functors . 448
12.4.3 Input and output . 450
12.4.4 Analysing Terms via the Foreign Interface 450
12.4.5 Constructing Terms . 461
12.4.6 Unifying data . 465
12.4.7 Convenient functions to generate Prolog exceptions 472
12.4.8 Foreign language wrapper support functions 475
12.4.9 Serializing and deserializing Prolog terms 476
12.4.10 BLOBS: Using atoms to store arbitrary binary data 476
12.4.11 Exchanging GMP numbers . 482
12.4.12 Calling Prolog from C . 484
12.4.13 Discarding Data . 488
12.4.14 String buffering . 489
12.4.15 Foreign Code and Modules . 490
12.4.16 Prolog exceptions in foreign code . 491
12.4.17 Catching Signals (Software Interrupts) . 493
12.4.18 Miscellaneous . 495
12.4.19 Errors and warnings . 501
12.4.20 Environment Control from Foreign Code 501
12.4.21 Querying Prolog . 503
12.4.22 Registering Foreign Predicates . 504
12.4.23 Foreign Code Hooks . 506
12.4.24 Storing foreign data . 507
12.4.25 Embedding SWI-Prolog in other applications 510

12.5 Linking embedded applications using swipl-ld . 516
12.5.1 A simple example . 518

12.6 The Prolog ‘home’ directory . 520
12.7 Example of Using the Foreign Interface . 520
12.8 Notes on Using Foreign Code . 523

12.8.1 Foreign debugging functions . 523
12.8.2 Memory Allocation . 524
12.8.3 Compatibility between Prolog versions . 525
12.8.4 Foreign hash tables . 525
12.8.5 Debugging and profiling foreign code (valgrind, asan) 526
12.8.6 Name Conflicts in C modules . 527
12.8.7 Compatibility of the Foreign Interface . 527

12.9 Foreign access to Prolog IO streams . 527
12.9.1 Get IO stream handles . 528
12.9.2 Creating an IO stream . 529
12.9.3 Interacting with foreign streams . 532
12.9.4 Foreign stream error handling . 539
12.9.5 Foreign stream encoding . 540
12.9.6 Foreign stream line endings . 540
12.9.7 Foreign stream position information . 541
12.9.8 Support functions for blob save/load . 541

SWI-Prolog 9.3 Reference Manual

Contents 9

13 Using SWI-Prolog in your browser (WASM) 543
13.1 Loading and initializing Prolog . 543

13.1.1 Loading Prolog files . 545
13.2 Calling Prolog from JavaScript . 546

13.2.1 The JavaScript class Query . 547
13.2.2 Using engines . 548
13.2.3 Translating data between JavaScript and Prolog 549

13.3 Accessing JavaScript from Prolog . 552
13.4 library(wasm): WASM version support . 555
13.5 library(dom): Browser DOM manipulation . 556
13.6 library(dialect/tau/dom): Tau-Prolog compatible DOM manipulation 558

14 Deploying applications 562
14.1 Deployment options . 562
14.2 Understanding saved states . 562

14.2.1 Creating a saved state . 563
14.2.2 Limitations of qsave program . 566
14.2.3 Runtimes and Foreign Code . 567

14.3 State initialization . 567
14.4 Using program resources . 568

14.4.1 Resources as files . 568
14.4.2 Access resources using open resource . 569
14.4.3 Declaring resources . 570
14.4.4 Managing resource files . 570

14.5 Debugging and updating deployed systems . 570
14.6 Protecting your code . 571

14.6.1 Obfuscating code in saved states . 571
14.7 Finding Application files . 572

15 Packs: community add-ons 573
15.1 Installing packs . 573
15.2 Built-in predicates for attaching packs . 575
15.3 library(prolog pack): A package manager for Prolog 576
15.4 Structure of a pack . 581
15.5 Developing a pack . 582

15.5.1 The pack meta data . 583
15.5.2 Packs with foreign code . 584
15.5.3 Updating a package . 589

A The SWI-Prolog library 590
A.1 library(aggregate): Aggregation operators on backtrackable predicates 590
A.2 library(ansi term): Print decorated text to ANSI consoles 594
A.3 library(apply): Apply predicates on a list . 596
A.4 library(assoc): Association lists . 598

A.4.1 Introduction . 598
A.4.2 Creating association lists . 599
A.4.3 Querying association lists . 599

SWI-Prolog 9.3 Reference Manual

10

A.4.4 Modifying association lists . 599
A.4.5 Conversion predicates . 600
A.4.6 Reasoning about association lists and their elements 600

A.5 library(broadcast): Broadcast and receive event notifications 600
A.6 library(charsio): I/O on Lists of Character Codes 603
A.7 library(check): Consistency checking . 604
A.8 library(clpb): CLP(B): Constraint Logic Programming over Boolean Variables 606

A.8.1 Introduction . 607
A.8.2 Boolean expressions . 607
A.8.3 Interface predicates . 608
A.8.4 Examples . 609
A.8.5 Obtaining BDDs . 609
A.8.6 Enabling monotonic CLP(B) . 610
A.8.7 Example: Pigeons . 610
A.8.8 Example: Boolean circuit . 611
A.8.9 Acknowledgments . 612
A.8.10 CLP(B) predicate index . 612

A.9 library(clpfd): CLP(FD): Constraint Logic Programming over Finite Domains 613
A.9.1 Introduction . 613
A.9.2 Arithmetic constraints . 614
A.9.3 Declarative integer arithmetic . 615
A.9.4 Example: Factorial relation . 617
A.9.5 Combinatorial constraints . 618
A.9.6 Domains . 618
A.9.7 Example: Sudoku . 618
A.9.8 Residual goals . 619
A.9.9 Core relations and search . 620
A.9.10 Example: Eight queens puzzle . 621
A.9.11 Optimisation . 623
A.9.12 Reification . 623
A.9.13 Enabling monotonic CLP(FD) . 623
A.9.14 Custom constraints . 624
A.9.15 Applications . 625
A.9.16 Acknowledgments . 625
A.9.17 CLP(FD) predicate index . 625
A.9.18 Closing and opening words about CLP(FD) 640

A.10 library(clpqr): Constraint Logic Programming over Rationals and Reals 640
A.10.1 Solver predicates . 641
A.10.2 Syntax of the predicate arguments . 642
A.10.3 Use of unification . 643
A.10.4 Non-linear constraints . 643
A.10.5 Status and known problems . 643

A.11 library(csv): Process CSV (Comma-Separated Values) data 644
A.12 library(dcg/basics): Various general DCG utilities 646
A.13 library(dcg/high order): High order grammar operations 649
A.14 library(debug): Print debug messages and test assertions 650
A.15 library(dicts): Dict utilities . 652

SWI-Prolog 9.3 Reference Manual

Contents 11

A.16 library(error): Error generating support . 654
A.17 library(exceptions): Exception classification . 658
A.18 library(fastrw): Fast reading and writing of terms 659
A.19 library(gensym): Generate unique symbols . 660
A.20 library(heaps): heaps/priority queues . 661
A.21 library(increval): Incremental dynamic predicate modification 662
A.22 library(intercept): Intercept and signal interface . 663
A.23 library(iostream): Utilities to deal with streams . 665
A.24 library(listing): List programs and pretty print clauses 667
A.25 library(lists): List Manipulation . 668
A.26 library(macros): Macro expansion . 674

A.26.1 Defining and using macros . 674
A.26.2 Implementation details . 675
A.26.3 Predicates . 675

A.27 library(main): Provide entry point for scripts . 676
A.28 library(nb set): Non-backtrackable set . 680
A.29 library(www browser): Open a URL in the users browser 681
A.30 library(occurs): Finding and counting sub-terms . 682
A.31 library(option): Option list processing . 683
A.32 library(optparse): command line parsing . 685

A.32.1 Notes and tips . 689
A.33 library(ordsets): Ordered set manipulation . 691
A.34 library(pairs): Operations on key-value lists . 694
A.35 library(persistency): Provide persistent dynamic predicates 695
A.36 library(pio): Pure I/O . 698

A.36.1 library(pure input): Pure Input from files and streams 698
A.37 library(portray text): Portray text . 700
A.38 library(predicate options): Declare option-processing of predicates 701

A.38.1 The strength and weakness of predicate options 701
A.38.2 Options as arguments or environment? . 702
A.38.3 Improving on the current situation . 703

A.39 library(prolog coverage): Coverage analysis tool 705
A.39.1 Coverage collection and threads . 706
A.39.2 Combining coverage data from multiple runs 706
A.39.3 Predicate reference . 706

A.40 library(prolog debug): User level debugging tools 709
A.41 library(prolog jiti): Just In Time Indexing (JITI) utilities 710
A.42 library(prolog trace): Print access to predicates . 711
A.43 library(prolog versions): Demand specific (Prolog) versions 712
A.44 library(prolog xref): Prolog cross-referencer data collection 714
A.45 library(quasi quotations): Define Quasi Quotation syntax 718
A.46 library(random): Random numbers . 720
A.47 library(rbtrees): Red black trees . 723
A.48 library(readutil): Read utilities . 726
A.49 library(record): Access named fields in a term . 727
A.50 library(registry): Manipulating the Windows registry 729
A.51 library(rwlocks): Read/write locks . 730

SWI-Prolog 9.3 Reference Manual

12

A.52 library(settings): Setting management . 731
A.53 library(statistics): Get information about resource usage 733
A.54 library(strings): String utilities . 735
A.55 library(simplex): Solve linear programming problems 737

A.55.1 Introduction . 737
A.55.2 Delayed column generation . 738
A.55.3 Solving LPs with special structure . 738
A.55.4 Examples . 739

A.56 library(solution sequences): Modify solution sequences 741
A.57 library(tables): XSB interface to tables . 743
A.58 library(terms): Term manipulation . 745
A.59 library(thread): High level thread primitives . 747
A.60 library(thread pool): Resource bounded thread management 750
A.61 library(ugraphs): Graph manipulation library . 752
A.62 library(url): Analysing and constructing URL . 756
A.63 library(varnumbers): Utilities for numbered terms 758
A.64 library(yall): Lambda expressions . 759

B Hackers corner 763
B.1 Examining the Environment Stack . 763
B.2 Ancestral cuts . 765
B.3 Intercepting the Tracer . 765
B.4 Simulating a debugger interrupt . 768
B.5 Breakpoint and watchpoint handling . 768
B.6 Adding context to errors: prolog exception hook 769
B.7 Hooks using the exception predicate . 770
B.8 Prolog events . 771
B.9 Hooks for integrating libraries . 773
B.10 Hooks for loading files . 774

C Compatibility with other Prolog dialects 775
C.1 Some considerations for writing portable code . 776
C.2 Notes on specific dialects . 778

C.2.1 Notes on specific dialects . 778
C.2.2 The XSB import directive . 779

D Glossary of Terms 780

E SWI-Prolog License Conditions and Tools 786
E.1 Contributing to the SWI-Prolog project . 787
E.2 Software support to keep track of license conditions 787
E.3 License conditions inherited from used code . 788

E.3.1 Cryptographic routines . 788

SWI-Prolog 9.3 Reference Manual

Contents 13

F Summary 789
F.1 Predicates . 789
F.2 Library predicates . 807

F.2.1 library(aggregate) . 807
F.2.2 library(ansi term) . 807
F.2.3 library(apply) . 807
F.2.4 library(assoc) . 807
F.2.5 library(broadcast) . 808
F.2.6 library(charsio) . 808
F.2.7 library(check) . 808
F.2.8 library(clpb) . 809
F.2.9 library(clpfd) . 809
F.2.10 library(clpqr) . 811
F.2.11 library(csv) . 811
F.2.12 library(dcgbasics) . 811
F.2.13 library(dcghighorder) . 812
F.2.14 library(debug) . 812
F.2.15 library(dicts) . 812
F.2.16 library(dom) . 813
F.2.17 library(error) . 813
F.2.18 library(exceptions) . 813
F.2.19 library(fastrw) . 814
F.2.20 library(explain) . 814
F.2.21 library(help) . 814
F.2.22 library(gensym) . 814
F.2.23 library(heaps) . 814
F.2.24 library(increval) . 814
F.2.25 library(intercept) . 815
F.2.26 library(iostream) . 815
F.2.27 library(listing) . 815
F.2.28 library(lists) . 815
F.2.29 library(macros) . 816
F.2.30 library(main) . 816
F.2.31 library(occurs) . 817
F.2.32 library(option) . 817
F.2.33 library(optparse) . 817
F.2.34 library(ordsets) . 817
F.2.35 library(persistency) . 818
F.2.36 library(portraytext) . 818
F.2.37 library(predicate options) . 818
F.2.38 library(prologcoverage) . 819
F.2.39 library(prologdebug) . 819
F.2.40 library(prologjiti) . 819
F.2.41 library(prologpack) . 819
F.2.42 library(prologversions) . 820
F.2.43 library(prologtrace) . 820
F.2.44 library(prologxref) . 820

SWI-Prolog 9.3 Reference Manual

14

F.2.45 library(pairs) . 820
F.2.46 library(pio) . 820
F.2.47 library(random) . 821
F.2.48 library(rbtrees) . 821
F.2.49 library(readutil) . 822
F.2.50 library(record) . 822
F.2.51 library(registry) . 822
F.2.52 library(rwlocks) . 822
F.2.53 library(settings) . 823
F.2.54 library(simplex) . 823
F.2.55 library(statistics) . 823
F.2.56 library(terms) . 823
F.2.57 library(ugraphs) . 824
F.2.58 library(url) . 825
F.2.59 library(wasm) . 825
F.2.60 library(www browser) . 825
F.2.61 library(solution sequences) . 825
F.2.62 library(thread) . 826
F.2.63 library(thread pool) . 826
F.2.64 library(varnumbers) . 826
F.2.65 library(yall) . 826

F.3 Arithmetic Functions . 828
F.4 Operators . 830

SWI-Prolog 9.3 Reference Manual

Introduction 1
This document is a reference manual. That means that it documents the system, but it does not
explain the basics of the Prolog language and it leaves many details of the syntax, semantics and built-
in primitives undefined where SWI-Prolog follows the standards. This manual is intended for people
that are familiar with Prolog. For those not familiar with Prolog, we recommend to start with a Prolog
textbook such as [Bratko, 1986], [Sterling & Shapiro, 1986] or [Clocksin & Melish, 1987]. For more
advanced Prolog usage we recommend [O’Keefe, 1990].

1.1 Positioning SWI-Prolog

Most implementations of the Prolog language are designed to serve a limited set of use cases. SWI-
Prolog is no exception to this rule. SWI-Prolog positions itself primarily as a Prolog environment for
‘programming in the large’ and use cases where it plays a central role in an application, i.e., where
it acts as ‘glue’ between components. At the same time, SWI-Prolog aims at providing a productive
rapid prototyping environment. Its orientation towards programming in the large is backed up by scal-
ability, compiler speed, program structuring (modules), support for multithreading to accommodate
servers, Unicode and interfaces to a large number of document formats, protocols and programming
languages. Prototyping is facilitated by good development tools, both for command line usage and for
usage with graphical development tools. Demand loading of predicates from the library and a ‘make’
facility avoids the requirement for using declarations and reduces typing.

SWI-Prolog is traditionally strong in education because it is free and portable, but also because of
its compatibility with textbooks and its easy-to-use environment.

Note that these positions do not imply that the system cannot be used with other scenarios. SWI-
Prolog is used as an embedded language where it serves as a small rule subsystem in a large ap-
plication. It is also used as a deductive database. In some cases, this is the right choice because
SWI-Prolog has features that are required in the application, such as threading or Unicode support.
In general though, for example: GNU-Prolog is more suited for embedding because it is small and
can compile to native code; XSB is better for deductive databases because it provides a mature im-
plementation of tabling including support for incremental updates and Well Founded Semantics1; and
ECLiPSe is better at constraint handling.

The syntax and set of built-in predicates is based on the ISO standard [Hodgson, 1998]. Most
extensions follow the ‘Edinburgh tradition’ (DEC10 Prolog and C-Prolog) and Quintus Prolog
[Qui, 1997]. The infrastructure for constraint programming is based on hProlog [Demoen, 2002].
Some libraries are copied from the YAP2 system. Together with YAP, we developed a portability
framework (see section C). This framework has been filled for SICStus Prolog, YAP, IF/Prolog and

1Sponsored by Kyndi and with help from the XSB developers Theresa Swift and David S. Warren, SWI-Prolog now
supports many of the XSB features.

2http://www.dcc.fc.up.pt/˜{}vsc/Yap/

SWI-Prolog 9.3 Reference Manual

http://www.dcc.fc.up.pt/~{}vsc/Yap/

16 CHAPTER 1. INTRODUCTION

Ciao. SWI-Prolog version 7 introduces various extensions to the Prolog language (see section 5). The
string data type and its supporting set of built-in predicates is compatible with ECLiPSe.

1.2 Status and releases

This manual describes version 9.3 of SWI-Prolog. SWI-Prolog is widely considered to be a robust
and scalable implementation of the Prolog language. It is widely used in education and research.
In addition, it is in use for 24 × 7 mission critical commercial server processes. The site http:
//www.swi-prolog.org is hosted using the SWI-Prolog HTTP server infrastructure. It receives
approximately 2.3 million hits and serves approximately 300 Gbytes on manual data and downloads
each month. SWI-Prolog applications range from student assignments to commercial applications
that count more than one million lines of Prolog code.

SWI-Prolog has two development tracks. Stable releases have an even minor version number
(e.g., 6.2.1) and are released as a branch from the development version when the development version
is considered stable and there is sufficient new functionality to justify a stable release. Stable releases
often get a few patch updates to deal with installation issues or major flaws. A new Development
version is typically released every couple of weeks as a snapshot of the public git repository. ‘Extra
editions’ of the development version may be released after problems that severely hindered the user
in their progress have been fixed.

Known bugs that are not likely to be fixed soon are described as footnotes in this manual.

1.3 Should I be using SWI-Prolog?

There are a number of reasons why it might be better to choose a commercial, or another free, Prolog
system:

• SWI-Prolog comes with no warranties
Although the developers or the community often provide a work-around or a fix for a bug, there
is no place you can go to for guaranteed support. However, the full source archive is available
and can be used to compile and debug SWI-Prolog using free tools on all major platforms.
Users requiring more support should ensure access to knowledgeable developers.

• Performance is your first concern
Various free and commercial systems have better performance. But, ‘standard’ Prolog bench-
marks disregard many factors that are often critical to the performance of large applications.
SWI-Prolog is not good at fast calling of simple predicates, but it is fast with dynamic code,
meta-calling and predicates that contain large numbers of clauses or require more advanced
clauses indexing. Many of SWI-Prolog’s built-in predicates are written in C and have excellent
performance.

On the other hand, SWI-Prolog offers some facilities that are widely appreciated by users:

• Comprehensive support of Prolog extensions
Many modern Prolog implementations extend the standard SLD resolution mechanism with
which Prolog started and that is described in the ISO standard. SWI-Prolog offers most popular
extensions.

SWI-Prolog 9.3 Reference Manual

http://www.swi-prolog.org
http://www.swi-prolog.org

1.3. SHOULD I BE USING SWI-PROLOG? 17

Attributed variables provide Constraint Logic Programming and delayed execution based on
instantiation (coroutining). Tabling or SGL resolution provides characteristics normally associ-
ated with bottom up evaluation: better termination, better predictable performance by avoiding
recomputation and Well Founded Semantics for negation. Delimited continuations can be used
to implement high level new control structures and Engines can be used to control multiple
Prolog goals, achieving different control structures such as massive numbers of cooperating
agents.

• Nice environment
SWI-Prolog provides a good command line environment, including ‘Do What I Mean’, auto-
completion, history and a tracer that operates on single key strokes. The system automatically
recompiles modified parts of the source code using the make/0 command. The system can
be instructed to open an arbitrary editor on the right file and line based on its source database.
It ships with various graphical tools and can be combined with the SWI-Prolog editor, PDT
(Eclipse plugin for Prolog), VScode or GNU-Emacs.

• Fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is the Quick Load Format. See qcompile/1 and qsave program/2.

• Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not, and the performance of debugged code is close to that of normal operation.

• Source level debugger
The source level debugger provides a good overview of your current location in the search tree,
variable bindings, your source code and open choice points. Choice point inspection provides
meaningful insight to both novices and experienced users. Avoiding unintended choice points
often provides a huge increase in performance and a huge saving in memory usage.

• Profiling
SWI-Prolog offers an execution profiler with either textual output or graphical output. Finding
and improving hotspots in a Prolog program may result in huge speedups.

• Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C
as well as C calling Prolog (see section 12). It can also be embedded in external programs (see
section 12.5). System predicates can be redefined locally to provide compatibility with other
Prolog systems.

• Threads
Robust support for multiple threads may improve performance and is a key enabling factor for
deploying Prolog in server applications. Threads also facilitates debugging and maintenance of
long running processes and embedded Prolog engines. The native IDE tools run in a separate
thread The prolog server library provides telnet access and the pack libssh provides
SSH login. With some restrictions regarding the compatibility of old and new code, code can
be replaced while it is being executed in another thread. This allows for injecting debug/3
statements as well as fixing bugs without downtime.

SWI-Prolog 9.3 Reference Manual

18 CHAPTER 1. INTRODUCTION

• Interfaces
SWI-Prolog ships with many extension packages that provide robust interfaces to processes,
encryption, TCP/IP, TIPC, ODBC, SGML/XML/HTML, RDF, JSON, YAML, HTTP, graphics
and much more.

1.4 Support the SWI-Prolog project

You can support the SWI-Prolog project in several ways. Academics are invited to cite one of the
publications3 on SWI-Prolog. Users can help by identifying and/or fixing problems with the code or
its documentation4. Users can contribute new features or, more lightweight, contribute packs5. Com-
mercial users may consider contacting the developers6 to sponsor the development of new features or
seek for opportunities to cooperate with the developers or other commercial users.

1.5 Implementation history

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. In those days, Prolog
systems were not very aware of their environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focusing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a simple Prolog virtual machine called ZIP [Bowen et al., 1983,
Neumerkel, 1993] which defines only 7 instructions. Prolog can easily be compiled into this lan-
guage, and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the virtual machine, there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself, this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required, and the system only runs slightly slower in
debug mode compared to normal execution. The price we have to pay is some performance degra-
dation (taking out the debugger from the VM interpreter improves performance by about 20%) and
somewhat additional memory usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [Bowen et al., 1983] to improve
performance. While extending this set, care has been taken to maintain the advantages of decompi-
lation and tracing of compiled code. The extensions include specialised instructions for unification,
predicate invocation, some frequently used built-in predicates, arithmetic, and control (;/2, |/2),
if-then (->/2) and negation-by-failure (\+/1).

SWI-Prolog implements attributed variables (constraints) and delimited continuations following
the design in hProlog by Bart Demoen. The engine implementation follows the design proposed by
Paul Tarau. Tabling was implemented by Benoit Desouter based on delimited continuations. Tabling
has been extended with answer subsumption by Fabrizio Riguzzi. The implementation of well founded
semantics and incremental tabling follows XSB and has been sponsored by Kyndi and mode possible
by technical support from notably Theresa Swift and David S. Warren.

3https://www.swi-prolog.org/Publications.html
4https://www.swi-prolog.org/howto/SubmitPatch.html
5https://www.swi-prolog.org/pack/list
6mailto:info@swi-prolog.org

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/Publications.html
https://www.swi-prolog.org/howto/SubmitPatch.html
https://www.swi-prolog.org/pack/list
mailto:info@swi-prolog.org

1.6. ACKNOWLEDGEMENTS 19

1.6 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Edin-
burgh C-Prolog code: grammar rule compilation and writef/2. Also some of the C-code originates
from C-Prolog: finding the path of the currently running executable and some of the code underlying
absolute file name/2. Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

Our special thanks go to those who had the fate of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novell1.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual. Horst von Brand has been so kind to fix many
typos in the 2.7.14 manual. Thanks! Randy Sharp fixed many issues in the 6.0.x version of the manual.

Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables
and support for cyclic terms to the kernel. Tom Schrijvers has provided a first clp(fd) constraint solver,
the CHR compiler and some of the coroutining predicates. Markus Triska contributed the current
clp(fd) implementation as well as the clp(b) implementation.

Tom Schrijvers and Bart Demoen initiated the implementation of delimited continuations (sec-
tion 4.9), which was used by Benoit Desouter and Tom Schrijvers to implement tabling (section 7) as
a library. Fabrizio Riguzzi added a first implementation for mode directed tabling (section 7.3).

The SWI-Prolog 7 extensions (section 5) are the result of a long heated discussion on the mail-
inglist. Nicos Angelopoulos’ wish for a smooth integration with the R language triggered the overall
intend of these extensions to enable a smoother integration of Prolog with other languages. Michael
Hendrix suggested and helped shaping SWI-Prolog quasi quotations.

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

Scientific Software and Systems Limited, www.sss.co.nz has sponsored the development of
the SSL library, unbounded integer and rational number arithmetic and many enhancements to the
memory management of the system.

Leslie de Koninck has made clp(QR) available to SWI-Prolog.
Jeff Rosenwald contributed the TIPC networking library and Google’s protocol buffer handling.
Paulo Moura’s great experience in maintaining Logtalk for many Prolog systems including SWI-

Prolog has helped in many places fixing compatibility issues. He also worked on the MacOS port and
fixed many typos in the 5.6.9 release of the documentation.

Kyndi (https://kyndi.com/) sponsored the development of the engines interface (chap-
ter 11). The final API was established after discussion with the founding father of engines, Paul Tarau
and Paulo Moura. Kyndi also sponsored JIT indexing on multiple arguments as well as deep index-
ing. Kyndi currently supports the implementation of XSB compatible tabling, including well founded
semantics and incremental tabling. Theresa Swift, David S. Warren and Fabrizio Riguzzi provided
input to realise advanced tabling.

SWI-Prolog 9.3 Reference Manual

www.sss.co.nz
https://kyndi.com/

Overview 2
2.1 Getting started quickly

2.1.1 Starting SWI-Prolog

Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘swipl’. The command line arguments of SWI-Prolog itself
and its utility programs are documented using standard Unix man pages. SWI-Prolog is normally
operated as an interactive application simply by starting the program:

$ swipl
Welcome to SWI-Prolog ...
...

1 ?-

After starting Prolog, one normally loads a program into it using consult/1, which may be abbre-
viated by putting the name of the program file between square brackets. The following goal loads the
file likes.pl containing clauses for the predicates likes/2:

?- [likes].
true.

?-

Alternatively, the source file may be given as command line arguments:

$ swipl likes.pl
Welcome to SWI-Prolog ...
...

1 ?-

Both the above assume likes.pl is in your working directory. If you use the command
line version swipl the working directory is the same as the shell from which you started
SWI-Prolog. If you started the GUI version (swipl-win) this depends largely on the
OS. You can use pwd/0 and cd/0 to find and change the working directory. The utility
ls/0 lists the contents of the working directory.

SWI-Prolog 9.3 Reference Manual

https://raw.githubusercontent.com/SWI-Prolog/swipl-devel/master/demo/likes.pl

2.1. GETTING STARTED QUICKLY 21

?- pwd.
% /home/janw/src/swipl-devel/linux/
true.
?- cd(’˜/tmp’).
true.

?- pwd.
% /home/janw/tmp/
true.

The file likes.pl is also installed in a subdirectory demo insides SWI-Prolog’s instal-
lation directory and may be loaded regardless of the working directory using the com-
mand below. See absolute file name/3 and file search path/2 for details
on how SWI-Prolog specifies file locations.

?- [swi(demo/likes)].
true.

After this point, Unix and Windows users unite, so if you are using Unix please continue at
section 2.1.2.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

• A folder (called directory in the remainder of this document) called swipl containing the
executables, libraries, etc., of the system. No files are installed outside this directory.

• A program swipl-win.exe, providing a window for interaction with Prolog. The program
swipl.exe is a version of SWI-Prolog that runs in a console window.

• The file extension .pl is associated with the program swipl-win.exe. Opening a .pl
file will cause swipl-win.exe to start, change directory to the directory in which the file to
open resides, and load this file.

The normal way to start the likes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Adding rules from the console

Although we strongly advice to put your program in a file, optionally edit it and use make/0 to reload
it (see section 2.1.4), it is possible to manage facts and rules from the terminal. The most convenient
way to add a few clauses is by consulting the pseudo file user. The input is ended using the system
end-of-file character.

SWI-Prolog 9.3 Reference Manual

22 CHAPTER 2. OVERVIEW

?- [user].
|: hello :- format(’Hello world˜n’).
|: ˆD
true.

?- hello.
Hello world
true.

The predicates assertz/1 and retract/1 are alternatives to add and remove rules and facts.

2.1.3 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds with X = ⟨value⟩ if it can prove the goal for a certain X.
The user can type the semi-colon (;) or spacebar1 if (s)he wants another solution. Use the RETURN key
if you do not want to see more answers. Prolog completes the output with a full stop (.) if the user uses
the RETURN key or Prolog knows there are no more answers. If Prolog cannot find (more) answers, it
writes false. Finally, Prolog answers using an error message to indicate the query or program contains
an error.

?- likes(sam, X).
X = dahl ;
X = tandoori ;
...
X = chips.

?-

Note that the answer written by Prolog is a valid Prolog program that, when executed, produces the
same set of answers as the original program.2

2.1.4 Examining and modifying your program

If properly configured, the predicate edit/1 starts the built-in or user configured editor on the ar-
gument. The argument can be anything that can be linked to a location: a file name, predicate name,
module name, etc. If the argument resolves to only one location the editor is started on this location,
otherwise the user is presented a choice.

If a graphical user interface is available, the editor normally creates a new window and the system
prompts for the next command. The user may edit the source file, save it and run make/0 to update
any modified source file. If the editor cannot be opened in a window, it opens in the same console and
leaving the editor runs make/0 to reload any source files that have been modified.

1On most installations, single-character commands are executed without waiting for the RETURN key.
2The SWI-Prolog top level differs in several ways from traditional Prolog top level. The current top level was designed

in cooperation with Ulrich Neumerkel.

SWI-Prolog 9.3 Reference Manual

2.2. THE USER’S INITIALISATION FILE 23

?- edit(likes).

true.
?- make.
% /home/jan/src/pl-devel/linux/likes compiled 0.00 sec, 0 clauses

?- likes(sam, X).
...

The program can also be decompiled using listing/1 as below. The argument of listing/1 is
just a predicate name, a predicate indicator of the form Name/Arity, e.g., ?- listing(mild/1).
or a head, e.g., ?- listing(likes(sam,))., listing all matching clauses. The predicate
listing/0, i.e., without arguments lists the entire program.3

?- listing(mild).
mild(dahl).
mild(tandoori).
mild(kurma).

true.

2.1.5 Stopping Prolog

The interactive toplevel can be stopped in two ways: enter the system end-of-file character (typically
Control-D) or by executing the halt/0 predicate:

?- halt.
$

2.2 The user’s initialisation file

After the system initialisation, the system consults (see consult/1) the user’s init file. This file
is searched using absolute file name/3 using the path alias (see file search path/2)
app config. This is a directory named swi-prolog below the OS default name for placing
application configuration data:

• On Windows, the CSIDL folder CSIDL APPDATA, typically
C:\Documents and Settings\username\Application Data.

• If the environment variable XDG DATA HOME is set, use this. This follows the free desktop
standard.

3This lists several hook predicates that are defined by default and is typically not very informative.

SWI-Prolog 9.3 Reference Manual

https://standards.freedesktop.org

24 CHAPTER 2. OVERVIEW

• The expansion of ˜/.config.

The directory can be found using this call:

?- absolute_file_name(app_config(.), Dir, [file_type(directory)]).
Dir = ’/home/jan/.config/swi-prolog’.

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘-f file’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none, no file is loaded.

The installation provides a file customize/init.pl with (commented) commands that are
often used to customize the behaviour of Prolog, such as interfacing to the editor, color selection or
history parameters. Many of the development tools provide menu entries for editing the startup file
and starting a fresh startup file from the system skeleton.

See also the -s (script) and -F (system-wide initialisation) in section 2.4 and section 2.3.

2.3 Initialisation files and goals

Using command line arguments (see section 2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options
are -f file or -s file to make Prolog load a file, -g goal to define initialisation goals and
-t goal to define the top-level goal. The following is a typical example for starting an application
directly from the command line.

machine% swipl -s load.pl -g go -t halt

It tells SWI-Prolog to load load.pl, start the application using the entry point go/0 and —instead
of entering the interactive top level— exit after completing go/0.

The command line may have multiple -g goal occurrences. The goals are executed in order.
Possible choice points of individual goals are pruned. If a goal fails execution stops with exit status
1. If a goal raises an exception, the exception is printed and the process stops with exit code 2.

The -q may be used to suppress all informational messages as well as the error message that is
normally printed if an initialisation goal fails.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined command
line arguments. A typically seen alternative is to write a file run.plwith content as illustrated below.
Double-clicking run.pl will start the application.

:- [load]. % load program
:- go. % run it
:- halt. % and exit

Section 2.11.1 discusses further scripting options, and chapter 14 discusses the generation of runtime
executables. Runtime executables are a means to deliver executables that do not require the Prolog
system.

SWI-Prolog 9.3 Reference Manual

2.4. COMMAND LINE OPTIONS 25

2.4 Command line options

SWI-Prolog can be executed in one of the following modes:

swipl --help
swipl --version
swipl --arch
swipl --dump-runtime-variables

These options must appear as only option. They cause Prolog to print an informational message
and exit. See section 2.4.1.

swipl [option ...] script-file [arg ...]
These arguments are passed on Unix systems if file that starts with
#!/path/to/executable [option ...] is executed. Arguments after the script file
are made available in the Prolog flag argv.

swipl [option ...] prolog-file ... [[--] arg ...]
This is the normal way to start Prolog. The options are described in section 2.4.2, section 2.4.3
and section 2.4.4. The Prolog flag argv provides access to arg ... If the options are followed
by one or more Prolog file names (i.e., names with extension .pl, .prolog or (on Windows)
the user preferred extension registered during installation), these files are loaded. The first file
is registered in the Prolog flag associated file. In addition, pl-win[.exe] switches
to the directory in which this primary source file is located using working directory/2.

swipl -o output -c prolog-file ...
The -c option is used to compile a set of Prolog files into an executable. See section 2.4.5.

swipl -o output -b bootfile prolog-file ...
Bootstrap compilation. See section 2.4.6.

2.4.1 Informational command line options

--arch
When given as the only option, it prints the architecture identifier (see Prolog flag arch) and
exits. See also --dump-runtime-variables.

--dump-runtime-variables [=format]
When given as the only option, it prints a sequence of variable settings that can be used in
shell scripts to deal with Prolog parameters. This feature is also used by swipl-ld (see
section 12.5). Below is a typical example of using this feature.

eval ‘swipl --dump-runtime-variables‘
cc -I$PLBASE/include -L$PLBASE/lib/$PLARCH ...

The option can be followed by =sh to dump in POSIX shell format (default) or =cmd to dump
in MS-Windows cmd.exe compatible format.

--help
When given as the only option, it summarises the most important options.

SWI-Prolog 9.3 Reference Manual

26 CHAPTER 2. OVERVIEW

--version
When given as the only option, it summarises the version and the architecture identifier.

--abi-version
Print a key (string) that represents the binary compatibility on a number of aspects. See sec-
tion 2.21.

2.4.2 Command line options for running Prolog

Note that boolean options may be written as --name (true), --noname or --no-name (false).
They are written as --no-name below as the default is ‘true’.

-D name[=value]
Set the Prolog flag name to value. The flags are set immediately after loading the initial saved
state. If the flag is already defined, value is converted to the type of the flag. If the flag is
undefined it is set to a number of value represents a number and an atom otherwise. If no
=value is given, a Boolean value is used. If name is no-flag, flag is set to false. Otherwise,
the flag name is set to true. The name[=value] may follow the -D immediately or appear
as the next commandline argument.

Note that many of the commandline options are reflected by a Prolog flag. We intend to handle
these as synonyms. Currently, some of the commandline flags affect the Prolog initilization
before loading the saved state has completed, while other may not be changed after Prolog
initialization. For example, future versions will support -Dhome=dir to change the notion of
the Prolog installation directory.

--debug-on-interrupt
Enable debugging on an interrupt signal (Control-C, SIGINT) immediately. Normally debug-
ging on interrupt is enabled when entering the interactive toplevel. This flag can be used to start
the debugger on an interrupt while executing goals from -g or initialization/[1,2].
See also the Prolog flag debug on interrupt.

--home[=DIR]
Use DIR as home directory. See section 12.6 for details. If DIR is omitted, the found location is
printed and the process exits. If the location cannot be found an error is printed and the process
exits with status 1.

--quiet
Set the Prolog flag verbose to silent, suppressing informational and banner messages.
Also available as -q.

--no-debug
Disable debugging. See the current prolog flag/2 flag generate debug info for
details.

--no-signals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flag signals to false. See section 12.4.25 for details.
Note that the handler to unblock system calls is still installed. This can be prevented using
--sigalert=0 additionally. See --sigalert.

SWI-Prolog 9.3 Reference Manual

2.4. COMMAND LINE OPTIONS 27

--no-threads
Disable threading for the multi-threaded version at runtime. See also the flags threads and
gc thread.

--no-packs
Do not attach extension packages (add-ons). See also attach packs/0 and the Prolog flag
packs.

--no-pce
Enable/disable the xpce GUI subsystem. The default is to make it available as autoload com-
ponent if it is installed and the system can access the graphics. Using --pce load the xpce
system in user space and --no-pce makes it unavailable in the session.

--on-error =style
How to handle on errors. See the Prolog flag on error for details.

--on-warning =style
How to handle on warnings. See the Prolog flag on warning for details.

--pldoc [=port]
Start the PlDoc documentation system on a free network port and launch the user’s browser on
http://localhost:port. If port is specified, the server is started at the given port and the
browser is not launched.

--sigalert=NUM
Use signal NUM (1. . . 31) for alerting a thread. This is needed to make thread signal/2,
and derived Prolog signal handling act immediately when the target thread is blocked on an
interruptible system call (e.g., sleep/1, read/write to most devices). The default is to use
SIGUSR2. If NUM is 0 (zero), this handler is not installed. See prolog alert signal/2
to query or modify this value at runtime.

--no-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer and get single char/1. By default, manipulating the terminal is enabled unless
the system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior
process. See also tty control.

--win-app
This option is available only in swipl-win.exe and is used for the start-menu item. If
causes plwin to start in the folder ...\My Documents\Prolog or local equivalent
thereof (see win folder/2). The Prolog subdirectory is created if it does not exist.

-O
Optimised compilation. See current prolog flag/2 flag optimise for details.

-l file
Load file. This flag provides compatibility with some other Prolog systems.4 It is used in SWI-
Prolog to skip the program initialization specified using initialization/2 directives.
See also section 2.11.1, and initialize/0.

4YAP, SICStus

SWI-Prolog 9.3 Reference Manual

28 CHAPTER 2. OVERVIEW

-s file
Use file as a script file. The script file is loaded after the initialisation file specified with the
-f file option. Unlike -f file, using -s does not stop Prolog from loading the personal
initialisation file.

-f file
Use file as initialisation file instead of the default init.pl. ‘-f none’ stops SWI-Prolog
from searching for a startup file. This option can be used as an alternative to -s file that
stops Prolog from loading the personal initialisation file. See also section 2.2.

-F script
Select a startup script from the SWI-Prolog home directory. The script file is named
⟨script⟩.rc. The default script name is deduced from the executable, taking the leading
alphanumerical characters (letters, digits and underscore) from the program name. -F none
stops looking for a script. Intended for simple management of slightly different versions. One
could, for example, write a script iso.rc and then select ISO compatibility mode using
pl -F iso or make a link from iso-pl to pl.

-x bootfile
Boot from bootfile instead of the system’s default boot file. A boot file is a file re-
sulting from a Prolog compilation using the -b or -c option or a program saved using
qsave program/[1,2].

-p alias=path1[:path2 . . .]
Define a path alias for file search path. alias is the name of the alias, and argpath1 ... is a
list of values for the alias. On Windows the list separator is ;. On other systems it is :. A
value is either a term of the form alias(value) or pathname. The computed aliases are added to
file search path/2 using asserta/1, so they precede predefined values for the alias.
See file search path/2 for details on using this file location mechanism.

--traditional
This flag disables the most important extensions of SWI-Prolog version 7 (see section 5) that
introduce incompatibilities with earlier versions. In particular, lists are represented in the
traditional way, double quoted text is represented by a list of character codes and the functional
notation on dicts is not supported. Dicts as a syntactic entity, and the predicates that act on
them, are still supported if this flag is present.

--
Stops scanning for more arguments, so you can pass arguments for your application after this
one. See current prolog flag/2 using the flag argv for obtaining the command line
arguments.

2.4.3 Controlling the stack sizes

As of version 7.7.14 the stacks are no longer limited individually. Instead, only the combined size is
limited. Note that 32 bit systems still pose a 128Mb limit. See section 2.19.1. The combined limit is
by default 1Gb on 64 bit machines and 512Mb on 32 bit machines.

For example, to limit the stacks to 32Gb use the command below. Note that the stack limits
apply per thread. Individual threads may be controlled using the stack limit(+Bytes) option of

SWI-Prolog 9.3 Reference Manual

2.4. COMMAND LINE OPTIONS 29

thread create. Any thread can call set prolog flag(stack limit, Limit) (see stack limit) to
adjust the stack limit. This limit is inherited by threads created from this thread.

$ swipl --stack-limit=32g

--stack-limit=size[bkmg]
Limit the combined size of the Prolog stacks to the indicated size. The suffix specifies the value
as bytes, Kbytes, Mbytes or Gbytes.

--table-space=size[bkmg]
Limit for the table space. This is where tries holding memoized5 answers for tabling are
stored. The default is 1Gb on 64 bit machines and 512Mb on 32 bit machines. See the Prolog
flag table space.

--shared-table-space=size[bkmg]
Limit for the table space for shared tables. See section 7.9.

2.4.4 Running goals from the command line

-g goal
Goal is executed just before entering the top level. This option may appear multiple times. See
section 2.3 for details. If no initialization goal is present the system calls version/0 to print
the welcome message. The welcome message can be suppressed with --quiet, but also with
-g true. goal can be a complex term. In this case quotes are normally needed to protect it
from being expanded by the shell. A safe way to run a goal non-interactively is below. If go/0
succeeds -g halt causes the process to stop with exit code 0. If it fails, the exit code is 1;
and if it raises an exception, the exit code is 2.

% swipl <options> -g go -g halt

-t goal
Use goal as interactive top level instead of the default goal prolog/0. The goal can be a
complex term. If the top-level goal succeeds SWI-Prolog exits with status 0. If it fails the exit
status is 1. If the top level raises an exception, this is printed as an uncaught error and the
top level is restarted. This flag also determines the goal started by break/0 and abort/0.
If you want to prevent the user from entering interactive mode, start the application with
‘-g goal -t halt’.

2.4.5 Compilation options

-c file . . .
Compile files into an ‘intermediate code file’. See section 2.11.

-o output
Used in combination with -c or -b to determine output file for compilation.

5The letter M is used because the T was already in use. It is a mnemonic for Memoizing.

SWI-Prolog 9.3 Reference Manual

30 CHAPTER 2. OVERVIEW

2.4.6 Maintenance options

The following options are for system maintenance. They are given for reference only.

-b initfile . . .-c file . . .
Boot compilation. initfile . . . are compiled by the C-written bootstrap compiler, file . . . by the
normal Prolog compiler. System maintenance only.

-d token1,token2,...
Print debug messages for DEBUG statements tagged with one of the indicated tokens. Only
has effect if the system is compiled with the -DO DEBUG flag. System maintenance only.

2.5 UI Themes

UI (colour) themes play a role in two parts: when writing to the console and for the xpce-based
development tools such as PceEmacs or the graphical debugger. Coloured console output is based
on ansi format/3. The central message infra structure based on print message/2 labels
message (components) with a Prolog term that specifies the role. This is mapped to concrete colours
by means of the hook prolog:console color/2. Theming the IDE uses xpce class variables
that are initialised from Prolog when xpce is loaded.

Themes are implemented as a Prolog file in the file search path library/theme. A theme can be
loaded using (for example) the directive below in the user’s initialization file (see section 2.2).

:- use_module(library(theme/dark)).

The theme file library(theme/auto) is provided to automatically choose a reasonable theme
based on the environment. The current version detects the background color on xterm compatible
terminal emulators (found on most Unix systems) and loads the dark theme if the background is
‘darkish’.

The following notes apply to the different platforms on which SWI-Prolog is supported:

Unix/Linux If an xterm compatible terminal emulator is used to run Prolog you may wish to load
either an explicit theme or library(theme/auto).

Windows The swipl-win.exe graphical application can be themed by loading a theme file. The
theme file also sets the foreground and background colours for the console.

2.5.1 Status of theme support

Theme support was added in SWI-Prolog 8.1.11. Only part of the IDE tools are covered and the only
additional theme (dark) is not net well balanced. The interfaces between the theme file and notably
the IDE components is not very well established. Please contribute by improving the dark theme.
Once that is complete and properly functioning we can start adding new themes.

SWI-Prolog 9.3 Reference Manual

2.6. GNU EMACS INTERFACE 31

2.6 GNU Emacs Interface

SWI-Prolog provides tight integration with GNU Emacs through the sweep package. This package
embeds SWI-Prolog as a dynamic Emacs module, allowing for Prolog queries to be executed directly
from Emacs Lisp. The accompanying Emacs package sweeprolog.el, available for installation
with the standard Emacs package manager package.el, builds on top of this embedding to provide
a fully integrated development environment for SWI-Prolog in GNU Emacs.

GNU Emacs ships with by default with a Prolog mode called prolog.el. Compared to
sweeprolog.el, this mode suffers from some problems that arise due to the lack of a proper
Prolog parser. The original prolog.el by Masanobu Umeda has been included in GNU Emacs
since 1989, in 2006 Stefan Monnier added explicit support for SWI-Prolog to prolog.el. In 2011,
most of the original implementation has been replaced with a new Prolog mode written by initially
for the XEmacs port by Stefan Bruda. Bruda’s mode was adapted to GNU Emacs by Stefan Monnier,
who has been maintaining it along with other GNU Emacs contributor since. Users of this mode may
find useful configuration suggestions at https://www.metalevel.at/pceprolog/.

Other Emacs package that can be useful for working with SWI-Prolog are:

• https://www.metalevel.at/ediprolog/
Interact with SWI-Prolog directly in Emacs buffers.

• https://www.metalevel.at/etrace/
Trace Prolog code with Emacs.

• https://emacs-lsp.github.io/dap-mode/page/configuration/
#swi-prolog
Debug Adapter Protocol (DAP) support for SWI-Prolog in Emacs via dap-mode and the
debug adapter pack from https://github.com/eshelyaron/debug_adapter

• https://emacs-lsp.github.io/lsp-mode/page/lsp-prolog/
Language Server Protocol (LSP) support for SWI-Prolog in Emacs via lsp-mode and the
lsp server pack from https://github.com/jamesnvc/lsp_server

2.7 Online Help

2.7.1 library(help): Text based manual

This module provides help/1 and apropos/1 that give help on a topic or searches the manual for
relevant topics.

By default the result of help/1 is sent through a pager such as less. This behaviour is con-
trolled by the following:

• The Prolog flag help pager, which can be set to one of the following values:

false
Never use a pager.

default
Use default behaviour. This tries to determine whether Prolog is running interactively in
an environment that allows for a pager. If so it examines the environment variable PAGER
or otherwise tries to find the less program.

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at/pceprolog/
https://www.metalevel.at/ediprolog/
https://www.metalevel.at/etrace/
https://emacs-lsp.github.io/dap-mode/page/configuration/#swi-prolog
https://emacs-lsp.github.io/dap-mode/page/configuration/#swi-prolog
https://github.com/eshelyaron/debug_adapter
https://emacs-lsp.github.io/lsp-mode/page/lsp-prolog/
https://github.com/jamesnvc/lsp_server

32 CHAPTER 2. OVERVIEW

Callable
A Callable term is interpreted as program_name(Arg, ...). For example,
less(’-r’) would be the default. Note that the program name can be an absolute path
if single quotes are used.

help [det]

help(+What) [det]

Show help for What. What is a term that describes the topics(s) to give help for. Notations
for What are:

Atom
This ambiguous form is most commonly used and shows all matching documents. For
example:

?- help(append).

Name / Arity
Give help on predicates with matching Name/Arity. Arity may be unbound.

Name // Arity
Give help on the matching DCG rule (non-terminal)

Module : Name
Give help on predicates with Name in Module and any arity. Used for loaded code only.

Module : Name / Arity
Give help on predicates with Name in Module and Arity. Used for loaded code only.

f(Name/Arity)
Give help on the matching Prolog arithmetic functions.

c(Name)
Give help on the matching C interface function

section(Label)
Show the section from the manual with matching Label.

help/1 shows documentation from the manual as well as from loaded user code if the code
is documented using PlDoc. To show only the documentatoion of the loaded predicate we may
prefix predicate indicator with the module in which it is defined.

If an exact match fails this predicates attempts fuzzy matching and, when successful, display
the results headed by a warning that the matches are based on fuzzy matching.

If possible, the results are sent through a pager such as the less program. This behaviour is
controlled by the Prolog flag help_pager. See section level documentation.

See also apropos/1 for searching the manual names and summaries.

show html hook(+HTML:string) [semidet,multifile]

Hook called to display the extracted HTML document. If this hook fails the HTML is rendered
to the console as plain text using html text/2.

SWI-Prolog 9.3 Reference Manual

2.7. ONLINE HELP 33

apropos(+Query) [det]

Print objects from the manual whose name or summary match with Query. Query takes one of
the following forms:

Type : Text
Find objects matching Text and filter the results by Type. Type matching is a case in-
tensitive prefix match. Defined types are section, cfunction, function,
iso_predicate, swi_builtin_predicate, library_predicate, dcg and
aliases chapter, arithmetic, c_function, predicate, nonterminal and
non_terminal. For example:

?- apropos(c:close).
?- apropos(f:min).

Text
Text is broken into tokens. A topic matches if all tokens appear in the name or summary
of the topic. Matching is case insensitive. Results are ordered depending on the quality of
the match.

2.7.2 library(explain): Describe Prolog Terms

The library(explain) describes prolog-terms. The most useful functionality is its cross-
referencing function.

?- explain(subset(_,_)).
"subset(_, _)" is a compound term

from 2-th clause of lists:subset/2
Referenced from 46-th clause of prolog_xref:imported/3
Referenced from 68-th clause of prolog_xref:imported/3

lists:subset/2 is a predicate defined in
/staff/jan/lib/pl-5.6.17/library/lists.pl:307
Referenced from 2-th clause of lists:subset/2
Possibly referenced from 2-th clause of lists:subset/2

Note that PceEmacs can jump to definitions and gxref/0 can be used for an overview of depen-
dencies.

explain(@Term) [det]

Give an explanation on Term. Term can be any Prolog data object. Some terms have a specific
meaning:

• A (partial) reference to a predicate gives the predicates, its main properties and references
to the predicates. Partial references are:

– Module:Name/Arity
– Module:Head
– Name/Arity

SWI-Prolog 9.3 Reference Manual

34 CHAPTER 2. OVERVIEW

!!. Repeat last query
!nr. Repeat query numbered ⟨nr⟩
!str. Repeat last query starting with ⟨str⟩
h. Show history of commands
!h. Show this list

Table 2.1: History commands

– Name//Arity
– Name
– Module:Name

• Some predicate properties. This lists predicates as above the have this property. The
specification can be of the shape Module:Property or just Property. The qualified
version limits the result to predicates defined in Module. Supported properties are:

– dynamic
– thread local
– multifile
– tabled

explain(@Term, -Explanation) [nondet]

True when Explanation is an explanation of Term. The explaination is a list of elements that is
printed using print_message(information, explain(Explanation)).

2.8 Command line history

SWI-Prolog offers a query substitution mechanism similar to what is seen in Unix shells. The avail-
ability of this feature is controlled by set prolog flag/2, using the history Prolog flag. By
default, history is available if no interactive command line editor is available. To enable history,
remembering the last 50 commands, put the following into your startup file (see section 2.2):

:- set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. The available history commands are shown in table 2.1. History expansion is not done
if these sequences appear in quoted atoms or strings.

2.9 Reuse of top-level bindings

Bindings resulting from the successful execution of a top-level goal are asserted in a database if they
are not too large (as defined by the Prolog flag toplevel var size). These values may be reused
in further top-level queries as $Var. If the same variable name is used in a subsequent query the system
associates the variable with the latest binding. Example:

Note that variables may be set by executing =/2:

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 35

1 ?- maplist(plus(1), ‘hello‘, X).
X = [105,102,109,109,112].

2 ?- format(’˜s˜n’, [$X]).
ifmmp
true.

3 ?-

Figure 2.1: Reusing top-level bindings

6 ?- X = statistics.
X = statistics.

7 ?- $X.
% Started at Fri Aug 24 16:42:53 2018
% 0.118 seconds cpu time for 456,902 inferences
% 7,574 atoms, 4,058 functors, 2,912 predicates, 56 modules, 109,791 VM-codes
%
% Limit Allocated In use
% Local stack: - 20 Kb 1,888 b
% Global stack: - 60 Kb 36 Kb
% Trail stack: - 30 Kb 4,112 b
% Total: 1,024 Mb 110 Kb 42 Kb
%
% 3 garbage collections gained 178,400 bytes in 0.000 seconds.
% 2 clause garbage collections gained 134 clauses in 0.000 seconds.
% Stack shifts: 2 local, 2 global, 2 trail in 0.000 seconds
% 2 threads, 0 finished threads used 0.000 seconds
true.

2.10 Overview of the Debugger

Imperative languages like C++, Python or JavaScript execute mostly linear code with some branching
and subroutine calls. Their debuggers support stepping through the code and pausing on each line,
or running the program until it hits a breakpoint and pauses. When paused, the user can inspect the
current program state or give the debugger commands.

Prolog has a logical execution model that involves attempting to prove logical predicates and needs
a different debugging approach. SWI-Prolog uses the traditional Prolog ”Byrd Box Model” or ”4 Port
Model” debugging approach described by [Byrd, 1980, Clocksin & Melish, 1987] with a couple of
extensions to implement its command line debugger. There are two other debuggers available that
build on this infrastructure: a graphical debugger and remote debugging in the web interface provided
by SWISH.

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/gtrace.html
https://swish.swi-prolog.org/

36 CHAPTER 2. OVERVIEW

Reference information to all predicates available for manipulating the debugger is in the debugger
section (section 4.39).

2.10.1 The Byrd Box Model And Ports

Standard Prolog debugging tools are built around the so-called ”Byrd Box Model” or ”4 Port Model”
which models each predicate in a Prolog program as a state machine (”box”) that transitions through
states (”ports”) as a program is evaluated. The developer can ask the engine to pause for program
inspection when it reaches specific ports or predicates.

As we go through this overview, remember that a ”port” is just another word for a ”state” in the
state machine that each predicate transitions through during evaluation. The state machine is called a
”box” because it is drawn like this:

Call | | Exit

---------> + descendant(X,Y) :- offspring(X,Y). + --------->
| |
| descendant(X,Z) :- |

<--------- + offspring(X,Y), descendant(Y,Z). + <---------
Fail | | Redo

The standard ports are: call, redo, exit and fail. SWI-Prolog extends this with two more:
unify and exception. Each trace happens at a particular phase of predicate resolution. Recall
that when resolving or ”proving” a predicate, the Prolog engine:

1. Collects all rules that might match by having a head with the same name and number of argu-
ments

• call is traced, once, if any rules might match.
• redo is also traced when the engine backtracks to find the next matching rule.

2. Finds the next matching rule whose head can be unified with the predicate

• unify is traced with the results of unification if one is found.
• fail is traced if no rule heads can be unified.

3. Applies variable assignments from unification to clauses in the rule body and continues at #1
with the updated clauses

4. After all of the body clauses of the matched rule have either succeeded, failed, or thrown an
exception:

• exit is traced if all of them succeeded (meaning this rule is true).
• fail is traced if any of them failed (meaning this rule is false).
• exception is traced if any of them threw an exception.

This means there can be a lot of traces between the initial call and the end of tracing for a
particular predicate.

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 37

2.10.2 Trace Mode Example

The trace/0 predicate turns on ”trace mode”, which, by default, produces a trace and pauses at
every port of every predicate to allow inspection of the state of the program. This is normally done
from the Prolog console window, but for embedded Prolog systems or when Prolog runs as a daemon
it can also be done by getting a prompt via the libssh package.

Note: If the native graphics plugin (XPCE) is available, the commands gtrace/0 and
gspy/1 activate the graphical debugger while tdebug/0 and tspy/1 allow debug-
ging of arbitrary threads.

Each goal is printed using the Prolog predicate write term/2. The style is defined by the
Prolog flag debugger write options and can be modified using this flag or using the w, p and
d commands of the tracer (section 2.10.4).

Here’s an example debugging session that shows the basic flow. The unify port is off by default
since it doesn’t add a lot of information in most cases for the command line debugger.

is_a(rock1, rock).
is_a(rock2, rock).
color(rock1, red).

noun(X, Type) :- is_a(X, Type).
adjective(X, color, Value) :- color(X, Value).

?- trace.
true.

[trace] ?- noun(X, rock), adjective(X, color, red).
Call: (11) noun(_9774, rock) ? creep

The trace/0 predicate turned on trace mode, which is now indicated at ev-
ery prompt by [trace] ?-. The initial query provided by the user was
noun(X, rock), adjective(X, color, red) which is asking to find a ”red rock”.
Finally: the first port triggered was a Call to the first predicate in the initial query, indicating the
engine is about to look for the first rule that matches noun(_9774, rock).

Pressing spacebar, c, or enter caused the tracer to print creep followed by the next trace.
There are many additional commands available that are described later in the overview.

is_a(rock1, rock).
is_a(rock2, rock).
color(rock1, red).

noun(X, Type) :- is_a(X, Type).
adjective(X, color, Value) :- color(X, Value).

[trace] ?- noun(X, rock), adjective(X, color, red).
...

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/pack/list?p=libssh

38 CHAPTER 2. OVERVIEW

Call: (12) is_a(_9774, rock) ? creep
Exit: (12) is_a(rock1, rock) ? creep
Exit: (11) noun(rock1, rock) ? creep

...

Next, the first clause of noun/2 gets a call trace since the engine is trying to find the next rule
that matches is_a(_9774, rock). Since there is a fact that can unify: is_a(rock1, rock),
the trace shows exit (i.e. succeeded) along with that value. Since that was the final predicate in
the body of noun/2, noun/2 also gets an exit trace that shows the unified value of its head:
noun(rock1, rock).

is_a(rock1, rock).
is_a(rock2, rock).
color(rock1, red).

noun(X, Type) :- is_a(X, Type).
adjective(X, color, Value) :- color(X, Value).

[trace] ?- noun(X, rock), adjective(X, color, red).
...

Call: (11) adjective(rock1, color, red) ? creep
Call: (12) color(rock1, red) ? creep
Exit: (12) color(rock1, red) ? creep
Exit: (11) adjective(rock1, color, red) ? creep
X = rock1 ;

...

Prolog then moved to the next predicate in the initial query: adjective/3 and solved it in
a similar way. Since that was the last predicate in the query, an answer was returned. Pressing ;
requested the next answer and began Prolog backtracking.

is_a(rock1, rock).
is_a(rock2, rock).
color(rock1, red).

noun(X, Type) :- is_a(X, Type).
adjective(X, color, Value) :- color(X, Value).

[trace] ?- noun(X, rock), adjective(X, color, red).
...

Redo: (12) is_a(_9774, rock) ? creep
Exit: (12) is_a(rock2, rock) ? creep
Exit: (11) noun(rock2, rock) ? creep
Call: (11) adjective(rock2, color, red) ? creep
Call: (12) color(rock2, red) ? creep
Fail: (12) color(rock2, red) ? creep

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 39

Fail: (11) adjective(rock2, color, red) ? creep
false.

The only choice point to redo (i.e. backtrack over) was the is a/2 clause of noun/2 since
there was one potential match left to attempt to unify: is_a(rock2, rock). This succeeds with
an exit trace since it does unify with the redo predicate and causes noun(rock2, rock) to
also succeed with exit just as above.

As the traces continue, you can see the fail port get activated for color(rock2, red) since
there is no way to prove that predicate and thus the whole query returns false.

Tracing will continue for every query you pose until you enter notrace. to turn off trace mode.

2.10.3 Trace Mode Options: leash/1 and visible/1

When you enable trace mode with trace/0, the tracer will, by default, pause and wait for a com-
mand at every port it hits on every predicate. The leash/1 predicate can be used to modify the
ports to pause at. This is a global setting, so changes will remain until they are changed again or
SWI-Prolog is restarted. Disabling the tracer via notrace/0 doesn’t affect which ports are leashed.

The leash/1 argument must start with + to add, or - to remove, followed by the name of a port
such as call, exit, etc. There are special terms like all which can be used instead of manually
adding or removing every port.

To stop only at the fail port, use leash/1 like this:

?- leash(-all).
true.

?- leash(+fail).
true.

?- trace.
true.

[trace] ?- noun(X, rock), adjective(X, color, red).
Call: (11) noun(_3794, rock)
Call: (12) is_a(_3794, rock)
Exit: (12) is_a(rock1, rock)
Exit: (11) noun(rock1, rock)
Call: (11) adjective(rock1, color, red)
Call: (12) color(rock1, red)
Exit: (12) color(rock1, red)
Exit: (11) adjective(rock1, color, red)

X = rock1 ;
Redo: (12) is_a(_3794, rock)
Exit: (12) is_a(rock2, rock)
Exit: (11) noun(rock2, rock)
Call: (11) adjective(rock2, color, red)
Call: (12) color(rock2, red)
Fail: (12) color(rock2, red) ? creep

SWI-Prolog 9.3 Reference Manual

40 CHAPTER 2. OVERVIEW

Fail: (11) adjective(rock2, color, red) ? creep
false.

Now, only the lines that start with ”Fail:” have ”creep” after them because that was the only time
the tracer paused for a command. To never pause and just see all the traces, use leash(-all) and
don’t turn any ports back on.

The default ports are still printed out because a different setting, visible/1, controls which
ports are printed. visible/1 takes the same form of argument as leash/1. To only stop and
show the fail port, use leash/1 and visible/1 like this:

?- leash(-all).
true.

?- leash(+fail).
true.

?- visible(-all).
true.

?- visible(+fail).
true.

?- trace.
true.

[trace] ?- noun(X, rock), adjective(X, color, red).
X = rock1 ;

Fail: (12) color(rock2, red) ? creep
Fail: (11) adjective(rock2, color, red) ? creep

false.

2.10.4 Trace Mode Commands When Paused

You can do way more than just press spacebar when the tracer is paused at a port. All actions are
single-character commands which are executed without waiting for a return (unless the command line
option --no-tty is active). Pressing ? or h when paused will print out a list of these commands as
well.

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 41

Control Flow Commands

Abort a Abort Prolog execution (see abort/0)
Break b Enter a Prolog break environment (see break/0)
Creep c Continue execution, stop at next port. (Also return, space)
Exit e Terminate Prolog (see halt/0)
Fail f Force failure of the current goal
Find / Search for a port (see below for the description of this command

(section 2.10.4))
Ignore i Ignore the current goal, pretending it succeeded
Leap l Continue execution, stop at next spy point
No debug n Continue execution in ’no debug’ mode
Repeat find . Repeat the last find command (see ’Find’ (section 2.10.4))
Retry r Undo all actions (except for database and I/O actions) back to the

call port of the current goal and resume execution at the call
port

Skip s Continue execution, stop at the next port of this goal (thus skipping
all calls to children of this goal)

Spy + Set a spy point (see spy/1) on the current predicate. Spy points are
described later in the overview (section 2.10.6).

No spy - Remove the spy point (see nospy/1) from the current predicate.
Spy points are described later in the overview (section 2.10.6).

Up u Continue execution, stop at the next port of the parent goal (thus
skipping this goal and all calls to children of this goal). This option
is useful to stop tracing a failure driven loop.

Find (/) Description and Examples The Find (/) command continues execution until a port match-
ing a find pattern is found. After the /, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should unify
with the goal run by the port. If no term is specified it is taken as a variable, searching for any port of
the specified type. If an atom is given, any goal whose functor has a name equal to that atom matches.
Examples:

/f Search for any fail port
/fe solve Search for a fail or exit port of any goal with name solve
/c solve(a, _) Search for a call to solve/2 whose first argument is a variable

or the atom a
/a member(_, _) Search for any port on member/2. This is equivalent to setting

a spy point on member/2.

Informational Commands

Alternatives A Show all goals that have alternatives
Goals g Show the list of parent goals (the execution stack). Note that due to

tail recursion optimization a number of parent goals might not exist
any more.

Help h Show available options (also ?)
Listing L List the current predicate with listing/1

SWI-Prolog 9.3 Reference Manual

42 CHAPTER 2. OVERVIEW

Formatting Commands

Context C Toggle ’Show Context’. If on, the context module of the goal is
displayed between square brackets (see modules section (section 6)).
Default is off.

Display d Set the max_depth(Depth) option of debugger write options
(section 2.12), limiting the depth to which terms are printed. See also
the w and p options.

Print p Set the Prolog flag debugger write options to
[quoted(true), portray(true), max_depth(10), priority(699)].
This is the default.

Write w Set the Prolog flag debugger write options to
[quoted(true), attributes(write), priority(699)],
bypassing portray/1, etc.

2.10.5 Trace Mode vs. Trace Point

A slight detour is useful to describe some related predicates that can be confusing: To only trace a sin-
gle or select set of predicates, the trace/1 or trace/2 predicates can be used to set a trace point.
Even though they use the same base predicate name trace, these predicates ignore the leash/1
and visible/1 global settings and don’t pause when they trace a port. They really are a different
feature that also happens to do tracing.

A trace point is set on a particular predicate and traces the ports of that predicate whether or not
you are in trace/0 trace mode. Each trace point can trace different ports if the trace/2 variant
is used.

?- trace(is_a/2).
% is_a/2: [all]
true.

?- noun(X, rock), adjective(X, color, red).
T Call: is_a(_25702, rock)
T Exit: is_a(rock1, rock)
X = rock1 ;
T Redo: is_a(rock1, rock)
T Exit: is_a(rock2, rock)
false.

Notice that trace mode did not have to be turned on using trace/0 and that this only traced out
the ports hit while executing is a/2 and that the program was not ever paused.

In fact, if trace mode is turned on while using a trace point, things get very confusing because the
trace point infrastructure itself will be traced!

?- trace(is_a/2).
% is_a/2: [all]
true.

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 43

?- trace.
true.

[trace] ?- noun(X, rock), adjective(X, color, red).
Call: (11) noun(_29318, rock) ? creep
Call: (12) is_a(_29318, rock) ? creep
Call: (13) print_message(debug, frame(user:is_a(_29318, rock), trace(call))) ? creep
Call: (18) push_msg(frame(user:is_a(_29318, rock), trace(call))) ? creep
Call: (21) exception(undefined_global_variable, ’$inprint_message’, _30046) ? creep
Fail: (21) exception(undefined_global_variable, ’$inprint_message’, _30090) ? creep
Exit: (18) push_msg(frame(user:is_a(_29318, rock), trace(call))) ? creep
Call: (19) prolog:message(frame(user:is_a(_29318, rock), trace(call)), _30140, _30142) ? creep
Fail: (19) prolog:message(frame(user:is_a(_29318, rock), trace(call)), _30140, _30142) ? creep
Call: (19) message_property(debug, stream(_30192)) ? creep
Fail: (19) message_property(debug, stream(_30192)) ? creep
Call: (20) message_property(debug, prefix(_30200)) ? creep
Fail: (20) message_property(debug, prefix(_30200)) ? creep

T Call: is_a(_29318, rock)
Call: (17) pop_msg ? creep
Exit: (17) pop_msg ? creep
...Lots more after this...

So, trace points are a confusingly named and separate feature from trace mode.

2.10.6 Spy Points and Debug Mode

Back to trace mode features: Because the tracing output of a Prolog program can often be quite large,
sometimes it is useful to start trace mode at a particular point deep in the program. This is what a spy
point is for. It specifies a predicate that should turn on trace mode.

A spy point is enabled like this: spy(mypredicate/2). After that command, the first time
mypredicate/2 is encountered, trace mode will turn on and work just like it does normally. This
includes paying attention to the global leash/1 and visible/1 settings. The spy point can be
removed using nospy/1 or nospyall/0.

is_a(rock1, rock).
is_a(rock2, rock).
color(rock1, red).

noun(X, Type) :- is_a(X, Type).
adjective(X, color, Value) :- color(X, Value).

?- spy(is_a/2).
% Spy point on is_a/2
true.

[debug] ?- noun(X, rock), adjective(X, color, red).

SWI-Prolog 9.3 Reference Manual

44 CHAPTER 2. OVERVIEW

* Call: (12) is_a(_1858, rock) ? creep

* Exit: (12) is_a(rock1, rock) ? creep
Exit: (11) noun(rock1, rock) ? creep
Call: (11) adjective(rock1, color, red) ? creep
Call: (12) color(rock1, red) ? creep
Exit: (12) color(rock1, red) ? creep
Exit: (11) adjective(rock1, color, red) ? creep

X = rock1 ;

* Redo: (12) is_a(_1858, rock) ? creep

* Exit: (12) is_a(rock2, rock) ? creep
Exit: (11) noun(rock2, rock) ? creep
Call: (11) adjective(rock2, color, red) ? creep
Call: (12) color(rock2, red) ? creep
Fail: (12) color(rock2, red) ? creep
Fail: (11) adjective(rock2, color, red) ? creep

false.

After the spy point is hit, the output above is identical to the traces generated by running trace/0
with the initial query, but is obviously missing all of the traces before the spy point.

Note that after spy/1 is called, there is a new tag in front of ?-, the [debug] tag:

?- spy(is_a/2).
% Spy point on is_a/2
true.

[debug] ?-

This means the system is in ”debug mode”. Debug mode does two things: it tells the system to
watch for spy points and it turns off some optimizations that would make the traces confusing. The
ideal 4-port model ([Byrd, 1980]) as described in many Prolog books ([Clocksin & Melish, 1987]) is
not visible in many Prolog implementations because code optimisation removes part of the choice
and exit points. Backtrack points are not shown if either the goal succeeded deterministically or
its alternatives were removed using the cut. When running in debug mode, choice points are only
destroyed when removed by the cut and last call optimisation is switched off. [Note: This implies
the system can run out of stack in debug mode, while no problems arise when running in non-debug
mode.]

Debug mode can be turned off again using nodebug/0, but then the spy point will be ignored
(but remembered). Turning debug mode back on via debug/0 will hit the spy point again.

is_a(rock1, rock).
is_a(rock2, rock).
color(rock1, red).

noun(X, Type) :- is_a(X, Type).
adjective(X, color, Value) :- color(X, Value).

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 45

?- spy(is_a/2).
% Spy point on is_a/2
true.

[debug] ?- nodebug.
true.

?- noun(X, rock).
X = rock1 ;
X = rock2.

?- debug.
true.

[debug] ?- noun(X, rock).

* Call: (11) is_a(_47826, rock) ? creep

* Exit: (11) is_a(rock1, rock) ? creep
Exit: (10) noun(rock1, rock) ? creep

X = rock1 ;

* Redo: (11) is_a(_47826, rock) ? creep

* Exit: (11) is_a(rock2, rock) ? creep
Exit: (10) noun(rock2, rock) ? creep

X = rock2.

So, debug mode allows Prolog to watch for spy points and enable trace mode when it hits one.
The tracing/0 and debugging/0 predicates will report if the system is in either of those modes.

2.10.7 Breakpoints

Sometimes even spy points aren’t enough. There may be a predicate that is used in many different
places and it would be helpful to turn on tracing mode only when one particular call to it is made.
Breakpoints allow for turning on trace mode when a specific source file, line number, and character
in that line are hit. The predicates used are set breakpoint/4 and set breakpoint/5. Many
breakpoints can be active at a time.

Note that the interface provided by these predicates is not intended for end-users. The built-in
PceEmacs editor that is also embedded in the graphical debugger allow setting break points based on
the cursor position.

Example.pl has now been modified to have multiple calls to noun/2:

is_a(rock1, rock).
is_a(rock2, rock).
color(rock1, red).

noun(X, Type) :- is_a(X, Type).
adjective(X, color, Value) :- color(X, Value).

SWI-Prolog 9.3 Reference Manual

46 CHAPTER 2. OVERVIEW

test_noun1(X, Type) :- noun(X, Type).
test_noun2(X, Type) :- noun(X, Type).

To enable tracing just when noun/2 is called from test noun2/2, set breakpoint/4 can
be used like this:

?- set_breakpoint(’/...path.../Example.pl’, 8, 24, ID).
% Breakpoint 1 in 1-st clause of test_noun2/2 at Example.pl:8
ID = 1.

?- debug.
true.

[debug] ?- noun(X, rock).
X = rock1 .

[debug] ?- test_noun1(X, rock).
X = rock1 .

[debug] ?- test_noun2(X, rock).
Call: (11) noun(_44982, rock) ? creep
Call: (12) is_a(_44982, rock) ? creep
Exit: (12) is_a(rock1, rock) ? creep
Exit: (11) noun(rock1, rock) ? creep
Exit: (10) test_noun2(rock1, rock) ? creep

X = rock1 .

[trace] ?- notrace.
true.

[debug] ?-

The call to set breakpoint/4 had to specify the source file (”Example.pl”), the line num-
ber (8), and the character within that line (24) to precisely specify what clause should turn on trace
mode (this is much easier using the graphical debugger because it shows source code).

The breakpoint won’t get triggered if the system isn’t in debug mode but, unlike setting a spy
point, set breakpoint/4 does not do this automatically. So, it was turned on manually using
debug/0.

The output shows that only the call to test noun2/2 (where the breakpoint was set) actually
turned on trace mode. Note that the [Trace] ?- at the end shows that trace mode is left on after
being triggered. It can be turned off again via notrace/0, which will leave the system in debug
mode. All debugging modes can be shut off at once by calling nodebug/0 since shutting off debug
mode automatically turns off trace mode.

In addition, SWI-Prolog supports attaching an arbitrary goal to each breakpoint via
set breakpoint condition/2, which yields Conditional Breakpoints. A conditional break-
point is the same as the regular breakpoints discussed thus far, except that whenever the breakpoint is
triggered, the given goal is invoked and trace mode is only turned on in case it succeeds.

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 47

To enable tracing just when noun/2 is called from test noun2/2 with rock2 as the first
argument, set breakpoint condition/2 can be used like below. Note that the condition is a
Prolog string that is parsed to obtain the goal as well as the variable names. The resulting goal is called
in the module in which the clause body is executed (see clause property/2, property module).

?- set_breakpoint(’/...path.../Example.pl’, 8, 24, ID).
ID = 1.

?- set_breakpoint_condition(1, "X == rock2").
true.

?- debug.
true.

[debug] ?- test_noun2(X, rock).
X = rock1 ;
X = rock2.

[debug] ?- test_noun2(rock2, rock).
Call: (11) noun(rock2, rock) ? creep
Call: (12) is_a(rock2, rock) ? creep
Exit: (12) is_a(rock2, rock) ? creep
Exit: (11) noun(rock2, rock) ? creep
Exit: (10) test_noun2(rock2, rock) ? creep

true.

[trace] ?-

2.10.8 Command Line Debugger Summary

In summary, there are really two distinct ”tracing” features: trace mode and trace points. Both write
traces to the console using the ”Byrd Box Model” but that’s where similarity ends.

Trace Mode

Trace mode is the main Prolog command line debugger that allows for tracing the transitions through
the resolution states of predicates represented by ports in the ”Byrd Box Model” and optionally paus-
ing for a command when certain ports are hit.

It can be turned on manually via trace/0, or (when put into debug mode using debug/0) when
a specific predicate is encountered via spy/1, or when a specific call to a predicate is encountered
via set breakpoint/4 or set breakpoint/5.

When in trace mode, visible/1 controls which ports are written to the console, and leash/1
controls which ports cause execution to pause to allow program inspection.

When execution is paused, there are many commands that can be used to inspect the state of the
program, cause goals to fail or succeed, etc.

Trace mode is turned off via notrace/0 and debug mode is turned off via nodebug/0.

SWI-Prolog 9.3 Reference Manual

48 CHAPTER 2. OVERVIEW

Trace Points

Trace points are a separate feature from trace mode that allow writing specified ports to the console
when a predicate is being evaluated. It does not ever pause program execution and does not need to
be in trace or debug mode to work.

They are turned on via trace/1 and trace/2.
They don’t pay attention to visible/1 (because the ports shown are set in trace/2) or

leash/1 (because they don’t pause execution).
They can be turned off via trace/2.

2.11 Loading and running projects

Most Prolog programs are split over multiple files organized in a directory and optionally multiple
subdirectories. Typically all files are Prolog module files. See section 6. Typically, the directory con-
tains a file, often called load.pl, that loads all other files (modules) using use module/[1,2]
or, for projects that do not use modules, using ensure loaded/1.

If the project is an application (rather than a library), there are several ways to start it. One
option is by using the commandline option -g goal. The classical Prolog way is by using an
initialization/1 directive. Th problem with the latter is that such directives are both used
for runtime initialization in modules and starting the application while it is hard to control the order in
which they are executed. For this reason, SWI-Prolog introduced initialization/2, adding an
argument that specifies the role and (indirectly) the order of initialization. The application entry point
is now declared using

:- initialization(start, main).

start :-
...

Using these conventions we may run the application using this command line, where option ... are
Prolog options to control e.g., memory limits. Typically, none are required. arg ... are made available
to the program using the Prolog flag argv.

% swipl [option ...] load.pl [arg ...]

To merely load the code without running the application, provided the entry point is started using the
initialization/2 directive described above, we can use the -l. After loading we can debug
and/or edit the application.

% swipl [option ...] -l load.pl [arg ...]

Rather than just using start/0 as above, applications typically use main/0 from the library main.
The main/0 predicate prepares for non-development usage and calls main/1 with the application
argv (command line arguments). These are normally processed into positional arguments and options
using argv options/2 from the same library.

SWI-Prolog 9.3 Reference Manual

2.11. LOADING AND RUNNING PROJECTS 49

While the above works fine when using Prolog from the commandline, it is less suitable for
scenarios that make it hard to control the SWI-Prolog commandline which as using swipl-win
or running Prolog under some IDE such as Emacs. Loading a program that uses the above
initialization/2 directive into the toplevel using

?- [load].

does not start the entry point. Opening a ..pl file using swipl-win does start the entry point.

2.11.1 Running an application

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program, and the operating system (Unix vs. Windows). There are four options

• On Unix-like systems one can use the shebang magic sequence to turn a Prolog source into an
executable. See section 2.11.1.

• On any system you can use a shell script (Unix sh or Windows cmd) script to start the applica-
tion. See section 2.11.1.

• On any system you can create a saved state that consists of the virtual machine code and a
startup sequence. Saved states can be stand-alone and with some precautions they can work
without SWI-Prolog itself installed. They start fast, but they are big and creating a state from a
program that uses native code extensions and (file) resources is not trivial while details depend
on the OS and required resources. See section 2.11.1.

• On any system you can add a Prolog file to a designated directory and allow it to be started
using

swipl name [arg ...]

New commands can be added to the Prolog installation, by Prolog packs, in a user specific
directory or in a system-wide directory. See section 2.11.1.

Using PrologScript

A Prolog source file can be used directly as a Unix program using the Unix #! magic start. The
Unix #! magic is allowed because if the first letter of a Prolog file is #, the first line is treated as
a comment.6 To create a Prolog script, use one of the two alternatives below as first line. The first
can be used to bind a script to a specific Prolog installation, while the latter uses the default prolog
installed in $PATH.

#!/path/to/swipl
#!/usr/bin/env swipl

6The #-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header comment.

SWI-Prolog 9.3 Reference Manual

50 CHAPTER 2. OVERVIEW

The interpretation of arguments to the executable in the HashBang line differs between Unix-derived
systems. For portability, the #! must be followed immediately with an absolute path to the executable
and should have none or one argument. Neither the executable path, nor the argument shall use quotes
or spaces. When started this way, the Prolog flag argv contains the command line arguments that
follow the script invocation.

Starting with version 7.5.8, initialization/2 support the When options program and
main, allowing for the following definition of a Prolog script that evaluates an arithmetic expres-
sion on the command line. Note that main/0 is defined lib the library main. It calls main/1 with
the command line arguments after disabling signal handling.

#!/usr/bin/env swipl

:- initialization(main, main).

main(Argv) :-
atomic_list_concat(Argv, ’ ’, SingleArg),
term_to_atom(Term, SingleArg),
Val is Term,
format(’˜w˜n’, [Val]).

And here are two example runs:

% ./eval 1+2
3
% ./eval foo
ERROR: is/2: Arithmetic: ‘foo/0’ is not a function

Prolog script may be launched for debugging or inspection purposes using the -l or -t. For example,
-l merely loads the script, ignoring main and program initialization.

swipl -l eval 1+1
<banner>

?- main.
2
true.

?-

We can also force the program to enter the interactive toplevel after the application is completed using
-t prolog:

swipl -t prolog eval 1+1
2
?-

SWI-Prolog 9.3 Reference Manual

2.11. LOADING AND RUNNING PROJECTS 51

The Windows version simply ignores the #! line.7

Creating a shell script

With the introduction of PrologScript (see section 2.11.1), using shell scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell script that simply
loads your application and calls the entry point is often a good choice. A skeleton for the script is
given below, followed by the Prolog code to obtain the program arguments. See library main and
argv options/3 for details.

#!/bin/sh

base=<absolute-path-to-source>
SWIPL=swipl

exec $SWIPL "$base/load.pl" -- "$@"

:- use_module(library(main)).
:- initialization(main,main).

main(Argv) :-
argv_options(Argv, Positional, Options),
go(Positional, Options).

go(Positional, Options) :-
...

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a .bat file.

Creating a saved state

For larger programs, as well as for programs that are required to run on systems that do not have
the SWI-Prolog development system installed, creating a saved state is the best solution. A saved
state is created using qsave program/[1,2] or the -c command line option. A saved state
is a file containing machine-independent8 intermediate code in a format dedicated for fast loading.
Optionally, the emulator may be integrated in the saved state, creating a single file, but machine-
dependent, executable. This process is described in chapter 14.

7Older versions extracted command line arguments from the HashBang line. As of version 5.9 all relevant setup can
be achieved using directives. Due to the compatibility issues around HashBang line processing, we decided to remove it
completely.

8The saved state does not depend on the CPU instruction set or endianness. Saved states for 32- and 64-bits are not
compatible. Typically, saved states only run on the same version of Prolog on which they have been created.

SWI-Prolog 9.3 Reference Manual

52 CHAPTER 2. OVERVIEW

Compilation using the -c command line option

This mechanism loads a series of Prolog source files and then creates a saved state as
qsave program/2 does. The command syntax is:

% swipl [option ...] [-o output] -c file.pl ...

The options argument are options to qsave program/2 written in the format below. The option
names and their values are described with qsave program/2.

--option-name=option-value

For example, to create a stand-alone executable that starts by executing main/0 and for which
the source is loaded through load.pl, use the command

% swipl --goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

% swipl
<banner>

?- [load].
?- qsave_program(myprog,

[goal(main),
stand_alone(true)

]).
?- halt.

SWI-Prolog app scripts

As of version 9.1.18, SWI-Prolog allows starting an application using the command below.

swipl [option ...] [path:]name [arg ...]

This command line first processes Prolog options described in section 2.4. Note that most standard
Prolog commandline options are not relevant. The -f defaults to none, which implies that the user
init file is by default not loaded. If an application wishes to load the user init file, it should load
user_app_config(init) if this file exists (see exists source/1).

Next, it locates path(name) using SWI-Prolog’s file search mechanism defined by
absolute file name/3. After loading this file it finds the last goal registered for main us-
ing initialization/2 as described in section 2.11 - if there is no initization directive for
main, the program terminates with an error. By default, the application terminates after the en-
try point terminates. The entry point may enable the interactive Prolog REPL loop by calling
cli enable development system/0. Other forms of the initialization/2 directive
are also allowed, in addition to ‘main‘.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 53

All command line options after [path:]name are accessible in the Prolog flag argv.
The optional path defaults to app. By default, apps are searched in the directories below. See

file search path/2 for details.

1. The app directory of the SWI-Prolog installation

2. User and site configuration. On POSIX systems using the XDG file name conventions, this
is normally ˜/.local/share/swi-prolog/app/ and /usr/share/swi-prolog/
app.

3. The app directory of a Prolog pack.

The following apps are provided by the installation

app
Print information on installed apps. For example, to list all available apps, run

swipl app list

pack
Command line driven management of Prolog packs. This is a front-end to the Prolog library
prolog pack. For example, to find packages related to type, use the command below.

swipl pack find type

2.12 Environment Control (Prolog flags)

The predicates current prolog flag/2 and set prolog flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign code environment, command line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current prolog flag(?Key, -Value) [ISO]

The predicate current prolog flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all
defined Prolog flags. With Key instantiated, it unifies Value with the value of the Prolog flag or
fails if the Key is not a Prolog flag.

Flags marked changeable can be modified by the user using set prolog flag/2. Flag
values are typed. Flags marked as bool can have the values true or false. The predicate
create prolog flag/3may be used to create flags that describe or control behaviour of li-
braries and applications. The library settings provides an alternative interface for managing
notably application parameters.

Some Prolog flags are not defined in all versions, which is normally indicated in the documen-
tation below as “if present and true”. A boolean Prolog flag is true iff the Prolog flag is present
and the Value is the atom true. Tests for such flags should be written as below:

SWI-Prolog 9.3 Reference Manual

54 CHAPTER 2. OVERVIEW

(current_prolog_flag(windows, true)
-> <Do MS-Windows things>
; <Do normal things>
)

Some Prolog flags are scoped to a source file. This implies that if they are set using a direc-
tive inside a file, the flag value encountered when loading of the file started is restored when
loading of the file is completed. Currently, the following flags are scoped to the source file:
generate debug info and optimise.

A new thread (see section 10) copies all flags from the thread that created the new thread (its
parent).9 As a consequence, modifying a flag inside a thread does not affect other threads.

abi version (dict)
The flag value is a dict with keys that describe the version of the various Application
Binary Interface (ABI) components. See section 2.21 for details.

access level (atom, changeable)
This flag defines a normal ‘user’ view (user, default) or a ‘system’ view. In system view
all system code is fully accessible as if it was normal user code. In user view, certain
operations are not permitted and some details are kept invisible. We leave the exact
consequences undefined, but, for example, system code can be traced using system access
and system predicates can be redefined.

address bits (integer)
Address size of the hosting machine. Typically 32 or 64. Except for the maximum stack
limit, this has few implications to the user. See also the Prolog flag arch.

agc close streams (boolean, changeable)
When true (default false10), that atom garbage collector streams that are garbage
collected while being open. In addition, a warning is printed. Below is an example of
such a warning.

WARNING: AGC: closed <stream>(0x560e29014400)

Note that closing I/O streams should not be left to the (atom) garbage collector because
it may take long before the atom garbage collector runs and because that atom garbage
collector is conservative, which implies that it is not guaranteed that all garbage atoms are
reclaimed. Code that uses I/O streams should use setup call cleanup/3 using the
skeleton below, where process/1 is a predicate that reads from or writes to Stream.

setup_call_cleanup(
open(..., Stream),
process(Stream),
close(Stream)),

...

Note that the setting for this flag in the main thread applies.
9This is implemented using the copy-on-write technique.

10Future versions are likely to change the default to true.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 55

agc margin (integer, changeable)
If this amount of atoms possible garbage atoms exist perform atom garbage collection at
the first opportunity. Initial value is 10,000. May be changed. A value of 0 (zero) disables
atom garbage collection. See also PL register atom().11

allow dot in atom (bool, changeable)
If true (default false), dots may be embedded into atoms that are not quoted and
start with a letter. The embedded dot must be followed by an identifier continuation
character (i.e., letter, digit or underscore). The dot is allowed in identifiers in many
languages, which can make this a useful flag for defining DSLs. Note that this conflicts
with cascading functional notation. For example, Post.meta.author is read as
.(Post, ’meta.author’ if this flag is set to true.

allow variable name as functor (bool, changeable)
If true (default is false), Functor(arg) is read as if it were written
’Functor’(arg). Some applications use the Prolog read/1 predicate for
reading an application-defined script language. In these cases, it is often difficult to
explain to non-Prolog users of the application that constants and functions can only start
with a lowercase letter. Variables can be turned into atoms starting with an uppercase
atom by calling read term/2 using the option variable names and binding the
variables to their name. Using this feature, F(x) can be turned into valid syntax for such
script languages. Suggested by Robert van Engelen. SWI-Prolog specific.

android (bool)
If present and true, it indicates we are running on the Android OS. The flag is not present
in other operating systems.

android api (integer)
If running on Android, it indicates the compile-time API Level defined by the C macro
__ANDROID_API__. It is not defined if running on other operating systems. The API
level may or may not match the API level of the running device, since it is the API level
at compile time.

answer write options (term, changeable)
This flag is used by the interactive toplevel to print the value if bindings (an-
swers). The flag value is passed to write term/2 when printing an answer
queries. Default is [quoted(true), portray(true), max depth(10),
attributes(portray)].

apple (bool)
If present and true, the operating system is MacOSX. Defined if the C compiler used
to compile this version of SWI-Prolog defines __APPLE__. Note that the unix is also
defined for MacOSX.

apple universal binary (bool)
If present and true, SWI-Prolog has been build as a universal binary. Universal binaries
contain native executable code for multiple architectures. Currently the supported
architectures are x86 64 and arm64. The archirecture prefix for components is
fat-darwin while the arch depends on the actual CPU type.

11Given that SWI-Prolog has no limit on the length of atoms, 10,000 atoms may still occupy a lot of memory. Applications
using extremely large atoms may wish to call garbage collect atoms/0 explicitly or lower the margin.

SWI-Prolog 9.3 Reference Manual

56 CHAPTER 2. OVERVIEW

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used
to select foreign files for the right architecture. See also section 12.2.3 and
file search path/2. For Apple, see also apple universal binary.

argv (list, changeable)
List is a list of atoms representing the application command line arguments. Application
command line arguments are those that have not been processed by Prolog during its
initialization. Note that Prolog’s argument processing stops at -- or the first non-option
argument. See also os argv.12

associated file (atom)
Set if Prolog was started with a prolog file as argument. Used by e.g., edit/0 to edit the
initial file.

autoload (atom, changeable)
This flag controls autoloading predicates based on autoload/1 and autoload/2 as
well as predicates from autoload libraries. It has the following values:

false
Predicates are never auto-loaded. If predicates have been imported be-
fore using autoload/[1,2], load the referenced files immediately using
use module/[1,2]. Note that most of the development utilities such as
listing/1 have to be explicitly imported before they can be used at the toplevel.

explicit
Do not autoload from autoload libraries, but do use lazy loading for predicates
imported using autoload/[1,2].

user
As false, but to autoload library predicates into the global user module. This
makes the development tools and library implicitly available to the toplevel, but not
to modules.

user or explicit
Combines explicit with user, providing lazy loading of predicates imported
using autoload/[1,2] and implicit access to the whole library for the toplevel.

true
Provide full autoloading everywhere. This is the default.

back quotes (codes,chars,string,symbol char, changeable)
Defines the term-representation for back-quoted material. The default is codes. If
--traditional is given, the default is symbol char, which allows using ‘ in
operators composed of symbols.13 See also section 5.2.

backtrace (bool, changeable)
If true (default), print a backtrace on an uncaught exception.

backtrace depth (integer, changeable)
If backtraces on errors are enabled, this flag defines the maximum number of frames that
is printed (default 20).

12Prior to version 6.5.2, argv was defined as os argv is now. The change was made for compatibility reasons and
because the current definition is more practical.

13Older versions had a boolean flag backquoted strings, which toggled between string and symbol char

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 57

backtrace goal depth (integer, changeable)
The frame of a backtrace is printed after making a shallow copy of the goal. This flag
determines the depth to which the goal term is copied. Default is ‘3’.

backtrace show lines (bool, changeable)
If true (default), try to reconstruct the line number at which the exception happened.

bounded (bool)
ISO Prolog flag. If true, integer representation is bound by min integer and
max integer. If false integers can be arbitrarily large and the min integer and
max integer are not present. The flag max integer size may be used to enforce
an arbitrary limit rather than exhausting memory. See section 4.27.2.

break level (integer)
Current break-level. The initial top level (started with -t) has value 0. See break/0.
This flag is absent from threads that are not running a top-level loop.

bundle (bool)
True when SWI-Prolog is installed as a stand-alone bundle. This is set for both the
Windows and MacOS binary packages as distributed from the SWI-Prolog download
page. This is used to adjust the file search configuration.

c cc (atom, changeable)
Name of the C compiler used to compile SWI-Prolog. Normally one of gcc, clang or
cc. See section 12.5.

c cflags (atom, changeable)
CFLAGS used to compile SWI-Prolog. See section 12.5.

c cxx (atom, changeable)
Name of the C++ compiler used to test the SWI-Prolog C++ binding. This is the default
C++ compiler used by swipl-ld (see section 12.5) as well as compiling packs using
the default setup. Note that SWI-Prolog itself does not contain C++ code and the C++
binding is header only. This implies that C++ ABI compatibility issues can not occur.

c ldflags (atom, changeable)
LDFLAGS used to link SWI-Prolog. See section 12.5.

c libplso (atom, changeable)
Libraries needed to link extensions (shared object, DLL) to SWI-Prolog. Typically empty
on ELF systems and -lswipl on COFF-based systems. See section 12.5.

c libs (atom, changeable)
Libraries needed to link executables that embed SWI-Prolog. Typically -lswipl if the
SWI-Prolog kernel is a shared (DLL). If the SWI-Prolog kernel is in a static library, this
flag also contains the dependencies.

char conversion (bool, changeable)
Determines whether character conversion takes place while reading terms. See also
char conversion/2.

character escapes (bool, changeable)
If true (default), read/1 interprets \ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed. See
section 2.15.1.

SWI-Prolog 9.3 Reference Manual

58 CHAPTER 2. OVERVIEW

character escapes unicode (bool, changeable)
If true (default), write/1 and friends write escaped characters using the \uXXXX or
\UXXXXXXXX syntax rather than the ISO Prolog \x<hex>\ syntax. SWI-Prolog reads
both.

ci speedup (float, changeable)
Consider generating a hash for clause indexing if the hash has a speedup of at least this
flag. Default is 1.5.

ci max var fraction (float, changeable)
Do not create a clause indexing hash table of the argument is unbound in the clause for
more than this fraction of clauses. Default is 0.1.

ci min speedup ratio (float, changeable)
Consider adding a multi-argument hash if it is at lease this values as efficient. Default is
3.0.

ci max lookahead (integer, changeable)
If a clause is found, scan the clause list of a possible alternative match for at max this
number of clauses. Default is 100.

ci min clauses (integer, changeable)
If the primary index argument (first) is instantiated, still consider a hash of the predicate
has more than this number of clauses. Default is 10.

cmake build type (atom)
Provides the cmake build type used to build this version of SWI-Prolog.

colon sets calling context (bool)
Using the construct ⟨module⟩:⟨goal⟩ sets the calling context for executing ⟨goal⟩. This
flag is defined by ISO/IEC 13211-2 (Prolog modules standard). See section 6.

color term (bool, changeable)
This flag is managed by library ansi term, which is loaded at startup if the two con-
ditions below are both true. Note that this implies that setting this flag to false from
the system or personal initialization file (see section 2.2 disables colored output. The
predicate message property/2 can be used to control the actual color scheme
depending in the message type passed to print message/2.

• stream_property(current_output, tty(true))

• \+ current_prolog_flag(color_term, false)

compile meta arguments (atom, changeable)
This flag controls compilation of arguments passed to meta-calls marked ‘0’ or ‘ˆ’ (see
meta predicate/1). Supported values are:

false
(default). Meta-arguments are passed verbatim. If the argument is a control structure
((A,B), (A;B), (A-¿B;C), etc.) it is compile to an temporary clause allocated on the
environment stack when the meta-predicate is called.

control
Compile meta-arguments that contain control structures to an auxiliary predicate.
This generally improves performance as well as the debugging experience.

SWI-Prolog 9.3 Reference Manual

https://cmake.org/

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 59

always
Always create an intermediate clause, even for system predicates.14

compiled at (atom)
Describes when the system has been compiled. Only available if the C compiler used to
compile SWI-Prolog provides the DATE and TIME macros.

conda (bool)
Set to true when built in a Conda environment.

console menu (bool)
Set to true in swipl-win.exe to indicate that the console supports menus. See also
section 4.35.4.

cpu count (integer, changeable)
Number of physical CPUs or cores in the system. The flag is marked read-
write both to allow pretending the system has more or less processors. See also
thread setconcurrency/2 and the library thread. This flag is not available on
systems where we do not know how to get the number of CPUs. This flag is not included
in a saved state (see qsave program/1).

dde (bool)
Set to true if this instance of Prolog supports DDE as described in section 4.44.

debug (bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy points (see spy/1) and break points. In addition, last-call optimisation is disabled
and the system is more conservative in destroying choice points to simplify debugging.
Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

debug on error (bool, changeable)
If true, start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See also the Prolog flag report error.
Default is true.

debug on interrupt (bool, changeable)
If true, start the debugger on Control-C.15. The initial value is false and the value is
set to true when entering the interactive top level. See --debug-on-interrupt to
start handling interrupts immediately.

debugger show context (bool, changeable)
If true, show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

debugger write options (term, changeable)
This argument is given as option-list to write term/2 for printing goals by
the debugger. Modified by the ‘w’, ‘p’ and ‘⟨N⟩ d’ commands of the debug-
ger. Default is [quoted(true), portray(true), max depth(10),
attributes(portray)].

14This may be used in the future for replacing the normal head of the generated predicate with a special reference (similar
to database references as used by, e.g., assert/2) that provides direct access to the executable code, thus avoiding runtime
lookup of predicates for meta-calling.

15More precisely when receiving SIGINT

SWI-Prolog 9.3 Reference Manual

https://docs.conda.io/

60 CHAPTER 2. OVERVIEW

determinism error (atom, changeable)
This flag defines the behaviour when the predicate determinism is not according to its
declaration. See det/1. Possible values are error (default), warning and silent.

dialect (atom)
Fixed to swi. The code below is a reliable and portable way to detect SWI-Prolog.

is_dialect(swi) :-
catch(current_prolog_flag(dialect, swi), _, fail).

dir sep (atom)
Separator for directories in a file name the OS. Normally /, but \ on Windows.

double quotes (codes,chars,atom,string, changeable)
This flag determines how double quoted strings are read by Prolog and is —like
character escapes and back quotes— maintained for each module. The default
is string, which produces a string as described in section 5.2. If --traditional
is given, the default is codes, which produces a list of character codes, integers that
represent a Unicode code-point. The value chars produces a list of one-character atoms
and the value atom makes double quotes the same as single quotes, creating a atom. See
also section 5.

editor (atom, changeable)
Determines the editor used by edit/1. See section 4.4.1 for details on selecting the
editor used.

emacs inferior process (bool)
If true, SWI-Prolog is running as an inferior process of (GNU/X-)Emacs. SWI-Prolog
assumes this is the case if the environment variable EMACS is t and INFERIOR is yes.

encoding (atom, changeable)
Default encoding used for opening files in text mode. The initial value is deduced from
the environment. See section 2.18.1 for details.

executable (atom)
Pathname of the running executable. Used by qsave program/2 as default emulator.

executable format (atom)
Format of the SWI-Prolog executable, e.g. elf for when swipl is an ELF binary file.

engines (bool)
True if engines are supported. This is always the case on the multi-threaded versions.
Engines may be enabled on single threaded versions of SWI-Prolog.

exit status (integer)
Set by halt/1 to its argument, making the exit status available to hooks registered with
at halt/1.

file name case handling (atom, changeable)
This flag defines how Prolog handles the case of file names. The flag is used for case
normalization and to determine whether two names refer to the same file.16 It has one of
the following values:

16BUG: Note that file name case handling is typically a properly of the filesystem, while Prolog only has a global flag to
determine its file handling.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 61

case sensitive
The filesystem is fully case sensitive. Prolog does not perform any case modification
or case insensitive matching. This is the default on Unix systems.

case preserving
The filesystem is case insensitive, but it preserves the case with which the user has
created a file. This is the default on Windows systems.

case insensitive
The filesystem doesn’t store or match case. In this scenario Prolog maps all file
names to lower case.

file name variables (bool, changeable)
If true (default false), expand \$\arg{varname} and ˜ in arguments of built-in
predicates that accept a file name (open/3, exists file/1, access file/2, etc.).
The predicate expand file name/2 can be used to expand environment variables
and wildcard patterns. This Prolog flag is intended for backward compatibility with older
versions of SWI-Prolog.

file search cache time (number, changeable)
Time in seconds for which search results from absolute file name/3 are cached.
Within this time limit, the system will first check that the old search result satisfies the
conditions. Default is 10 seconds, which typically avoids most repetitive searches for
(library) files during compilation. Setting this value to 0 (zero) disables the cache.

float max (float)
The biggest representable floating point number.

float max integer (float)
The highest integer that can be represented precisely as a floating point number.

float min (float)
The smallest representable floating point number above 0.0. See also nexttoward/2.

float overflow (atom, changeable)
One of error (default) or infinity. The first is ISO compliant. Using infinity,
floating point overflow is mapped to positive or negative Inf. See section 4.27.2. This
flag also affects read term/3 and friends, causing them to read too large floating point
number as infinity.

float rounding (atom, changeable)
Defines how arithmetic rounds to a float. Defined values are to nearest (default),
to positive, to negative or to zero. For most scenarios the function
roundtoward/2 provides a safer and faster alternative.

float undefined (atom, changeable)
One of error (default) or nan. The first is ISO compliant. Using nan, undefined
operations such as sqrt(-2.0) is mapped to NaN. See section 4.27.2.

float underflow (atom, changeable)
One of error or ignore (default). The second is ISO compliant, binding the result to
0.0.

float zero div (atom, changeable)
One of error (default) or infinity. The first is ISO compliant. Using infinity,
division by 0.0 is mapped to positive or negative Inf. See section 4.27.2.

SWI-Prolog 9.3 Reference Manual

62 CHAPTER 2. OVERVIEW

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage collection, nor
stack shifts will take place, even not on explicit request. May be changed.

gc thread (bool)
If true (default if threading is enabled), atom and clause garbage collection are executed
in a separate thread with the alias gc. Otherwise the thread that detected sufficient
garbage executes the garbage collector. As running these global collectors may take
relatively long, using a separate thread improves real time behaviour. The gc thread can
be controlled using set prolog gc thread/1, which either enables the gc thread or
kills the gc thread and waits for it to die.

generate debug info (bool, changeable)
If true (default) generate code that can be debugged using trace/0, spy/1, etc. Can
be set to false using the --no-debug. This flag is scoped within a source file. Many
of the libraries have :- set_prolog_flag(generate_debug_info, false)
to hide their details from a normal trace.17

gmp version (integer)
If Prolog is linked with GMP, this flag gives the major version of the GMP library used.
See also section 12.4.11. This flag is not present when linked to LibBF. Use non-existence
of the Prolog flag bounded to test for big integer and rational number support.

gui (bool)
Set to true if XPCE is around and can be used for graphics.

halt grace time (float, changeable)
Time halt/1 waits for other threads to die gracefully. Default is 1 second.

heartbeat (integer, changeable)
If not zero, call prolog:heartbeat/0 every N inferences. N is rounded to a multiple
of 16.

history (integer, changeable)
If integer > 0, support Unix csh(1)-like history as described in section 2.8. Otherwise,
only support reusing commands through the command line editor. The default is to set
this Prolog flag to 0 if a command line editor is provided (see Prolog flag readline)
and 15 otherwise.

home (atom)
SWI-Prolog’s notion of the home directory. SWI-Prolog uses its home directory to find
its startup file as ⟨home⟩/boot.prc and to find its library as ⟨home⟩/library.
Some installations may put architecture independent files in a shared home and also
define shared home. System files can be found using absolute file name/3 as
swi(file). See file search path/2.

hwnd (integer)
In swipl-win.exe, this refers to the MS-Windows window handle of the console
window.

integer rounding function (down,toward zero)
ISO Prolog flag describing rounding by // and rem arithmetic functions. Value depends
on the C compiler used.

17In the current implementation this only causes a flag to be set on the predicate that causes children to be hidden from
the debugger. The name anticipates further changes to the compiler.

SWI-Prolog 9.3 Reference Manual

https://bellard.org/libbf/

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 63

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible with normal SWI-Prolog
behaviour. Currently it has the following effect:

• The //2 (float division) always returns a float, even if applied to integers that can be
divided.

• In the standard order of terms (see section 4.6.1), all floats are before all integers.
• atom length/2 yields a type error if the first argument is a number.
• clause/[2,3] raises a permission error when accessing static predicates.
• abolish/[1,2] raises a permission error when accessing static predicates.
• Syntax is closer to the ISO standard:

– Within functional notation and list notation terms must have priority below
1000. That means that rules and control constructs appearing as arguments need
bracketing. A term like [a :- b, c]. must now be disambiguated to mean
[(a :- b), c]. or [(a :- b, c)].

– Operators appearing as operands must be bracketed. Instead of
X == -, true. write X == (-), true. Currently, this is not en-
tirely enforced.

– Backslash-escaped newlines are interpreted according to the ISO standard. See
section 2.15.1.

large files (bool)
If present and true, SWI-Prolog has been compiled with large file support (LFS) and is
capable of accessing files larger than 2GB. This flag is always true on 64-bit hardware
and true on 32-bit hardware if the configuration detected support for LFS. Note that it
may still be the case that the file system on which a particular file resides puts limits on
the file size.

last call optimisation (bool, changeable)
Determines whether or not last-call optimisation is enabled. Normally the value of this
flag is the negation of the debug flag. As programs may run out of stack if last-call
optimisation is omitted, it is sometimes necessary to enable it during debugging.

libswipl (atom, changeable)
Path where the SWI-Prolog shared library libswipl, the SWI-Prolog shared object
that provides Prolog, resides. On some systems this can be determined reliably from
the running system. On these systems the flag is read-only. On other systems it is the
configured target installation location and thus this value can be wrong if the installation
has been relocated. As we do not have a cross-platform reliable way to compute this path
the flag is read-write on such platforms.18

Currently, this flag is reliable on Windows and POSIX systems providing the dladdr()
function. This function is provided on Linux and MacOS.

malloc (atom)
Set after a successful identification of the used malloc() implementation. Currently
possibly values are tcmalloc and ptmalloc. See section 4.43.2 for details.

max answers for subgoal (integer, changeable)
Limit the number of answers in a table. The atom infinite clears the flag. By default
this flag is not defined. See section 7.11 for details.

18When running from the build environment, this flag is adjusted to reflect the location in the build tree.

SWI-Prolog 9.3 Reference Manual

64 CHAPTER 2. OVERVIEW

max answers for subgoal action (atom, changeable)
The action taken when a table reaches the number of answers specified in
max answers for subgoal. Supported values are bounded rationality,
error (default) or suspend.

max arity (unbounded)
ISO Prolog flag describing there is no maximum arity to compound terms.

max char code (integer)
Highest (Unicode) code point that is supported. SWI-Prolog supports all Unicode code
points from 0 (zero) up to and including the value of this flag. Currently 0xffff on
Windows (UCS-2) and 0x10ffff on most other platforms.

max integer (integer)
Maximum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.27.2.

max integer size (integer, changeable)
When this tripwire is set, memory allocation on behalf of big integers and rational num-
bers is limited to given number of bytes. The minimum value is 1,000. When unset, the
allocation limit is determined by the stack limit as we cannot represent larger numbers or
malloc() failures. Notably services that may process arbitrary arithmetic expressions
on behalf of a client may set this limit to avoid resource exhaustion.

max procedure arity (integer)
Maximum arity for a predicate. An attempt to define or call such a predicate results in a
representation error(max procedure arity) exception. Currently set to
1024.

max rational size (integer, changeable)
Limit the size in bytes for rational numbers. This tripwire can be used to identify cases
where setting the Prolog flag prefer rationals to true creates excessively big
rational numbers and, if precision is not required, one should use floating point arithmetic.
Note that rationals are also implicitly limited by the Prolog flag max integer size.

max rational size action (atom, changeable)
Action when the max rational size tripwire is exceeded. Possible values are error
(default), which throws a tripwire resource error and float, which converts the rational
number into a floating point number. Note that rational numbers may exceed the range
for floating point numbers.

max table answer size (integer, changeable)
Limit the size of an answer substitution for tabling. The atom infinite clears the flag.
By default this flag is not defined. See section 7.11 for details.

max table answer size action (atom, changeable)
The action taken if an answer substitution larger than max table answer size is
added to a table. Supported values are error (default), bounded rationality,
suspend and fail.

max table subgoal size (integer, changeable)
Limit the size of a goal term accessing a table. The atom infinite clears the flag. By
default this flag is not defined. See section 7.11 for details.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 65

max table subgoal size action (atom, changeable)
The action taken if a tabled goal exceeds max table subgoal size. Supported
values are error (default), abstract and suspend.

max tagged integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require one
word storage. Larger integers are represented as ‘indirect data’ and require significantly
more space.

message context (list(atom), changeable)
Context information to add to messages of the levels error and warning. The list may
contain the elements thread to add the thread that generates the message to the message,
time or time(Format) to add a time stamp. The default time format is %T.%3f. The
default is [thread]. See also format time/3 and print message/2.

min integer (integer)
Minimum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.27.2.

min tagged integer (integer)
Start of the tagged-integer value range.

mitigate spectre (bool, changeable)
When true (default false), enforce mitigation against the Spectre timing-based secu-
rity vulnerability. Spectre based attacks can extract information from memory owned by
the process that should remain invisible, such as passwords or the private key of a web
server. The attacks work by causing speculative access to sensitive data, and leaking the
data via side-channels such as differences in the duration of successive instructions. An
example of a potentially vulnerable application is SWISH. SWISH allows users to run
Prolog code while the swish server must protect the privacy of other users as well as its
HTTPS private keys, cookies and passwords.
Currently, enabling this flag reduces the resolution of get time/1 and
statistics/2 CPU time to 20µs.
WARNING: Although a coarser timer makes a successful attack of this type harder, it
does not reliably prevent such attacks in general. Full mitigation may require compiler
support to disable speculative access to sensitive data.

msys2 (bool)
If present, SWI-Prolog is the MS-Windows version running under a MSYS2 shell.

occurs check (atom, changeable)
This flag controls unification that creates an infinite tree (also called cyclic term) and can
have three values. Using false (default), unification succeeds, creating an infinite tree.
Using true, unification behaves as unify with occurs check/2, failing silently.
Using error, an attempt to create a cyclic term results in an occurs check exception.
The latter is intended for debugging unintentional creations of cyclic terms. Note that this
flag is a global flag modifying fundamental behaviour of Prolog. Changing the flag from
its default may cause libraries to stop functioning properly.

on error (atom, changeable)
Determines how to act on an error printed using print message/2, i.e., an error that
is reported to the user. The possible values are print (default), status and halt.

SWI-Prolog 9.3 Reference Manual

https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://swish.swi-prolog.org
https://www.msys2.org/

66 CHAPTER 2. OVERVIEW

Using halt the process halts immediately with status 1. Otherwise execution continues.
Using status halt/0 exits with status 1 if one or more errors were printed by the
process. In compile mode (see -c) the default is status. This flag can be set from the
commandline using --on-error. See also section 4.3.2.

on warning (atom, changeable)
As on error, but for warnings. The default is always print. The commandline option
is --on-warning.

open shared object (bool)
If true, open shared object/2 and friends are implemented, providing access to
shared libraries (.so files) or dynamic link libraries (.DLL files).

optimise (bool, changeable)
If true, compile in optimised mode. The initial value is true if Prolog was started with
the -O command line option. The optimise flag is scoped to a source file.
Currently optimised compilation implies compilation of arithmetic, and deletion of redun-
dant true/0 that may result from expand goal/2.
Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

optimise unify (bool, changeable)
If true (default), allow the compiler to (re)move explicit unification calls (=/2). While
this behaviour can significantly improve performance, it is not yet handled properly by
the source-level debugger. See section 2.17.3.

os argv (list, changeable)
List is a list of atoms representing the command line arguments used to invoke SWI-
Prolog. Please note that all arguments are included in the list returned. See argv to get
the application options.

packs (bool)
If true, extension packs (add-ons) are attached. Can be set to false using the
--no-packs.

path max (integer)
Maximum length of a file pathname as reported by the OS. This length does typically not
directly define the number of characters in the file name. The actual limit may be shorter
due to jargonencoding (e.g., on POSIX systems it typically defines the length limit of the
(often) UTF-8 encoded name). The underlying file system may impose additional limits.

path sep (atom)
Separator for file search paths such as the environment variable PATH for the OS. Nor-
mally :, but ; on Windows.

pid (int)
Process identifier of the running Prolog process. Existence of this flag is implementation-
defined.

pipe (bool, changeable)
If true, open(pipe(command), mode, Stream), etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 67

portable vmi (bool, changeable)
If true (default), generate .qlf files and saved states that run both on 32 bit and 64-bit
hardware. If false, some optimized virtual machine instructions are only used if the
integer argument is within the range of a tagged integer for 32-bit machines.

posix shell (atom, changeable)
Path to a POSIX compatible shell. This default is typically /bin/sh. This flag is used
by shell/1 and qsave program/2.

prefer rationals (bool, changeable)
Only provided if the system is compiled with unbounded and rational arithmetic support
(see bounded). If true, prefer arithmetic to produce rational numbers over floats. This
implies:

• Division (//2) of two integers produces a rational number.
• Power (ˆ/2) of two integers produces a rational number, also if the second operand

is a negative number. For example, 2ˆ(-2) evaluates to 1/4.

Using true can create excessively large rational numbers. The Prolog flag
max rational size can be used to detect and act on this tripwire.
If false, rational numbers can only be created using the functions rational/1,
rationalize/1 and rdiv/2 or by reading them. See also rational syntax,
section 2.15.1 and section 4.27.2.
The current default is false. We consider changing this to true in the future. Users are
strongly encouraged to set this flag to true and report issues this may cause.

print write options (term, changeable)
Specifies the options for write term/2 used by print/1 and print/2.

prompt alternatives on (atom, changeable)
Determines prompting for alternatives in the Prolog top level. Default is determinism,
which implies the system prompts for alternatives if the goal succeeded while leaving
choice points. Many classical Prolog systems behave as groundness: they prompt for
alternatives if and only if the query contains variables.

protect static code (bool, changeable)
If true (default false), clause/2 does not operate on static code, providing some
basic protection from hackers that wish to list the static code of your Prolog program.
Once the flag is true, it cannot be changed back to false. Protection is default in
ISO mode (see Prolog flag iso). Note that many parts of the development environment
require clause/2 to work on static code, and enabling this flag should thus only be
used for production code.

qcompile (atom, changeable)
This option provides the default for the qcompile(+Atom) option of load files/2.

rational syntax (atom, changeable)
Determines the read and write syntax for rational numbers. Possible values are natural
(e.g., 1/3) or compatibility (e.g., 1r3). The compatibility syntax is always
accepted. This flag is module sensitive.
The default for this flag is currently compatibility, which reads and writes rational
numbers as e.g., 1r3.19 We will consider natural as a default in the future. Users are

19There is still some discussion on the separating character. See section 2.15.1.

SWI-Prolog 9.3 Reference Manual

68 CHAPTER 2. OVERVIEW

strongly encouraged to set this flag to natural and report issues this may cause.

rationals (atom)
This flag is present and has the value true if the system supports rational numbers. For
SWI-Prolog this flag is always set if the flag bounded is false.

readline (atom, changeable)
Specifies which form of command line editing is provided. Possible values are below. The
flag may be set from the user’s init file (see section 2.3) to one of false, readline or
editline. This causes the toplevel not to load a command line editor (false) or load
the specified one. If loading fails the flag is set to false.

false
No command line editing is available.

readline
The library readline is loaded, providing line editing based on the GNU readline
library.

editline
The library editline is loaded, providing line editing based on the BSD libedit.
This is the default if editline is available and can be loaded.

swipl win
SWI-Prolog uses its own console (swipl-win.exe on Windows, the Qt based
swipl-win on MacOS) which provides line editing.

report error (bool, changeable)
If true, print error messages; otherwise suppress them. May be changed. See also the
debug on error Prolog flag. Default is true, except for the runtime version.

resource database (atom)
Set to the absolute filename of the attached state. Typically this is the file boot32.prc,
the file specified with -x or the running executable. See also resource/3.

runtime (bool)
If present and true, SWI-Prolog is compiled with -DO RUNTIME, disabling various
useful development features (currently the tracer and profiler).

sandboxed load (bool, changeable)
If true (default false), load files/2 calls hooks to allow library(sandbox) to
verify the safety of directives.

saved program (bool)
If present and true, Prolog has been started from a state saved with
qsave program/[1,2].

shared home (atom)
Indicates that part of the SWI-Prolog system files are installed in ⟨prefix⟩/share/swipl
instead of in the home at the ⟨prefix⟩/lib/swipl. This flag indicates the location
of this shared home and the directory is added to the file search path swi. See
file search path/2 and the flag home.

shared object extension (atom)
Extension used by the operating system for shared objects. .so for most Unix systems
and .dll for Windows. Used for locating files using the file type executable.
See also absolute file name/3.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 69

shared object search path (atom)
Name of the environment variable used by the system to search for shared objects.

shared table space (integer, changeable)
Space reserved for storing shared answer tables. See section 7.9 and the Prolog flag
table space.

shift check (bool, changeable)
When true (default false), check for suspicious delimited continuations captured by
shift for copy/1.

signals (bool)
Determine whether Prolog is handling signals (software interrupts). This flag is false
if the hosting OS does not support signal handling or the command line option
--no-signals is active. See section 12.4.25 for details.

source (bool, changeable)
If true, ignore .qlf files if there is a corresponding .pl file. The provided .qlf files
in the library are compiled with optimization enabled (see optimise), macro expansion
enabled (see apply macros) and debug/3 and assertion/1 statements removed.
Using this flag loads the source, providing better support for debugging. If a debugging
session may benefit from better access to the debugging facilities of the libraries, either
set this Prolog flag at the start of the load file for your program or start Prolog as

swipl -Dsource [option ...] myfile.pl ...

source search working directory (bool, changeable)
If set to true, loading a relative file name from source code searches relative to the
location of the source file as well as relative to the working directory. Searching relative
to the working directory is deprecated and a warning is printed if the file is found this
way. Future versions are likely to change the default to false.20

stack limit (int, changeable)
Limits the combined sizes of the Prolog stacks for the current thread. See also
--stack-limit and section 2.19.1.

stream type check (atom, changeable)
Defines whether and how strictly the system validates that byte I/O should not be applied
to text streams and text I/O should not be applied to binary streams. Values are false
(no checking), true (full checking) and loose. Using checking mode loose (default),
the system accepts byte I/O from text stream that use ISO Latin-1 encoding and accepts
writing text to binary streams.

string stack tripwire (int, changeable)
Maintenance for foreign language string management. Prints a warning if the string stack
depth hits the tripwire value. See section 12.4.14 for details.

system thread id (int)
Available in multithreaded version (see section 10) where the operating system provides
system-wide integer thread identifiers. The integer is the thread identifier used by the
operating system for the calling thread. On Linux systems this is the PID of the thread.

20Searching the working directory was supported up to version 9.3.8. Version 9.3.9 disabled this and version 9.3.10
re-enables it with a warning.

SWI-Prolog 9.3 Reference Manual

70 CHAPTER 2. OVERVIEW

table incremental (bool, changeable)
Set the default for whether to use incremental tabling or not. Initially set to false. See
table/1.

table shared (bool, changeable)
Set the default for whether to use shared tabling or not. Initially set to false. See
table/1.

table space (integer, changeable)
Space reserved for storing answer tables for tabled predicates (see table/1).21 When
exceeded a resource error(table space) exception is raised.

table subsumptive (bool, changeable)
Set the default choice between variant tabling and subsumptive tabling. Initially set to
false. See table/1.

threads (bool, changeable)
True when threads are supported. If the system is compiled without thread support the
value is false and read-only. Otherwise the value is true unless the system was started
with the --no-threads. Threading may be disabled only if no threads are running.
See also the gc thread flag.

timezone (integer)
Offset in seconds west of GMT of the current time zone. Set at initialization time from
the timezone variable associated with the POSIX tzset() function. See also
format time/3.

tmp dir (atom, changeable)
Path to the temporary directory. initialised from the environment variable TMP or TEMP
in windows. If this variable is not defined a default is used. This default is typically /tmp
or c:/temp in windows.

toplevel goal (term, changeable)
Defines the goal that is executed after running the initialization goals and entry point
(see -g, initialization/2 and section 2.11.1. The initial value is default,
starting a normal interactive session. This value may be changed using the com-
mand line option -t. The explicit value prolog is equivalent to default. If
initialization(Goal,main) is used and the toplevel is default, the toplevel is set
to halt (see halt/0).

toplevel list wfs residual program (bool, changeable)
If true (default) and the answer is undefined according to the Well Founded Semantics
(see section 7.6), list the residual program before the answer. Otherwise the answer
terminated with undefined. See also undefined/0.

toplevel mode (atom, changeable)
If backtracking (default), the toplevel backtracks after completing a query. If
recursive, the toplevel is implemented as a recursive loop. This implies that global
variables set using b setval/2 are maintained between queries. In recursive mode,
answers to toplevel variables (see section 2.9) are kept in backtrackable global variables
and thus not copied. In backtracking mode answers to toplevel variables are kept in the
recorded database (see section 4.14.2).

21BUG: Currently only counts the space occupied by the nodes in the answer tries.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 71

The recursive mode has been added for interactive usage of CHR (see section 9),22 which
maintains the global constraint store in backtrackable global variables.

toplevel name variables (bool, changeable)
If true (default), give names to variables at the toplevel instead of printing them as
NNN. The variables are named A, B, ... Variables that appear only once (singletons) are

printed as .

toplevel print anon (bool, changeable)
If true, top-level variables starting with an underscore () are printed normally. If false
(default) the binding of such variables are omitted from the answer. This may be used to
hide bindings in complex queries from the top level. For example, the binding for List
below is not printed.

?- numlist(1,1 000 000,_List), sum_list(_List, Sum).
Sum = 500000500000.

toplevel print factorized (bool, changeable)
If true (default false) show the internal sharing of subterms in the answer substi-
tution. The example below reveals internal sharing of leaf nodes in red-black trees as
implemented by the rbtrees predicate rb new/1:

?- set_prolog_flag(toplevel_print_factorized, true).
?- rb_new(X).
X = t(_S1, _S1), % where

_S1 = black(’’, _G387, _G388, ’’).

If this flag is false, the % where notation is still used to indicate cycles as illustrated
below. This example also shows that the implementation reveals the internal cycle length,
and not the minimal cycle length. Cycles of different length are indistinguishable in Prolog
(as illustrated by S == R).

?- S = s(S), R = s(s(R)), S == R.
S = s(S),
R = s(s(R)).

toplevel prompt (atom, changeable)
Define the prompt that is used by the interactive top level. The following ˜ (tilde) se-
quences are replaced:

˜m Type in module if not user (see module/1)
˜l Break level if not 0 (see break/0)
˜d Debugging state if not normal execution (see debug/0, trace/0)
˜! History event if history is enabled (see flag history)

toplevel residue vars (bool, changeable)
When true (default false), print residual variables as detected by
call residue vars/2 that do not appear in the bindings returned by the goal.

22Suggested by Falco Nogatz

SWI-Prolog 9.3 Reference Manual

72 CHAPTER 2. OVERVIEW

toplevel var size (int, changeable)
Maximum size counted in literals of a term returned as a binding for a variable in a
top-level query that is saved for re-use using the $ variable reference. When 0 (zero), the
variable recording and reuse is disabled. See section 2.9.

trace gc (bool, changeable)
If true (default false), garbage collections and stack-shifts will be reported on the
terminal. May be changed. Values are reported in bytes as G+T , where G is the global
stack value and T the trail stack value. ‘Gained’ describes the number of bytes reclaimed.
‘used’ the number of bytes on the stack after GC and ‘free’ the number of bytes allocated,
but not in use. Below is an example output.

% GC: gained 236,416+163,424 in 0.00 sec;
used 13,448+5,808; free 72,568+47,440

traditional (bool)
Available in SWI-Prolog version 7. If true, ‘traditional’ mode has been selected using
--traditional. Notice that some SWI7 features, like the functional notation on
dicts, do not work in this mode. See also section 5.

tty control (bool, changeable)
Determines whether the terminal is switched to raw mode for get single char/1,
which also reads the user actions for the trace. May be set. If this flag is false at
startup, command line editing is disabled. See also the --no-tty command line option.

unix (bool)
If present and true, the operating system is some version of Unix. Defined if the C
compiler used to compile this version of SWI-Prolog either defines __unix__ or unix.
On other systems this flag is not available. See also apple and windows.

unknown (fail,warning,error, changeable)
Determines the behaviour if an undefined procedure is encountered. If fail, the pred-
icate fails silently. If warn, a warning is printed, and execution continues as if the
predicate was not defined, and if error (default), an existence error exception is
raised. This flag is local to each module and inherited from the module’s import-module.
Using default setup, this implies that normal modules inherit the flag from user, which
in turn inherit the value error from system. The user may change the flag for module
user to change the default for all application modules or for a specific module. It is
strongly advised to keep the error default and use dynamic/1 and/or multifile/1
to specify possible non-existence of a predicate.

unknown option (ignore,warning,error, changeable)
Determines the behaviour if a predicate that processes an option list is passed an op-
tion that is not understood by the predicate. The ISO standard dictates raising a
domain error exception. This is considered impractical as it makes it hard to write
portable code if different Prolog systems support different options and it makes it hard to
write predicates that process options and pass some of the options to one predicate and
others to some other predicate. For example, a predicate reading a file to a list of terms
must distribute options to open/4 and read term/3. SWI-Prolog has always ignored
unknown options unless in ISO mode (see the iso flag). This flag provides full control
over how options are processed.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 73

unload foreign libraries (bool, changeable)
If true (default false), unload all loaded foreign libraries. Default is false because
modern OSes reclaim the resources anyway and unloading the foreign code may cause
registered hooks to point to no longer existing data or code.

user flags (Atom, changeable)
Define the behaviour of set prolog flag/2 if the flag is not known. Values are
silent, warning and error. The first two create the flag on-the-fly, where
warning prints a message. The value error is consistent with ISO: it raises an
existence error and does not create the flag. See also create prolog flag/3. The
default is silent, but future versions may change that. Developers are encouraged to
use another value and ensure proper use of create prolog flag/3 to create flags
for their library.

var prefix (bool, changeable)
If true (default false), variables must start with an underscore (). May be changed.
This flag is local to the module in which it is changed. See section 2.15.1.

verbose (atom, changeable)
This flag is used by print message/2. If its value is silent, messages of type
informational and banner are suppressed. The -q switches the value from the
initial normal to silent.

verbose autoload (bool, changeable)
If true the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

verbose file search (bool, changeable)
If true (default false), print messages indicating the progress of
absolute file name/[2,3] in locating files. Intended for debugging com-
plicated file-search paths. See also file search path/2.

verbose load (atom, changeable)
Determines messages printed for loading (compiling) Prolog files. Current values are
full (print a message at the start and end of each file loaded), normal (print a message
at the end of each file loaded), brief (print a message at end of loading the toplevel
file), and silent (no messages are printed, default). The value of this flag is normally
controlled by the option silent(Bool) provided by load files/2.

version (integer)
The version identifier is an integer with value:

10000× Major + 100× Minor + Patch

version data (swi(Major, Minor, Patch, Extra))
Part of the dialect compatibility layer; see also the Prolog flag dialect and section C.
Extra provides platform-specific version information as a list. Extra is used for tagged
versions such as “7.4.0-rc1”, in which case Extra contains a term tag(rc1).

version git (atom)
Available if created from a git repository. See git-describe for details.

vmi builtin (bool, changeable)
Determines whether well known built-ins such as true/0 or atom/1 are handled by

SWI-Prolog 9.3 Reference Manual

74 CHAPTER 2. OVERVIEW

their translation into virtual machine code. The default for this flag is true, unless debug
mode is enabled. Setting this flag to false may improve other runtime instrumentation
results. Note that optimized arithmetic (-O, see Prolog flag optimise) is currently not
translated into a normal predicate call.

warn autoload (bool, changeable)
If true (default false), warn when autoloading predicates from a file that defines
global term- or goal-expansion rules. These rules typically enhance performance or
provide cleaner semantics and thus autoloading is not recommended. Future versions will
enable this flag by default.

warn override implicit import (bool, changeable)
If true (default), a warning is printed if an implicitly imported predicate is clobbered by
a local definition. See use module/1 for details.

win file access check (atom, changeable)
Controls the behaviour or access file/2 under Windows. There is no reliable way to
check access to files and directories on Windows. This flag allows for switching between
three alternative approximations.
access

Use Windows waccess() function. This ignores ACLs (Access Control List) and
thus may indicate that access is allowed while it is not.

getfilesecurity
Use the Windows GetFileSecurity() function. This does not work on all file
systems, but is probably the best choice on file systems that do support it, notably
local NTFS volumes.

openclose
Try to open the file and close it. This works reliable for files, but not for directories.
Currently directories are checked using waccess(). This is the default.

windows (bool)
If present and true, the operating system is an implementation of Microsoft Windows.
This flag is only available on MS-Windows based versions. See also unix.

wine version (atom)
If present, SWI-Prolog is the MS-Windows version running under the Wine emulator.

write attributes (atom, changeable)
Defines how write/1 and friends write attributed variables. The option values are
described with the attributes option of write term/2. Default is ignore.

write help with overstrike (bool)
Internal flag used by help/1 when writing to a terminal. If present and true it prints
bold and underlined text using overstrike.

xdg (bool)
This flag defines whether or not the we follow the Free Desktop standard for application
data and configuration files. The flag is true and read-only for non-Windows systems.
On Windows systems the flag is true but read-write when compiled under Conda or
MSYS2 and not defined otherwise. On Windows, the search order is
Flag is not defined

First search the Windows directories, then the XDG directories. This is the default
for the Windows binaries.

SWI-Prolog 9.3 Reference Manual

https://www.winehq.org/

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 75

Flag is true
Only search the XDG directories.

Flag is false
Only search the Windows directories.

xpce (bool)
Available and set to true if the XPCE graphics system is loaded.

xpce version (atom)
Available and set to the version of the loaded XPCE system.

xref (bool, changeable)
If true, source code is being read for analysis purposes such as cross-referencing. Oth-
erwise (default) it is being read to be compiled. This flag is used at several places by
term expansion/2 and goal expansion/2 hooks, notably if these hooks use
side effects. See also the libraries prolog source and prolog xref.

set prolog flag(:Key, +Value) [ISO]

Define a new Prolog flag or change its value. Key is an atom. If the flag is a system-
defined flag that is not marked changeable above, an attempt to modify the flag yields
a permission error. If the provided Value does not match the type of the flag, a
type error is raised.

Some flags (e.g., unknown) are maintained on a per-module basis. The addressed module is
determined by the Key argument.

In addition to ISO, SWI-Prolog allows for user-defined Prolog flags. The type of the flag is de-
termined from the initial value and cannot be changed afterwards. Defined types are boolean
(if the initial value is one of false, true, on or off), atom if the initial value is any other
atom, integer if the value is an integer that can be expressed as a 64-bit signed value. Any
other initial value results in an untyped flag that can represent any valid Prolog term.

The behaviour when Key denotes a non-existent key depends on the Prolog flag
user flags. The default is to define them silently. New code is encouraged to use
create prolog flag/3 for portability.

create prolog flag(+Key, +Value, +Options) [YAP]

Create a new Prolog flag. The ISO standard does not foresee creation of new flags, but many
libraries introduce new flags. Options is a list of the options below. See also user flags.

access(+Access)
Define access rights for the flag. Values are read write and read only. The default
is read write.

type(+Atom)
Define a type restriction. Possible values are boolean, atom, oneof(ListOfAtoms),
integer, float and term. The default is determined from the initial value. Note that
term restricts the term to be ground.

keep(+Boolean)
If true, do not modify the flag if it already exists. Otherwise (default), this predicate
behaves as set prolog flag/2 if the flag already exists.

SWI-Prolog 9.3 Reference Manual

76 CHAPTER 2. OVERVIEW

If the flag has a value, but this value is incompatible with the specified type, a
warning is printed and the flag gets the value and type specified by this call to
create prolog flag/3.

warn not accessed(+Boolean)
If true and the flag is never read using current prolog flag/2, print
a warning. This option is used for options set using the commandline option
-D<flag>[=<value>].

2.13 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

• portray/1
Hook into write term/3 to alter the way terms are printed (ISO).

• message hook/3
Hook into print message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

• message property/2
Hook into print message/2 that defines prefix, output stream, color, etc.

• message prefix hook/2
Hook into print message/2 to add additional prefixes to the message such as the time and
thread.

• library directory/1
Hook into absolute file name/3 to define new library directories (most Prolog systems).

• file search path/2
Hook into absolute file name/3 to define new search paths (Quintus/SICStus).

• term expansion/2
Hook into load files/2 to modify read terms before they are compiled (macro-processing)
(most Prolog systems).

• goal expansion/2
Same as term expansion/2 for individual goals (SICStus).

• prolog load file/2
Hook into load files/2 to load other data formats for Prolog sources from ‘non-file’ re-
sources. The load files/2 predicate is the ancestor of consult/1, use module/1,
etc.

• prolog edit:locate/3
Hook into edit/1 to locate objects (SWI).

SWI-Prolog 9.3 Reference Manual

2.14. AUTOMATIC LOADING OF LIBRARIES 77

• prolog edit:edit source/1
Hook into edit/1 to call an internal editor (SWI).

• prolog edit:edit command/2
Hook into edit/1 to define the external editor to use (SWI).

• prolog list goal/1
Hook into the tracer to list the code associated to a particular goal (SWI).

• prolog trace interception/4
Hook into the tracer to handle trace events (SWI).

• prolog:debug control hook/1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these control pred-
icates to higher-level libraries.

• prolog:help hook/1
Hook in help/0, help/1 and apropos/1 to extend the help system.

• resource/3
Define a new resource (not really a hook, but similar) (SWI).

• exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

• attr unify hook/2
Unification hook for attributed variables. Can be defined in any module. See section 8.1 for
details.

2.14 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped, the system will first try to import the pred-
icate from the module’s default module (see section 6.10. If this fails the auto loader is acti-
vated.23 On first activation an index to all library files in all library directories is loaded in core
(see library directory/1, file search path/2 and reload library index/0). If
the undefined predicate can be located in one of the libraries, that library file is automatically loaded
and the call to the (previously undefined) predicate is restarted. By default this mechanism loads
the file silently. The current prolog flag/2 key verbose autoload is provided to get
verbose loading. The Prolog flag autoload can be used to enable/disable the autoload system.
A more controlled form of autoloading as well as lazy loading application modules is provided by
autoload/[1,2].

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 6. The files are loaded with use module/2 and only the trapped undefined predicate is imported
into the module where the undefined predicate was called. Each library directory must hold a file
INDEX.pl that contains an index to all library files in the directory. This file consists of lines of the
following format:

index(Name, Arity, Module, File).

23Actually, the hook user:exception/3 is called; only if this hook fails it calls the autoloader.

SWI-Prolog 9.3 Reference Manual

78 CHAPTER 2. OVERVIEW

The predicate make/0 updates the autoload index. It searches for all library directories
(see library directory/1 and file search path/2) holding the file MKINDEX.pl or
INDEX.pl. If the current user can write or create the file INDEX.pl and it does not exist or
is older than the directory or one of its files, the index for this directory is updated. If the file
MKINDEX.pl exists, updating is achieved by loading this file, normally containing a directive calling
make library index/2. Otherwise make library index/1 is called, creating an index for
all *.pl files containing a module.

Below is an example creating an indexed library directory.

% mkdir ˜/${XDG_DATA_HOME-.config}/swi-prolog/lib
% cd ˜/${XDG_DATA_HOME-.config}/swi-prolog/lib
% swipl -g ’make_library_index(.)’ -t halt

If there is more than one library file containing the desired predicate, the following search schema is
followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appear in the library directory/1
predicate and within the directory alphabetically.

autoload path(+DirAlias)
Add DirAlias to the libraries that are used by the autoloader. This extends the search path
autoload and reloads the library index. For example:

:- autoload_path(library(http)).

If this call appears as a directive, it is term-expanded into a clause for
user:file search path/2 and a directive calling reload library index/0.
This keeps source information and allows for removing this directive.

make library index(+Directory)
Create an index for this directory. The index is written to the file ’INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

make library index(+Directory, +ListOfPatterns)
Normally used in MKINDEX.pl, this predicate creates INDEX.pl for Directory, indexing all
files that match one of the file patterns in ListOfPatterns.

Sometimes library packages consist of one public load file and a number of files used by this
load file, exporting predicates that should not be used directly by the end user. Such a library
can be placed in a sub-directory of the library and the files containing public functionality can
be added to the index of the library. As an example we give the XPCE library’s MKINDEX.pl,
including the public functionality of trace/browse.pl to the autoloadable predicates for
the XPCE package.

SWI-Prolog 9.3 Reference Manual

2.15. THE SWI-PROLOG SYNTAX 79

:- prolog_load_context(directory, Dir),
make_library_index(Dir,

[’*.pl’,
’trace/browse.pl’,
’swi/*.pl’

]).

reload library index
Force reloading the index after modifying the set of library directories by changing the rules for
library directory/1, file search path/2, adding or deleting INDEX.pl files.
This predicate does not update the INDEX.pl files. Check make library index/[1,2]
and make/0 for updating the index files.

Normally, the index is reloaded automatically if a predicate cannot be found in the index and
the set of library directories has changed. Using reload library index/0 is necessary if
directories are removed or the order of the library directories is changed.

When creating an executable using either qsave program/2 or the -c command line options,
it is necessary to load all predicates that would normally be autoloaded explicitly. This is discussed in
section 14. See autoload all/0.

2.15 The SWI-Prolog syntax

SWI-Prolog syntax is close to ISO-Prolog standard syntax, which is based on the Edinburgh Prolog
syntax. A formal description can be found in the ISO standard document. For an informal introduction
we refer to Prolog text books (see section 1) and online tutorials. In addition to the differences from
the ISO standard documented here, SWI-Prolog offers several extensions, some of which also extend
the syntax. See section 5 for more information.

2.15.1 ISO Syntax Support

This section lists various extensions w.r.t. the ISO Prolog syntax.

Processor Character Set

The processor character set specifies the class of each character used for parsing Prolog source text.
Character classification is fixed to Unicode. See also section 2.18.

Nested comments

SWI-Prolog allows for nesting /* ...*/ comments. Where the ISO standard accepts
/* .../* ...*/ as a comment, SWI-Prolog will search for a terminating */. This is useful
if some code with /* ...*/ comment statements in it should be commented out. This modification
also avoids unintended commenting in the example below, where the closing */ of the first comment
has been forgotten.24

24Recent copies of GCC give a style warning if /* is encountered in a comment, which suggests that this problem has
been recognised more widely.

SWI-Prolog 9.3 Reference Manual

http://www.swi-prolog.org/Links.html
http://www.unicode.org/

80 CHAPTER 2. OVERVIEW

/* comment

code

/* second comment */

code

Character Escape Syntax

Within quoted atoms (using single quotes: ’⟨atom⟩’) special characters are represented using escape
sequences. An escape sequence is led in by the backslash (\) character. The list of escape sequences is
compatible with the ISO standard but contains some extensions, and the interpretation of numerically
specified characters is slightly more flexible to improve compatibility. Undefined escape characters
raise a syntax error exception.25

\a
Alert character. Normally the ASCII character 7 (beep).

\b
Backspace character.

\c
No output. All input characters up to but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. Not supported by ISO. Example:

format(’This is a long line that looks better if it was \c
split across multiple physical lines in the input’)

\⟨NEWLINE⟩
When in ISO mode (see the Prolog flag iso), only skip this sequence. In native mode, white
space that follows the newline is skipped as well and a warning is printed, indicating that this
construct is deprecated and advising to use \c. We advise using \c or putting the layout
before the \, as shown below. Using \c is supported by various other Prolog implementations
and will remain supported by SWI-Prolog. The style shown below is the most compatible
solution.26

format(’This is a long line that looks better if it was \
split across multiple physical lines in the input’)

instead of
25Up to SWI-Prolog 6.1.9, undefined escape characters were copied verbatim, i.e., removing the backslash.
26Future versions will interpret \⟨return⟩ according to ISO.

SWI-Prolog 9.3 Reference Manual

2.15. THE SWI-PROLOG SYNTAX 81

format(’This is a long line that looks better if it was\
split across multiple physical lines in the input’)

Note that SWI-Prolog also allows unescaped newlines to appear in quoted material. This is not
allowed by the ISO standard, but used to be common practice before.

\e
Escape character (ASCII 27). Not ISO, but widely supported.

\f
Form-feed character.

\n
Next-line character.

\r
Carriage-return only (i.e., go back to the start of the line).

\s
Space character. Intended to allow writing 0’\s to get the character code of the space charac-
ter. Not ISO.

\t
Horizontal tab character.

\v
Vertical tab character (ASCII 11).

\xXX..\
Hexadecimal specification of a character. The closing \ is obligatory according to the ISO
standard, but optional in SWI-Prolog to enhance compatibility with the older Edinburgh stan-
dard. The code \xa\3 emits the character 10 (hexadecimal ‘a’) followed by ‘3’. Characters
specified this way are interpreted as Unicode characters. See also \u.

\uXXXX
Unicode character specification where the character is specified using exactly 4 hexadecimal
digits. This is an extension to the ISO standard, fixing two problems. First, where \x defines
a numeric character code, it doesn’t specify the character set in which the character should be
interpreted. Second, it is not needed to use the idiosyncratic closing \ ISO Prolog syntax.

\UXXXXXXXX
Same as \uXXXX, but using 8 digits to cover the whole Unicode set.

\40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications as well.

\\
Escapes the backslash itself. Thus, ’\\’ is an atom consisting of a single \.

SWI-Prolog 9.3 Reference Manual

82 CHAPTER 2. OVERVIEW

\’
Single quote. Note that ’\’’ and ’’’’ both describe the atom with a single ’, i.e.,
’\’’ == ’’’’ is true.

\"
Double quote.

\‘
Back quote.

Character escaping is only available if current prolog flag(character escapes, true)
is active (default). See current prolog flag/2. Character escapes conflict with writef/2
in two ways: \40 is interpreted as decimal 40 by writef/2, but as octal 40 (decimal 32)
by read. Also, the writef/2 sequence \l is illegal. It is advised to use the more widely
supported format/[2,3] predicate instead. If you insist upon using writef/2, either switch
character escapes to false, or use double \\, as in writef(’\\l’).

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as ⟨radix⟩’⟨number⟩, where ⟨radix⟩ is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using 0[bxo]⟨number⟩. For
example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

Using digit groups in large integers

SWI-Prolog supports splitting long integers into digit groups. Digit groups can be separated with
the sequence ⟨underscore⟩, ⟨optional white space⟩. If the ⟨radix⟩ is 10 or lower, they may also be
separated with exactly one space. The following all express the integer 1 million:

1_000_000
1 000 000
1_000_/*more*/000

Integers can be printed using this notation with format/2, using the ˜I format specifier. For exam-
ple:

?- format(’˜I’, [1000000]).
1_000_000

The current syntax has been proposed by Ulrich Neumerkel on the SWI-Prolog mailinglist.

Rational number syntax

As of version 8.1.22, SWI-Prolog supports rational numbers as a primary citizen atomic data type if
SWI-Prolog is compiled with the GMP library. This can be tested using the bounded Prolog flag. An

SWI-Prolog 9.3 Reference Manual

2.15. THE SWI-PROLOG SYNTAX 83

atomic type also requires a syntax. Unfortunately there are few options for adding rational numbers
without breaking the ISO standard.27

ECLiPSe and SWI-Prolog have agreed to define the canonical syntax for rational numbers to
be e.g., 1r3. In addition, ECLiPSe accepts 1 3 and SWI-Prolog can be asked to accept 1/3 us-
ing the module sensitive Prolog flag rational syntax, which has the values below. Note that
write canonical/1 always uses the compatible 1r3 syntax.

natural
This is the default mode where we ignore the ambiguity issue and follow the most natural
⟨integer⟩/⟨nonneg⟩ alternative. Here, ⟨integer⟩ follows the normal rules for Prolog decimal
integers and ⟨nonneg⟩ does the same, but does not allows for a sign. Note that the parser
translates a rational number to its canonical form which implies there are no common divisors
in the resulting numerator and denominator. Examples of ration numbers are:

1/2 1/2
2/4 1/2
1 000 000/33 000 1000/33
-3/5 -3/5

We expect very few programs to have text parsed into a rational number while a term was
expected. Note that for rationals appearing in an arithmetic expression the only difference is
that evaluation moves from runtime to compiletime. The utility list rationals/0 may
be used on a loaded program to check whether the program contains rational numbers inside
clauses and thus may be subject to compatibility issues. If a term is intended this can be written
as /(1,2), (1)/2, 1 / 2 or some variation thereof.

compatibility
Read and write rational numbers as e.g., 1r3. In other words, this adheres to the same rules as
natural above, but using the ‘r’ instead of ‘/’. Note that this may conflict with traditional
Prolog as ‘r’ can be defined as an infix operator. The same argument holds for 0x23 and
similar syntax for numbers that are part of the ISO standard.

While the syntax is controlled by the flag rational syntax, behavior on integer division
and exponentiation is controlled by the flag prefer rationals. See section section 4.27.2 for
arithmetic on rational numbers.

NaN and Infinity floats and their syntax

SWI-Prolog supports reading and printing ‘special’ floating point values according to Proposal for
Prolog Standard core update wrt floating point arithmetic by Joachim Schimpf and available in
ECLiPSe Prolog. In particular,

• Infinity is printed as 1.0Inf or -1.0Inf. Any sequence matching the regular expression
[+-]?\sd+[.]\sd+Inf is mapped to plus or minus infinity.

27ECLiPSe uses numerator denominator. This syntax conflicts with SWI-Prolog digit groups (see section 2.15.1) and
does not have a recognised link to rational numbers. The notation 1/3r and 1/3R have also been proposed. The 1/3r
is compatible to Ruby, but is hard to parse due to the required look-ahead and not very natural. See also https://en.
wikipedia.org/wiki/Rational_data_type.

SWI-Prolog 9.3 Reference Manual

http://eclipseclp.org/Specs/core_update_float.html
http://eclipseclp.org/Specs/core_update_float.html
https://en.wikipedia.org/wiki/Rational_data_type
https://en.wikipedia.org/wiki/Rational_data_type

84 CHAPTER 2. OVERVIEW

• NaN (Not a Number) is printed as 1.xxxNaN, where 1.xxx is the float after replacing the
exponent by ‘1’. Such numbers are read, resulting in the same NaN. The NaN constant can also
be produced using the function nan/0, e.g.,

?- A is nan.
A = 1.5NaN.

By default SWI-Prolog arithmetic (see section 4.27) follows the ISO standard with describes that
floating point operations either produce a normal floating point number or raise an exception. sec-
tion 4.27.2 describes the Prolog flags that can be used to support the IEEE special float values. The
ability to create, read and write such values facilitates the exchange of data with languages that can
represent the full range of IEEE doubles.

Force only underscore to introduce a variable

According to the ISO standard and most Prolog systems, identifiers that start with an uppercase letter
or an underscore are variables. In the past, Prolog by BIM provided an alternative syntax, where
only the underscore () introduces a variable. As of SWI-Prolog 7.3.27 SWI-Prolog supports this
alternative syntax, controlled by the Prolog flag var prefix. As the character escapes flag,
this flag is maintained per module, where the default is false, supporting standard syntax.

Having only the underscore introduce a variable is particularly useful if code contains identifiers
for case sensitive external languages. Examples are the RDF library where code frequently specifies
property and class names28 and the R interface for specifying functions or variables that start with an
uppercase character. Lexical databases where part of the terms start with an uppercase letter is another
category were the readability of the code improves using this option.

Unicode Prolog source

The ISO standard specifies the Prolog syntax in ASCII characters. As SWI-Prolog supports Unicode
in source files we must extend the syntax. This section describes the implication for the source files,
while writing international source files is described in section 3.1.3.

The SWI-Prolog Unicode character classification is currently based on version 14.0.0 of the Uni-
code standard. Please note that char type/2 and friends, intended to be used with all text except
Prolog source code, is based on the C library locale-based classification routines.

• Quoted atoms and strings
Any character of any script can be used in quoted atoms and strings. The escape sequences
\uXXXX and \UXXXXXXXX (see section 2.15.1) were introduced to specify Unicode code
points in ASCII files.

• Atoms and Variables
We handle them in one item as they are closely related. The Unicode standard defines a syntax
for identifiers in computer languages.29 In this syntax identifiers start with ID Start followed
by a sequence of ID Continue codes. Such sequences are handled as a single token in SWI-
Prolog. The token is a variable iff it starts with an uppercase character or an underscore ().

28Samer Abdallah suggested this feature based on experience with non-Prolog users using the RDF library.
29http://www.unicode.org/reports/tr31/

SWI-Prolog 9.3 Reference Manual

http://www.unicode.org/reports/tr31/

2.15. THE SWI-PROLOG SYNTAX 85

Otherwise it is an atom. Note that many languages do not have the notion of character case. In
such languages variables must be written as _name.

• Numbers
Decimal number characters (Nd) are accepted to form numbers, regardless of the Unicode
block in which they appear. Currently this is supported for integers, rational numbers (see
section 2.15.1) and floating point numbers. In any number, all digits must come from the same
block, i.e., if the nominator of a rational is uses Indian script, so must the denominator. All spe-
cial characters such as the sign, rational separator, floating point ., and floating point exponent
must use their usual ASCII character.

• White space
All characters marked as separators (Z*) in the Unicode tables are handled as layout characters.

• Control and unassigned characters
Control and unassigned (C*) characters produce a syntax error if encountered outside quoted
atoms/strings and outside comments. Quoted writing (e.g., writeq/1) of an atom or string
that contains one of these characters causes the atom or string to be quoted and the control or
unassigned characters to be written using an escape sequence. See section 2.15.1.

• Other characters
The first 128 characters follow the ISO Prolog standard. Unicode symbol and punctuation
characters (general category S* and P*) act as glueing symbol characters (i.e., just like ==: an
unquoted sequence of symbol characters are combined into an atom).

Other characters (this is mainly No: a numeric character of other type) are currently handled as
‘solo’.

Singleton variable checking

A singleton variable is a variable that appears only one time in a clause. It can always be replaced
by _, the anonymous variable. In some cases, however, people prefer to give the variable a name.
As mistyping a variable is a common mistake, Prolog systems generally give a warning (controlled
by style check/1) if a variable is used only once. The system can be informed that a variable is
meant to appear once by starting it with an underscore, e.g., _Name. Please note that any variable,
except plain _, shares with variables of the same name. The term t(_X, _X) is equivalent to
t(X, X), which is different from t(_, _).

As Unicode requires variables to start with an underscore in many languages, this schema has
been extended.30 First we define the two classes of named variables.

• Named singleton variables
Named singletons start with a double underscore (__) or a single underscore followed by an
uppercase letter, e.g., __var or _Var.

• Normal variables
All other variables are ‘normal’ variables. Note this makes _var a normal variable.31

30After a proposal by Richard O’Keefe.
31Some Prolog dialects write variables this way.

SWI-Prolog 9.3 Reference Manual

86 CHAPTER 2. OVERVIEW

Any normal variable appearing exactly once in the clause and any named singleton variables
appearing more than once are reported. Below are some examples with warnings in the right column.
Singleton messages can be suppressed using the style check/1 directive.

Finally, variables named _<digit> are never subject to style checking. These variable names
are emitted by write/1 and friends. This exception can also be used to pass singletons to debug/3.
Passing singletons to debug/3 is otherwise problematic as using a normal variable results in a sin-
gleton warning when optimization removes the debug/3 statement while using a named anonymous
variable results in a multiton warning. For example:

p(X) :-
q(X,_0Y),
debug(demo, ’q/2 says ˜p’, [_0Y]).

test().
test(a). Singleton variables: [a]
test(A). Singleton variables: [A]
test(12).
test(A).
test(a).
test(,).
test(a, a).
test(a, a). Singleton-marked variables appearing more than once: [a]
test(A, A). Singleton-marked variables appearing more than once: [A]
test(A, A).

Semantic singletons Starting with version 6.5.1, SWI-Prolog has syntactic singletons and seman-
tic singletons. The first are checked by read clause/3 (and read term/3 using the option
singletons(warning)). The latter are generated by the compiler for variables that appear alone in
a branch. For example, in the code below the variable X is not a syntactic singleton, but the variable
X does not communicate any bindings and replacing X with does not change the semantics.

test :-
(test_1(X)
; test_2(X)
).

2.16 Rational trees (cyclic terms)

SWI-Prolog supports rational trees, also known as cyclic terms. ‘Supports’ is so de-
fined that most relevant built-in predicates terminate when faced with rational trees. Al-
most all SWI-Prolog’s built-in term manipulation predicates process terms in a time that is
linear to the amount of memory used to represent the term on the stack. The follow-
ing set of predicates safely handles rational trees: =../2, ==/2, =@=/2, =/2, @</2,
@=</2, @>=/2, @>/2, \==/2, \=@=/2, \=/2, acyclic term/1, bagof/3, compare/3,

SWI-Prolog 9.3 Reference Manual

2.17. JUST-IN-TIME CLAUSE INDEXING 87

copy term/2, cyclic term/1, dif/2, duplicate term/2, findall/3, ground/1,
term hash/2, numbervars/3, numbervars/4, recorda/3, recordz/3, setof/3,
subsumes term/2, term variables/2, throw/1, unify with occurs check/2,
unifiable/3, when/2, write/1 (and related predicates) .

In addition, some built-ins recognise rational trees and raise an appropriate exception. Arithmetic
evaluation belongs to this group. The compiler (asserta/1, etc.) also raises an exception. Future
versions may support rational trees. Predicates that could provide meaningful processing of rational
trees raise a representation error. Predicates for which rational trees have no meaningful
interpretation raise a type error. For example:

1 ?- A = f(A), asserta(a(A)).
ERROR: asserta/1: Cannot represent due to ‘cyclic_term’
2 ?- A = 1+A, B is A.
ERROR: is/2: Type error: ‘expression’ expected, found

‘@(S_1,[S_1=1+S_1])’ (cyclic term)

2.17 Just-in-time clause indexing

SWI-Prolog provides ‘just-in-time’ indexing over multiple arguments. ‘Just-in-time’ means that
clause indexes are not built by the compiler (or asserta/1 for dynamic predicates), but on the
first call to such a predicate where an index might help (i.e., a call where at least one argument is
instantiated). This section describes the rules used by the indexing logic. Note that this logic is not
‘set in stone’. The indexing capabilities of the system will change. Although this inevitably leads to
some regressing on some particular use cases, we strive to avoid significant slowdowns.

The list below describes the clause selection process for various predicates and calls. The alterna-
tives are considered in the order they are presented.

• Special purpose code
Currently two special cases are recognised by the compiler: static code with exactly one clause
and static code with two clauses, one where some argument is the empty list ([]) and one where
the same argument is a non-empty list ([_|_]). Note that if this argument is an output argu-
ment, semantics are preserved, but efficiency suffers slightly. This slow-down can be avoided
using mode/1 to declare the argument as -.32

• Linear scan on primary index argument
The principal clause list maintains a key, normally for the first argument. An indexing key is
either a constant or a functor (name/arity reference). Calls with an instantiated primary index
argument and less than 10 clauses perform a linear scan for a possible matching clause using
this index key. If the result is deterministic it is used. Otherwise the system looks for better
indexes.33. The primary index argument is the first argument for which at least one of the
clauses has an indexable (nonvar) value for that argument.34

32Up to version 9.3.18, only the first argument was considered.
33Up to 7.7.2 this result was used also when non-deterministic.
34Up to version 9.3.18, the primary index was fixed to the first argument.

SWI-Prolog 9.3 Reference Manual

88 CHAPTER 2. OVERVIEW

• Hash lookup
If none of the above applies, the system considers the available hash tables for which the corre-
sponding argument is instantiated. If a table is found with acceptable characteristics, it is used.
Otherwise it assesses the clauses for all instantiated arguments and selects the best candidate
for creating a new hash table. If there is no single argument that provides an acceptable hash
quality it will search for a combination of arguments.35 Searching for index candidates is only
performed on the first 254 arguments.

If a single-argument index contains multiple compound terms with the same name and arity
and at least one non-variable argument, a list index is created. A subsequent query where this
argument is bound to a compound causes jiti indexing to be applied recursively on the arguments
of the term. This is called deep indexing.36 See also section 2.17.1

Clauses that have a variable at an otherwise indexable argument must be linked into all hash
buckets. Currently, predicates that have more than 10% such clauses for a specific argument are
not considered for indexing on that argument.

Disregarding variables, the suitability of an argument for hashing is expressed as the number of
unique indexable values divided by the standard deviation of the number of duplicate values for
each value plus one.37

The indexes of dynamic predicates are deleted if the number of clauses is doubled since
its creation or reduced below 1/4th. The JIT approach will recreate a suitable index on
the next call. Indexes of running predicates cannot be deleted. They are added to a ‘re-
moved index list’ associated to the predicate. Outdated indexes of predicates are reclaimed
by garbage collect clauses/0. The clause garbage collector is scheduled automati-
cally, based on time and space based heuristics. See garbage collect clauses/0 for
details.

The library prolog jiti provides jiti list/0,1 to list the characteristics of all or some of
the created hash tables.

Dynamic predicates are indexed using the same rules as static predicates, except that the special
purpose schemes are never applied. In addition, the JITI index is discarded if the number of clauses
has doubled since the predicate was last assessed or shrinks below one fourth. A subsequent call
reassesses the statistics of the dynamic predicate and, when applicable, creates a new index.

Jit indexing is controlled by a set of Prolog flags whose names starts with ci , e.g.,
ci min speedup. See current prolog flag/2.

2.17.1 Deep indexing

As introduced in section 2.17, deep indexing creates hash tables distinguish clauses that share a com-
pound with the same name and arity. Deep indexes allow for efficient lookup of arbitrary terms.
Without it is advised to flatten the term, i.e., turn F(X) into two arguments for the fact, one argument
denoting the functor F and the second the argument X. This works fine as long as the arity of the
each of the terms is the same. Alternatively we can use term hash/2 or term hash/4 to add a

35The last step was added in SWI-Prolog 7.5.8.
36Deep indexing was added in version 7.7.4.
37Earlier versions simply used the number of unique values, but poor distribution of values makes a table less suitable.

This was analysed by Fabien Noth and Günter Kniesel.

SWI-Prolog 9.3 Reference Manual

2.17. JUST-IN-TIME CLAUSE INDEXING 89

column holding the hash of the term. That approach can deal with arbitrary arities, but requires us
to know that the term is ground (term hash/2) or up to which depth we get sufficient selectivity
(term hash/4).

Deep indexing does not require this knowledge and leads to efficient lookup regardless of the
instantiation of the query and term. The current version does come with some limitations:

• The decision which index to use is taken independently at each level. Future versions may be
smarter on this.

• Deep indexing only applies to a single argument indexes (on any argument).

• Currently, the depth of indexing is limited to 7 levels.

Note that, when compiling DCGs (see section 4.13) and the first body term is a literal, it is
included into the clause head. See for example the grammar and its plain Prolog representation below.

det(det(a), sg) --> "a".
det(det(an), pl) --> "an".
det(det(the), _) --> "the".

?- listing(det).
det(det(a), sg, [97|A], A).
det(det(an), pl, [97, 110|A], A).
det(det(the), _, [116, 104, 101|A], A).

Deep argument indexing will create indexes for the 3rd list argument, providing speedup and making
clause selection deterministic if all rules start with a literal and all literals are unique in the first 6
elements. Note that deep index creation stops as soon as a deterministic choice can be made or there
are no two clauses that have the same name/arity combination.

2.17.2 Future directions

• The ‘special cases’ can be extended. This is notably attractive for static predicates with a
relatively small number of clauses where a hash lookup is too costly.

• Create an efficient decision diagram for selecting between low numbers of static clauses.

• Implement a better judgements for selecting between deep and plain indexes.

2.17.3 Indexing for body code

The current SWI-Prolog versions only consider the head for generating clause indexing. This would
make it impossible to examine a head argument and pass the argument in the body without copying
the argument. Consider the two clauses below. Both have equal semantics under Prolog. The first
version would loose clause indexing while the second creates a copy of the f/1 argument. Neither is
desirable.

p(X) :- X = f(I), integer(I), q(X).
p(f(I)) :- integer(I), q(f(X)).

SWI-Prolog 9.3 Reference Manual

90 CHAPTER 2. OVERVIEW

As of SWI-Prolog 8.3.21, unifications against head arguments that happen before anything else in
the body are compiled special. Effectively, the term unified too is moved into the head (providing
indexing) and places where this term is used simply use the corresponding argument. The explicit
unification is removed. Decompilation (clause/2) reverses this process, but may not produce ex-
actly the same term. The re-inserted unifications are ordered according to the argument position and
the variable is always on the left hand of the =/2. Thus,

p(X,Y) :- f(_) = Y, X = g(_), q(X,Y).

Is decompiled into the following equivalent clause.

p(X,Y) :- X = g(_), Y = f(_), q(X,Y).

Additional notes:

• This transformation is only performed on static code.

• The unifications must immediately follow the head in a conjunction.

• As sole exception, calls to true/0 are skipped. This allows goal expansion/2 to convert
goals to true while preserving this optimization.

• If the head argument is not used the body unification is still moved into the head. The decom-
piler does not inverse the process in that case. Thus, p(X) :- X = a. is fully equivalent to
p(a).

• Currently this optimisation is enabled regardless of the Prolog flag optimise. As this opti-
mization harms source-level debugging, this may not be desirable. On the other hand we do not
want determinism to depend on optimization while this optimization affects determinism.

2.17.4 Indexing and portability

The base-line functionality of Prolog implementations provides indexing on constants and functor
(name/arity) on the first argument. This must be your assumption if wide portability of your program
is important. This can typically be achieved by exploiting term hash/2 or term hash/4 and/or
maintaining multiple copies of a predicate with reordered arguments and wrappers that update all
implementations (assert/retract) and selects the appropriate implementation (query).

YAP provides full JIT indexing, including indexing arguments of compound terms. YAP’s index-
ing has been the inspiration for enhancing SWI-Prolog’s indexing capabilities.

2.18 Wide character support

SWI-Prolog represents characters using Unicode. Unicode defines code points in the range
0 . . . 0x10FFFF . These code points represent virtually any character in any language. In addi-
tion, the Unicode standard defines character classes (letter, digit, punctuation, etc.), case conversion
and much more. Unicode is a super set of ISO 8859-1 (ISO Latin-1), which is a superset of US-ASCII.

SWI-Prolog 9.3 Reference Manual

https://home.unicode.org

2.18. WIDE CHARACTER SUPPORT 91

SWI-Prolog has two representations for atoms and string objects (see section 5.2). If the text
fits in ISO Latin-1, it is represented as an array of 8-bit characters. Otherwise the text is rep-
resented as an array of wchar t characters. On virtually all systems except for MS-Windows,
wchar t is a 32-bit unsigned integer and thus capable of representing all Unicode code points.
On MS-Windows wchar t is a 16-bit unsigned integer and thus only capable of representing the
code points 0 . . . 0xFFFF . As of SWI-Prolog version 8.5.14, the wchar t is (on Windows) inter-
preted as a UTF-16 string. The UTF-16 encoding uses surrogate pairs to represent the code points
0x10000 . . . 0x10FFFF as two code units in the 0xD800 . . . 0xDFFF . As Unicode code points,
this range is unassigned. For consistency, SWI-Prolog does not accept integers in the surrogate pair
range as valid code points, e.g.

?- char_code(X, 0xD800).
ERROR: Type error: ‘character_code’ expected, found ‘55296’ (an integer)

The internal character representation is completely transparent to the Prolog user. Users of the foreign
language interface as described in chapter 12 sometimes need to be aware of these issues though.

Character coding comes into view when characters of strings need to be read from or written to
file or when they have to be communicated to other software components using the foreign language
interface. In this section we only deal with I/O through streams, which includes file I/O as well as I/O
through network sockets.

2.18.1 Wide character encodings on streams

Although characters are uniquely coded using the Unicode standard internally, streams and files are
byte (8-bit) oriented and there are a variety of ways to represent the larger Unicode codes in an 8-bit
octet stream. The most popular one, especially in the context of the web, is UTF-8. Bytes 0 . . . 127
represent simply the corresponding US-ASCII character, while bytes 128 . . . 255 are used for multi-
byte encoding of characters placed higher in the Unicode space. Especially on MS-Windows the
16-bit UTF-16 standard, represented by pairs of bytes, is also popular.

Prolog I/O streams have a property called encoding which specifies the used encoding that influ-
ences get code/2 and put code/2 as well as all the other text I/O predicates.

The default encoding for files is derived from the Prolog flag encoding, which is initialised from
setlocale(LC CTYPE, NULL) to one of text, utf8 or iso latin 1. One of the latter two
is used if the encoding name is recognized, while text is used as default. Using text, the translation
is left to the wide-character functions of the C library.38 The encoding can be specified explicitly in
load files/2 for loading Prolog source with an alternative encoding, open/4 when opening
files or using set stream/2 on any open stream. For Prolog source files we also provide the
encoding/1 directive that can be used to switch between encodings that are compatible with US-
ASCII (ascii, iso latin 1, utf8 and many locales). See also section 3.1.3 for writing Prolog
files with non-US-ASCII characters and section 2.15.1 for syntax issues. For additional information
and Unicode resources, please visit http://www.unicode.org/.

SWI-Prolog currently defines and supports the following encodings:

octet
Default encoding for binary streams. This causes the stream to be read and written fully
untranslated.

38The Prolog native UTF-8 mode is considerably faster than the generic mbrtowc() one.

SWI-Prolog 9.3 Reference Manual

http://www.unicode.org/

92 CHAPTER 2. OVERVIEW

ascii
7-bit encoding in 8-bit bytes. Equivalent to iso latin 1, but generates errors and warnings
on encountering values above 127.

iso latin 1
8-bit encoding supporting many Western languages. This causes the stream to be read and
written fully untranslated. The above is the SWI-Prolog native name. This encoding may be
specified using the official IANA name ISO-8859-1.

text
C library default locale encoding for text files. Files are read and written using the C library
functions mbrtowc() and wcrtomb(). This may be the same as one of the other encodings,
notably it may be the same as iso latin 1 for Western languages and utf8 in a UTF-8
context.

utf8
Multi-byte encoding of full Unicode, compatible with ascii. See above. The above is the
SWI-Prolog native name. This encoding may be specified using the official IANA name
UTF-8.

utf16be
utf16le

UTF-16 encoding. Reads input in pairs of bytes. utf16be is Big Endian, putting the most
significant byte first and utf16le is Little Endian, putting the most significant byte second.
UTF-16 can represent full Unicode using surrogate pairs. The above are the SWI-Prolog native
names. These encodings may be specified using the official IANA names UTF-16BE and
UTF-16LE. For backward compatibility we also support unicode be and unicode le.

Note that not all encodings can represent all characters. This implies that writing text to a stream
may cause errors because the stream cannot represent these characters. The behaviour of a stream
on these errors can be controlled using set stream/2. Initially the terminal stream writes the
characters using Prolog escape sequences while other streams generate an I/O exception.

BOM: Byte Order Mark

From section 2.18.1, you may have got the impression that text files are complicated. This section
deals with a related topic, making life often easier for the user, but providing another worry to the
programmer. BOM or Byte Order Marker is a technique for identifying Unicode text files as well as
the encoding they use. Such files start with the Unicode character 0xFEFF, a non-breaking, zero-width
space character. This is a pretty unique sequence that is not likely to be the start of a non-Unicode
file and uniquely distinguishes the various Unicode file formats. As it is a zero-width blank, it even
doesn’t produce any output. This solves all problems, or . . .

Some formats start off as US-ASCII and may contain some encoding mark to switch to UTF-8,
such as the encoding="UTF-8" in an XML header. Such formats often explicitly forbid the use
of a UTF-8 BOM. In other cases there is additional information revealing the encoding, making the
use of a BOM redundant or even illegal.

The BOM is handled by SWI-Prolog open/4 predicate. By default, text files are probed for the
BOM when opened for reading. If a BOM is found, the encoding is set accordingly and the property

SWI-Prolog 9.3 Reference Manual

https://www.iana.org
https://www.iana.org
https://www.iana.org

2.19. SYSTEM LIMITS 93

bom(true) is available through stream property/2. When opening a file for writing, writing a
BOM can be requested using the option bom(true) with open/4.

2.19 System limits

2.19.1 Limits on memory areas

The SWI-Prolog engine uses three stacks the local stack (also called environment stack) stores the
environment frames used to call predicates as well as choice points. The global stack (also called
heap) contains terms, floats, strings and large integers. Finally, the trail stack records variable bindings
and assignments to support backtracking. Except for available memory, there is no hard limit for the
sizes of the stacks.39

The combined stack size (per thread) has a soft limit implemented by the writeable flag
stack limit or the command line option --stack-limit. Currently the default limit is 1Gb.
Considering portability, applications that need to modify the default limits are advised to do so using
the Prolog flag stack limit.

The heap

With the heap, we refer to the memory area used by malloc() and friends. SWI-Prolog uses the
area to store atoms, functors, predicates and their clauses, records and other dynamic data. No limits
are imposed on the addresses returned by malloc() and friends.

2.19.2 Other Limits

Clauses The only limit on clauses is their arity (the number of arguments to the head), which is
limited to 1024. Raising this limit is easy and relatively cheap; removing it is harder.

Atoms and Strings SWI-Prolog has no limits on the length of atoms or strings. The number of
atoms is unlimited. Atoms are subject to garbage collection. See section 12.4.2. Both atoms
and strings can represent all Unicode code points, including 0 (\u0000). Currently, SWI-
Prolog uses a separate representation for ISO Latin 1 text (code points 0 . . . 255) and text that
includes higher code points. The latter is represented using the C wchar t type. On most
systems this implies UCS-4, i.e., 32-bit unsigned integers. On Windows wchar t uses UTF-
16, which implies that it cannot represent the code points reserved for surrogate pairs as single
code points. Future versions may switch to using UTF-8 throughout.

Nesting of terms Most built-in predicates that process Prolog terms create an explicitly managed
stack and perform optimization for processing the last argument of a term. This implies they
can process deeply nested terms at constant and low usage of the C stack, and the system raises
a resource error if no more stack can be allocated. Currently only read/1 and write/1 (and
all variations thereof) still use the C stack and may cause the system to crash in an uncontrolled
way (i.e., not mapped to a Prolog exception that can be caught).

39As of version 9.3.6. Older versions have a hard limit on 32-bit hardware of 128Mb for each stack.

SWI-Prolog 9.3 Reference Manual

94 CHAPTER 2. OVERVIEW

Area name Description
local stack The local stack is used to store

the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the al-
ternatives are cut off with the
!/0 predicate or no choice points
have been created since the invo-
cation and the last subclause is
started (last call optimisation).

global stack The global stack is used to
store terms, strings, big inte-
gers, rational numbers and float-
ing numbers created during Pro-
log’s execution. Data on this
stack is reclaimed by backtrack-
ing to a point before the data was
created or by garbage collection
(provided the data is no longer
referenced).

trail stack The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are no
longer needed.
As the trail and global stacks
are garbage collected together, a
small trail can cause an exces-
sive amount of garbage collec-
tions. To avoid this, the trail
is automatically resized to be at
least 1/6th of the size of the
global stack.

Table 2.2: Memory areas

SWI-Prolog 9.3 Reference Manual

2.20. SWI-PROLOG AND 32-BIT MACHINES 95

Integers SWI-Prolog has two integer representations. Tagged integers are currently limited to
57 bits.40 Unbounded integers are by default provided by the GNU GMP library. Alterna-
tively, they may be provided by the bundled LibBf library. The system can be built without
support for unbounded integers.

Floating point numbers Floating point numbers are represented as C-native double precision floats,
64-bit IEEE on most machines.

2.19.3 Reserved Names

The boot compiler (see -b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database keys, etc., that
should be hidden from the user start with a dollar ($) sign.

2.20 SWI-Prolog and 32-bit machines

Most today’s platforms are native 64 bit and 64 bit applications are to be preferred. The current
version of SWI-Prolog primarily targets 64 bit platforms. 32-bit platforms are still supported as they
are used on embedded devices and the WASM (Web Assembly, see section 13) still has poor support
for 64 bits.

While the (currently) stable 9.2 series still has a real 32 bit version were Prolog data structures
are based on 32 bit word units, the 9.3 development series represents all Prolog data as 64 bit units,
regardless of the hardware’s pointer size. This provides better uniformity and avoids the 128Mb stack
limit of the 32-bit 9.2 series.

Choices in the data representation such as the placement and number of tag bits are still based on
32-bit units. This is expected to change in due time, simplifying the code and improving performance.

2.21 Binary compatibility

SWI-Prolog first of all attempts to maintain source code compatibility between versions. Data and
programs can often be represented in binary form. This touches a number of interfaces with vary-
ing degrees of compatibility. The relevant version numbers and signatures are made available by
PL version info(), the --abi-version and the Prolog flag abi version.

Foreign extensions
Dynamically loadable foreign extensions have the usual dependencies on the architecture, ABI
model of the (C) compiler, dynamic link library format, etc. They also depend on the backward
compatibility of the PL * API functions provided lib libswipl.

A compatible API allows distribution of foreign extensions in binary form, notably for platforms
on which compilation is complicated (e.g., Windows). This compatibility is therefore high on
the priority list, but must infrequently be compromised.

PL version info(): PL VERSION FLI, abi version key: foreign interface

40Before version 9.3.6, tagged integers on 32-bit systems had 25 bits and there was a third representation for 64 bit
integers.

SWI-Prolog 9.3 Reference Manual

96 CHAPTER 2. OVERVIEW

Binary terms
Terms may be represented in binary format using PL record external() and
fast write/2. As these formats are used for storing binary terms in databases or
communicate terms between Prolog processes in binary form, great care is taken to maintain
compatibility.

PL version info(): PL VERSION REC, abi version key: record

QLF files
QLF files (see qcompile/1) are binary representation of Prolog file or module. They repre-
sent clauses as sequences of virtual machine (VM) instructions. Their compatibility relies on
the QLF file format and the ABI of the VM. Some care is taken to maintain compatibility.

PL version info(): PL VERSION QLF, PL VERSION QLF LOAD and
PL VERSION VM, abi version key: qlf, qlf min load, vmi

Saved states
Saved states (see -c and qsave program/2) is a zip file that contains the entire Prolog
database using the same representation as QLF files. A saved state may contain additional
resources, such as foreign extensions, data files, etc. In addition to the dependency concerns
of QLF files, built-in and core library predicates may call internal foreign predicates. The
interface between the public built-ins and internal foreign predicates changes frequently. Patch
level releases in the stable branch will as much as possible maintain compatibility.

The relevant ABI version keys are the same as for QLF files with one addition:
PL version info(): PL VERSION BUILT IN, abi version key: built in

SWI-Prolog 9.3 Reference Manual

Initialising and Managing a
Prolog Project 3
Prolog text-books give you an overview of the Prolog language. The manual tells you what predicates
are provided in the system and what they do. This chapter explains how to run a project. There is
no ultimate ‘right’ way to do this. Over the years we developed some practice in this area and SWI-
Prolog’s commands are there to support this practice. This chapter describes the conventions and
supporting commands.

The first two sections (section 3.1 and section 3.2) only require plain Prolog. The remainder
discusses the use of the built-in graphical tools that require the XPCE graphical library installed on
your system.

3.1 The project source files

Organisation of source files depends largely on the size of your project. If you are doing exercises for
a Prolog course you’ll normally use one file for each exercise. If you have a small project you’ll work
with one directory holding a couple of files and some files to link it all together. Even bigger projects
will be organised in sub-projects, each using its own directory.

3.1.1 File Names and Locations

File Name Extensions

The first consideration is what extension to use for the source files. Tradition calls for
.pl, but conflicts with Perl force the use of another extension on systems where ex-
tensions have global meaning, such as MS-Windows. On such systems .pro is the
common alternative. On MS-Windows, the alternative extension is stored in the reg-
istry key HKEY CURRENT USER/Software/SWI/Prolog/fileExtension or
HKEY LOCAL MACHINE/Software/SWI/Prolog/fileExtension. All versions of
SWI-Prolog load files with the extension .pl as well as with the registered alternative extension
without explicitly specifying the extension. For portability reasons we propose the following
convention:

If there is no conflict because you do not use a conflicting application or the system does not force
a unique relation between extension and application, use .pl.

With a conflict choose .pro and use this extension for the files you want to load through your file
manager. Use .pl for all other files for maximal portability.

Project Directories

Large projects are generally composed of sub-projects, each using its own directory or directory struc-
ture. If nobody else will ever touch your files and you use only one computer, there is little to worry

SWI-Prolog 9.3 Reference Manual

98 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

about, but this is rarely the case with a large project.
To improve portability, SWI-Prolog uses the POSIX notation for filenames, which uses the

forward slash (/) to separate directories. Just before reaching the file system, SWI-Prolog uses
prolog to os filename/2 to convert the filename to the conventions used by the hosting oper-
ating system. It is strongly advised to write paths using the /, especially on systems using the \ for
this purpose (MS-Windows). Using \ violates the portability rules and requires you to double the \
due to the Prolog quoted-atom escape rules.

Portable code should use prolog to os filename/2 to convert computed paths into system
paths when constructing commands for shell/1 and friends.

Sub-projects using search paths

Thanks to Quintus, Prolog adapted an extensible mechanism for searching files using
file search path/2. This mechanism allows for comfortable and readable specifications.

Suppose you have extensive library packages on graph algorithms, set operations and GUI primi-
tives. These sub-projects are likely candidates for re-use in future projects. A good choice is to create
a directory with sub-directories for each of these sub-projects.

Next, there are three options. One is to add the sub-projects to the directory hierarchy of the
current project. Another is to use a completely dislocated directory. Third, the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typical file search path/2 is:

:- prolog_load_context(directory, Dir),
asserta(user:file_search_path(myapp, Dir)).

user:file_search_path(graph, myapp(graph)).
user:file_search_path(ui, myapp(ui)).

When using sub-projects in the SWI-Prolog hierarchy, one should use the path alias swi as basis. For
a system-wide installation, use an absolute path.

Extensive sub-projects with a small well-defined API should define a load file with calls to
use module/1 to import the various library components and export the API.

3.1.2 Project Special Files

There are a number of tasks you typically carry out on your project, such as loading it, creating a
saved state, debugging it, etc. Good practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give it a file extension that makes
starting easy (see section 3.1.1). The task load is generally central to these tasks. Here is a tentative
list:

• load.pl
Use this file to set up the environment (Prolog flags and file search paths) and load the sources.
Quite commonly this file also provides convenient predicates to parse command line options
and start the application.

• run.pl
Use this file to start the application. Normally it loads load.pl in silent-mode, and calls one
of the starting predicates from load.pl.

SWI-Prolog 9.3 Reference Manual

3.2. USING MODULES 99

• save.pl
Use this file to create a saved state of the application by loading load.pl and calling
qsave program/2 to generate a saved state with the proper options.

• debug.pl
Loads the program for debugging. In addition to loading load.pl this file defines rules for
portray/1 to modify printing rules for complex terms and customisation rules for the debug-
ger and editing environment. It may start some of these tools.

3.1.3 International source files

As discussed in section 2.18, SWI-Prolog supports international character handling. Its internal en-
coding is UNICODE. I/O streams convert to/from this internal format. This section discusses the
options for source files not in US-ASCII.

SWI-Prolog can read files in any of the encodings described in section 2.18. Two encodings are of
particular interest. The text encoding deals with the current locale, the default used by this computer
for representing text files. The encodings utf8, unicode le and unicode be are UNICODE
encodings: they can represent—in the same file—characters of virtually any known language. In
addition, they do so unambiguously.

If one wants to represent non US-ASCII text as Prolog terms in a source file, there are several
options:

• Use escape sequences
This approach describes NON-ASCII as sequences of the form \octal\. The numerical argu-
ment is interpreted as a UNICODE character.1 The resulting Prolog file is strict 7-bit US-ASCII,
but if there are many NON-ASCII characters it becomes very unreadable.

• Use local conventions
Alternatively the file may be specified using local conventions, such as the EUC encoding for
Japanese text. The disadvantage is portability. If the file is moved to another machine, this
machine must use the same locale or the file is unreadable. There is no elegant way if files from
multiple locales must be united in one application using this technique. In other words, it is fine
for local projects in countries with uniform locale conventions.

• Using UTF-8 files
The best way to specify source files with many NON-ASCII characters is definitely the use of
UTF-8 encoding. Prolog can be notified of this encoding in two ways, using a UTF-8 BOM (see
section 2.18.1) or using the directive :- encoding(utf8). Many of today’s text editors,
including PceEmacs, are capable of editing UTF-8 files. Projects that were started using local
conventions can be re-coded using the Unix iconv tool or often using commands offered by
the editor.

3.2 Using modules

Modules have been debated fiercely in the Prolog world. Despite all counter-arguments we feel they
are extremely useful because:

1To my knowledge, the ISO escape sequence is limited to 3 octal digits, which means most characters cannot be repre-
sented.

SWI-Prolog 9.3 Reference Manual

100 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

• They hide local predicates
This is the reason they were invented in the first place. Hiding provides two features. They
allow for short predicate names without worrying about conflicts. Given the flat name-space in-
troduced by modules, they still require meaningful module names as well as meaningful names
for exported predicates.

• They document the interface
Possibly more important than avoiding name conflicts is their role in documenting which part
of the file is for public usage and which is private. When editing a module you may assume you
can reorganise anything except the name and the semantics of the exported predicates without
worrying.

• They help the editor
The PceEmacs built-in editor does on-the-fly cross-referencing of the current module, colouring
predicates based on their origin and usage. Using modules, the editor can quickly find out what
is provided by the imported modules by reading just the first term. This allows it to indicate in
real-time which predicates are not used or not defined.

Using modules is generally easy. Only if you write meta-predicates (predicates reasoning about
other predicates) that are exported from a module is a good understanding required of the resolution
of terms to predicates inside a module. Here is a typical example from readutil.

:- module(read_util,
[read_line_to_codes/2, % +Fd, -Codes

read_line_to_codes/3, % +Fd, -Codes, ?Tail
read_stream_to_codes/2, % +Fd, -Codes
read_stream_to_codes/3, % +Fd, -Codes, ?Tail
read_file_to_codes/3, % +File, -Codes, +Options
read_file_to_terms/3 % +File, -Terms, +Options

]).

3.3 The test-edit-reload cycle

SWI-Prolog does not enforce the use of a particular editor for writing Prolog source code. Editors are
complicated programs that must be mastered in detail for real productive programming. If you are
familiar with a specific editor you should not be forced to change. You may specify your favourite
editor using the Prolog flag editor, the environment variable EDITOR or by defining rules for
prolog edit:edit source/1.

The use of a built-in editor, which is selected by setting the Prolog flag editor to pce emacs,
has advantages. The XPCE editor object, around which the built-in PceEmacs is built, can be opened
as a Prolog stream allowing analysis of your source by the real Prolog system.

3.3.1 Locating things to edit

The central predicate for editing something is edit/1, an extensible front-end that searches for
objects (files, predicates, modules, as well as XPCE classes and methods) in the Prolog database.

SWI-Prolog 9.3 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 101

If multiple matches are found it provides a choice. Together with the built-in completion on atoms
bound to the TAB key this provides a quick way to edit objects:

?- edit(country).
Please select item to edit:

1 chat:country/10 ’/home/jan/.config/swi-prolog/lib/chat/countr.pl’:16
2 chat:country/1 ’/home/jan/.config/swi-prolog/lib/chat/world0.pl’:72

Your choice?

3.3.2 Editing and incremental compilation

One of the nice features of Prolog is that the code can be modified while the program is running.
Using pure Prolog you can trace a program, find it is misbehaving, enter a break environment, modify
the source code, reload it and finally do retry on the misbehaving predicate and try again. This
sequence is not uncommon for long-running programs. For faster programs one will normally abort
after understanding the misbehaviour, edit the source, reload it and try again.

One of the nice features of SWI-Prolog is the availability of make/0, a simple predicate that
checks all loaded source files to see which ones you have modified. It then reloads these files, consid-
ering the module from which the file was loaded originally. This greatly simplifies the trace-edit-verify
development cycle. For example, after the tracer reveals there is something wrong with prove/3,
you do:

?- edit(prove).

Now edit the source, possibly switching to other files and making multiple changes. After finishing,
invoke make/0, either through the editor UI (Compile/Make (Control-C Control-M)) or on
the top level, and watch the files being reloaded.2

?- make.
% show compiled into photo_gallery 0.03 sec, 3,360 bytes

3.4 Using the PceEmacs built-in editor

3.4.1 Activating PceEmacs

Initially edit/1 uses the editor specified in the EDITOR environment variable. There are two ways
to force it to use the built-in editor. One is to set the Prolog flag editor to pce emacs and the
other is by starting the editor explicitly using the emacs/[0,1] predicates.

2Watching these files is a good habit. If expected files are not reloaded you may have forgotten to save them from the
editor or you may have been editing the wrong file (wrong directory).

SWI-Prolog 9.3 Reference Manual

102 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.4.2 Bluffing through PceEmacs

PceEmacs closely mimics Richard Stallman’s GNU-Emacs commands, adding features from modern
window-based editors to make it more acceptable for beginners.3

At the basis, PceEmacs maps keyboard sequences to methods defined on the extended editor
object. Some frequently used commands are, with their key-binding, presented in the menu bar above
each editor window. A complete overview of the bindings for the current mode is provided through
Help/Show key bindings (Control-h Control-b).

Edit modes

Modes are the heart of (Pce)Emacs. Modes define dedicated editing support for a particular kind of
(source) text. For our purpose we want Prolog mode. There are various ways to make PceEmacs use
Prolog mode for a file.

• Using the proper extension
If the file ends in .pl or the selected alternative (e.g. .pro) extension, Prolog mode is selected.

• Using #!/path/to/.../swipl
If the file is a Prolog Script file, starting with the line #!/path/to/swipl options, Prolog
mode is selected regardless of the extension.

• Using -*- Prolog -*-
If the above sequence appears in the first line of the file (inside a Prolog comment) Prolog mode
is selected.

• Explicit selection
Finally, using File/Mode/Prolog you can switch to Prolog mode explicitly.

Frequently used editor commands

Below we list a few important commands and how to activate them.

• Cut/Copy/Paste
These commands follow Unix/X11 traditions. You’re best suited with a three-button mouse.
After selecting using the left-mouse (double-click uses word-mode and triple line-mode), the
selected text is automatically copied to the clipboard (X11 primary selection on Unix). Cut is
achieved using the DEL key or by typing something else at the location. Paste is achieved using
the middle-mouse (or wheel) button. If you don’t have a middle-mouse button, pressing the
left- and right-button at the same time is interpreted as a middle-button click. If nothing helps,
there is the Edit/Paste menu entry. Text is pasted at the caret location.

• Undo
Undo is bound to the GNU-Emacs Control- as well as the MS-Windows Control-Z sequence.

• Abort
Multi-key sequences can be aborted at any stage using Control-G.

3Decent merging with MS-Windows control-key conventions is difficult as many conflict with GNU-Emacs. Especially
the cut/copy/paste commands conflict with important GNU-Emacs commands.

SWI-Prolog 9.3 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 103

• Find
Find (Search) is started using Control-S (forward) or Control-R (backward). PceEmacs imple-
ments incremental search. This is difficult to use for novices, but very powerful once you get
the clue. After one of the above start keys, the system indicates search mode in the status line.
As you are typing the search string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green background.

If the target cannot be found, PceEmacs warns you and no longer extends the search string.4

During search, some characters have special meaning. Typing anything but these characters
commits the search, re-starting normal edit mode. Special commands are:

Control-S
Search forwards for next.

Control-R
Search backwards for next.

Control-W
Extend search to next word boundary.

Control-G
Cancel search, go back to where it started.

ESC
Commit search, leaving caret at found location.

Backspace
Remove a character from the search string.

• Dynamic Abbreviation
Also called dabbrev, dynamic abbreviation is an important feature of Emacs clones to support
programming. After typing the first few letters of an identifier, you may press Alt-/, causing
PceEmacs to search backwards for identifiers that start the same and use it to complete the text
you typed. A second Alt-/ searches further backwards. If there are no hits before the caret, it
starts searching forwards. With some practice, this system allows for entering code very fast
with nice and readable identifiers (or other difficult long words).

• Open (a file)
Is called File/Find file (Control-x Control-f). By default the file is loaded into the
current window. If you want to keep this window, press Alt-s or click the little icon at the
bottom left to make the window sticky.

• Split view
Sometimes you want to look at two places in the same file. To do this, use Control-x 2 to create
a new window pointing to the same file. Do not worry, you can edit as well as move around in
both. Control-x 1 kills all other windows running on the same file.

These are the most commonly used commands. In section 3.4.3 we discuss specific support for
dealing with Prolog source code.

4GNU-Emacs keeps extending the string, but why? Adding more text will not make it match.

SWI-Prolog 9.3 Reference Manual

104 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.4.3 Prolog Mode

In the previous section (section 3.4.2) we explained the basics of PceEmacs. Here we continue with
Prolog-specific functionality. Possibly the most interesting is Syntax highlighting. Unlike most editors
where this is based on simple patterns, PceEmacs syntax highlighting is achieved by Prolog itself ac-
tually reading and interpreting the source as you type it. There are three moments at which PceEmacs
checks (part of) the syntax.

• After typing a .
After typing a . that is not preceded by a symbol character, the system assumes you completed
a clause, tries to find the start of this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given below. Colouring is done using
information from the last full check on this file. If it fails, the syntax error is displayed in the
status line and the clause is not coloured.

• After the command Control-c Control-s
Acronym for Check Syntax, it performs the same checks as above for the clause surrounding
the caret. On a syntax error, however, the caret is moved to the expected location of the error.5

• After pausing for two seconds
After a short pause (2 seconds), PceEmacs opens the edit buffer and reads it as a whole, creating
an index of defined, called, dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid syntax.

• After typing Control-l Control-l
The Control-l command re-centers the window (scrolls the window to make the caret the center
of the window). Typing this command twice starts the same process as above.

The colour schema itself is defined in emacs/prolog colour. The colouring can be extended
and modified using multifile predicates. Please check this source file for details. In general, underlined
objects have a popup (right-mouse button) associated with common commands such as viewing the
documentation or source. Bold text is used to indicate the definition of objects (typically predicates
when using plain Prolog). Other colours follow intuitive conventions. See table 3.4.3.

Layout support Layout is not ‘just nice’, it is essential for writing readable code. There is much
debate on the proper layout of Prolog. PceEmacs, being a rather small project, supports only one
particular style for layout.6 Below are examples of typical constructs.

head(arg1, arg2).

head(arg1, arg2) :- !.

head(Arg1, arg2) :- !,
call1(Arg1).

head(Arg1, arg2) :-

5In most cases the location where the parser cannot proceed is further down the file than the actual error location.
6Defined in Prolog in the file emacs/prolog mode, you may wish to extend this. Please contribute your extensions!

SWI-Prolog 9.3 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 105

Clauses
Blue bold Head of an exported predicate
Red bold Head of a predicate that is not called
Black bold Head of remaining predicates

Calls in the clause body
Blue Call to built-in or imported predicate
Red Call to undefined predicate
Purple Call to dynamic predicate

Other entities
Dark green Comment
Dark blue Quoted atom or string
Brown Variable

Table 3.1: Colour conventions

(if(Arg1)
-> then
; else
).

head(Arg1) :-
(a
; b
).

head :-
a(many,
long,
arguments(with,

many,
more),

and([a,
long,
list,
with,
a,

| tail
])).

PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents the current line according
to the syntax rules. Alt-q indents all lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument lists broken across multiple lines as illustrated
above.

SWI-Prolog 9.3 Reference Manual

106 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Finding your way around

The command Alt-. extracts name and arity from the caret location and jumps (after conformation
or edit) to the definition of the predicate. It does so based on the source-location database of loaded
predicates also used by edit/1. This makes locating predicates reliable if all sources are loaded and
up-to-date (see make/0).

In addition, references to files in use module/[1,2], consult/1, etc. are red if the file can-
not be found and underlined blue if the file can be loaded. A popup allows for opening the referenced
file.

3.5 The Graphical Debugger

SWI-Prolog offers two debuggers. One is the traditional text console-based 4-port Prolog tracer and
the other is a window-based source level debugger. The window-based debugger requires XPCE
installed. It operates based on the prolog trace interception/4 hook and other low-level
functionality described in chapter B.

Window-based tracing provides a much better overview due to the eminent relation to your source
code, a clear list of named variables and their bindings as well as a graphical overview of the call and
choice point stack. There are some drawbacks though. Using a textual trace on the console, one can
scroll back and examine the past, while the graphical debugger just presents a (much better) overview
of the current state.

3.5.1 Invoking the window-based debugger

Whether the text-based or window-based debugger is used is controlled using the predicates
guitracer/0 and noguitracer/0. Entering debug mode is controlled using the normal pred-
icates for this: trace/0 and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control-c b) to insert a break-point at a specific location in the source code.

The graphical tracer is particularly useful for debugging threads. The tracer must be loaded from
the main thread before it can be used from a background thread.

guitracer
This predicate installs the above-mentioned hooks that redirect tracing to the window-based
environment. No window appears. The debugger window appears as actual tracing is started
through trace/0, by hitting a spy point defined by spy/1 or a break point defined using the
PceEmacs command Prolog/Break at (Control-c b).

noguitracer
Disable the hooks installed by guitracer/0, reverting to normal text console-based tracing.

gtrace
Utility defined as guitracer,trace.

gdebug
Utility defined as guitracer,debug.

gspy(+Predicate)
Utility defined as guitracer,spy(Predicate).

SWI-Prolog 9.3 Reference Manual

3.6. THE PROLOG NAVIGATOR 107

3.6 The Prolog Navigator

Another tool is the Prolog Navigator. This tool can be started from PceEmacs using the command
Browse/Prolog navigator, from the GUI debugger or using the programmatic IDE interface de-
scribed in section 3.8.

3.7 Cross-referencer

A cross-referencer is a tool that examines the caller-callee relation between predicates, and, using this
information to explicate dependency relations between source files, finds calls to non-existing pred-
icates and predicates for which no callers can be found. Cross-referencing is useful during program
development, reorganisation, clean-up, porting and other program maintenance tasks. The dynamic
nature of Prolog makes the task non-trivial. Goals can be created dynamically using call/1 after
construction of a goal term. Abstract interpretation can find some of these calls, but they can also come
from external communication, making it impossible to predict the callee. In other words, the cross-
referencer has only partial understanding of the program, and its results are necessarily incomplete.
Still, it provides valuable information to the developer.

SWI-Prolog’s cross-referencer is split into two parts. The standard Prolog library prolog xref
is an extensible library for information gathering described in section A.44, and the XPCE library
pce xref provides a graphical front-end for the cross-referencer described here. We demonstrate
the tool on CHAT80, a natural language question and answer system by Fernando C.N. Pereira and
David H.D. Warren.

gxref
Run cross-referencer on all currently loaded files and present a graphical overview of the result.
As the predicate operates on the currently loaded application it must be run after loading the
application.

The left window (see figure 3.1) provides browsers for loaded files and predicates. To avoid
long file paths, the file hierarchy has three main branches. The first is the current directory hold-
ing the sources. The second is marked alias, and below it are the file-search-path aliases (see
file search path/2 and absolute file name/3). Here you find files loaded from the sys-
tem as well as modules of the program loaded from other locations using the file search path. All
loaded files that fall outside these categories are below the last branch called /. Files where the
system found suspicious dependencies are marked with an exclamation mark. This also holds for
directories holding such files. Clicking on a file opens a File info window in the right pane.

The File info window shows a file, its main properties, its undefined and not-called predicates and
its import and export relations to other files in the project. Both predicates and files can be opened
by clicking on them. The number of callers in a file for a certain predicate is indicated with a blue
underlined number. A left-click will open a list and allow editing the calling predicate.

The Dependencies (see figure 3.2) window displays a graphical overview of dependencies be-
tween files. Using the background menu a complete graph of the project can be created. It is also
possible to drag files onto the graph window and use the menu on the nodes to incrementally expand
the graph. The underlined blue text indicates the number of predicates used in the destination file.
Left-clicking opens a menu to open the definition or select one of the callers.

SWI-Prolog 9.3 Reference Manual

108 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Figure 3.1: File info for chattop.pl, part of CHAT80

Figure 3.2: Dependencies between source files of CHAT80

SWI-Prolog 9.3 Reference Manual

3.8. ACCESSING THE IDE FROM YOUR PROGRAM 109

Module and non-module files The cross-referencer threads module and non-module project files
differently. Module files have explicit import and export relations and the tool shows the usage and
consistency of the relations. Using the Header menu command, the tool creates a consistent import
list for the module that can be included in the file. The tool computes the dependency relations
between the non-module files. If the user wishes to convert the project into a module-based one,
the Header command generates an appropriate module header and import list. Note that the cross-
referencer may have missed dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.

Settings The following settings can be controlled from the settings menu:

Warn autoload
By default disabled. If enabled, modules that require predicates to be autoloaded are flagged
with a warning and the file info window of a module shows the required autoload predicates.

Warn not called
If enabled (default), the file overview shows an alert icon for files that have predicates that are
not called.

3.8 Accessing the IDE from your program

Over the years a collection of IDE components have been developed, each with its own interface.
In addition, some of these components require each other, and loading IDE components must be on
demand to avoid the IDE being part of a saved state (see qsave program/2). For this reason,
access to the IDE is concentrated on a single interface called prolog ide/1:

prolog ide(+Action)
This predicate ensures the IDE-enabling XPCE component is loaded, creates the XPCE class
prolog ide and sends Action to its one and only instance @prolog_ide. Action is one of the
following:

open navigator(+Directory)
Open the Prolog Navigator (see section 3.6) in the given Directory.

open debug status
Open a window to edit spy and trace points.

open query window
Open a little window to run Prolog queries from a GUI component.

thread monitor
Open a graphical window indicating existing threads and their status.

debug monitor
Open a graphical front-end for the debug library that provides an overview of the topics
and catches messages.

xref
Open a graphical front-end for the cross-referencer that provides an overview of predicates
and their callers.

SWI-Prolog 9.3 Reference Manual

110 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.9 Summary of the IDE

The SWI-Prolog development environment consists of a number of interrelated but not (yet) integrated
tools. Here is a list of the most important features and tips.

• Atom completion
The console7 completes a partial atom on the TAB key and shows alternatives on the command
Alt-?.

• Use edit/1 for finding locations
The command edit/1 takes the name of a file, module, predicate or other entity registered
through extensions and starts the user’s preferred editor at the right location.

• Select editor
External editors are selected using the EDITOR environment variable, by setting the Prolog flag
editor, or by defining the hook prolog edit:edit source/1.

• Update Prolog after editing
Using make/0, all files you have edited are re-loaded.

• PceEmacs
Offers syntax highlighting and checking based on real-time parsing of the editor’s buffer, layout
support and navigation support.

• Using the graphical debugger
The predicates guitracer/0 and noguitracer/0 switch between traditional text-based
and window-based debugging. The tracer is activated using the trace/0, spy/1 or menu
items from PceEmacs or the Prolog Navigator.

• The Prolog Navigator
Shows the file structure and structure inside the file. It allows for loading files, editing, setting
spy points, etc.

7On Windows this is realised by swipl-win.exe, on Unix through the GNU readline library, which is included automati-
cally when found by configure.

SWI-Prolog 9.3 Reference Manual

Built-in Predicates 4
4.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First, the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a mode indicator.

4.1.1 The argument mode indicator

An argument mode indicator gives information about the intended direction in which information
carried by a predicate argument is supposed to flow. Mode indicators (and types) are not a formal
part of the Prolog language but help in explaining intended semantics to the programmer. There is
no complete agreement on argument mode indicators in the Prolog community. We use the following
definitions:1

1These definitions are taken from the PlDoc markup language description. PldDoc markup is used for source code
markup (as well as for the commenting tool). The current manual has only one mode declaration per predicate and therefore
predicates with mode (+,-) and (-,+) are described as (?,?). The @-mode is often replaced by
chr+.

SWI-Prolog 9.3 Reference Manual

112 CHAPTER 4. BUILT-IN PREDICATES

++ At call time, the argument must be ground, i.e., the argument may not
contain any variables that are still unbound.

+ At call time, the argument must be instantiated to a term satisfying
some (informal) type specification. The argument need not necessar-
ily be ground. For example, the term [] is a list, although its only
member is the anonymous variable, which is always unbound (and thus
nonground).

- Argument is an output argument. It may or may not be bound at
call-time. If the argument is bound at call time, the goal behaves as
if the argument were unbound, and then unified with that term after
the goal succeeds. This is what is called being steadfast: instantia-
tion of output arguments at call-time does not change the semantics of
the predicate, although optimizations may be performed. For example,
the goal findall(X, Goal, [T]) is good style and equivalent to
findall(X, Goal, Xs), Xs = [T]2 Note that any determin-
ism specification, e.g., det, only applies if the argument is unbound.
For the case where the argument is bound or involved in constraints,
det effectively becomes semidet, and multi effectively becomes
nondet.

-- At call time, the argument must be unbound. This is typically used by
predicates that create ‘something’ and return a handle to the created
object, such as open/3, which creates a stream.

? At call time, the argument must be bound to a partial term (a
term which may or may not be ground) satisfying some (infor-
mal) type specification. Note that an unbound variable is a par-
tial term. Think of the argument as either providing input or ac-
cepting output or being used for both input and output. For ex-
ample, in stream property(S, reposition(Bool)), the
reposition part of the term provides input and the unbound-at-call-
time Bool variable accepts output.

: Argument is a meta-argument, for example a term that can be called as
goal. The predicate is thus a meta-predicate. This flag implies +.

@ Argument will not be further instantiated than it is at call-time. Typi-
cally used for type tests.

! Argument contains a mutable structure that may be modified using
setarg/3 or nb setarg/3.

See also section 4.8 for examples of meta-predicates, and section 6.5 for mode flags to label
meta-predicate arguments in module export declarations.

4.1.2 Predicate indicators

Referring to a predicate in running text is done using a predicate indicator. The canonical and most
generic form of a predicate indicator is a term [⟨module⟩:]⟨name⟩/⟨arity⟩. The module is generally
omitted if it is irrelevant (case of a built-in predicate) or if it can be inferred from context.

SWI-Prolog 9.3 Reference Manual

4.2. CHARACTER REPRESENTATION 113

Non-terminal indicators

Compliant to the ISO standard draft on Definite Clause Grammars (see section 4.13), SWI-Prolog also
allows for the non-terminal indicator to refer to a DCG grammar rule. The non-terminal indicator is
written as [⟨module⟩]:⟨name⟩//⟨arity⟩.

A non-terminal indicator ⟨name⟩//⟨arity⟩ is understood to be equivalent to ⟨name⟩/⟨arity⟩+2,
regardless of whether or not the referenced predicate is defined or can be used as a grammar rule.3

The //-notation can be used in all places that traditionally allow for a predicate indicator, e.g., the
module declaration, spy/1, and dynamic/1.

4.1.3 Predicate behaviour and determinism

To describe the general behaviour of a predicate, the following vocabulary is employed. In source
code, structured comments contain the corresponding keywords:

det A deterministic predicate always succeeds exactly once and does not
leave a choicepoint.

semidet A semi-deterministic predicate succeeds at most once. If it succeeds it
does not leave a choicepoint.

nondet A non-deterministic predicate is the most general case and no claims
are made on the number of solutions (which may be zero, i.e., the pred-
icate may fail) and whether or not the predicate leaves an choicepoint
on the last solution.

multi As nondet, but succeeds at least once.
undefined Well founded semantics third value. See undefined/0.

4.2 Character representation

In traditional (Edinburgh) Prolog, characters are represented using character codes. Character codes
are integer indices into a specific character set. Traditionally the character set was 7-bit US-ASCII.
8-bit character sets have been allowed for a long time, providing support for national character sets,
of which iso-latin-1 (ISO 8859-1) is applicable to many Western languages.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (see open/4). These types are:

• code
A character code is an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text file is in general not the same as reading a byte.

• char
Alternatively, characters may be represented as one-character atoms. This is a natural repre-
sentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

3This, however, makes a specific assumption about the implementation of DCG rules, namely that DCG rules are pre-
processed into standard Prolog rules taking two additional arguments, the input list and the output list, in accumulator style.
This need not be true in all implementations.

SWI-Prolog 9.3 Reference Manual

114 CHAPTER 4. BUILT-IN PREDICATES

• byte
Bytes are used for accessing binary streams.

In SWI-Prolog, character codes are always the Unicode equivalent of the encoding. That is,
if get code/1 reads from a stream encoded as KOI8-R (used for the Cyrillic alphabet), it re-
turns the corresponding Unicode code points. Similarly, assembling or disassembling atoms using
atom codes/2 interprets the codes as Unicode points. See section 2.18.1 for details.

To ease the pain of the two character representations (code and char), SWI-Prolog’s built-in predi-
cates dealing with character data work as flexible as possible: they accept data in any of these formats
as long as the interpretation is unambiguous. In addition, for output arguments that are instantiated,
the character is extracted before unification. This implies that the following two calls are identical,
both testing whether the next input character is an a.

peek_code(Stream, a).
peek_code(Stream, 97).

The two character representations are handled by a large number of built-in predicates,
all of which are ISO-compatible. For converting between code and character there is
char code/2. For breaking atoms and numbers into characters there are atom chars/2,
atom codes/2, number chars/2 and number codes/2. For character I/O on streams
there are get char/[1,2], get code/[1,2], get byte/[1,2], peek char/[1,2],
peek code/[1,2], peek byte/[1,2], put code/[1,2], put char/[1,2] and
put byte/[1,2]. The Prolog flag double quotes controls how text between double quotes is
interpreted.

4.3 Loading Prolog source files

This section deals with loading Prolog source files. A Prolog source file is a plain text file containing
a Prolog program or part thereof. Prolog source files come in three flavours:

A traditional Prolog source file contains Prolog clauses and directives, but no module declara-
tion (see module/1). They are normally loaded using consult/1 or ensure loaded/1.
Currently, a non-module file can only be loaded into a single module.4

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module, and only the exported predicates are made available to the context
loading the module. Module files are normally loaded with use module/[1,2]. See chap-
ter 6 for details.

An include Prolog source file is loaded using the include/1 directive, textually including Prolog
text into another Prolog source. A file may be included into multiple source files and is typically
used to share declarations such as multifile or dynamic between source files.

Prolog source files are located using absolute file name/3 with the following options:

4This limitation may be lifted in the future. Existing limitations in SWI-Prolog’s source code administration make this
non-trivial.

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 115

locate_prolog_file(Spec, Path) :-
absolute_file_name(Spec,

[file_type(prolog),
access(read)

],
Path).

The file type(prolog) option is used to determine the extension of the file using
prolog file type/2. The default extension is .pl. Spec allows for the path alias construct de-
fined by absolute file name/3. The most commonly used path alias is library(LibraryFile).
The example below loads the library file ordsets.pl (containing predicates for manipulating or-
dered sets).

:- use_module(library(ordsets)).

SWI-Prolog recognises grammar rules (DCG) as defined in [Clocksin & Melish, 1987]. The user
may define additional compilation of the source file by defining the dynamic multifile predicates
term expansion/2, term expansion/4, goal expansion/2 and goal expansion/4.
It is not allowed to use assert/1, retract/1 or any other database predicate in
term expansion/2 other than for local computational purposes.5 Code that needs to create ad-
ditional clauses must use compile aux clauses/1. See library(apply macros) for an
example.

A directive is an instruction to the compiler. Directives are used to set (predicate) properties (see
section 4.15), set flags (see set prolog flag/2) and load files (this section). Directives are terms
of the form :- ⟨term⟩.. Here are some examples:

:- use_module(library(lists)).
:- dynamic

store/2. % Name, Value

The directive initialization/1 can be used to run arbitrary Prolog goals. The specified goal is
started after loading the file in which it appears has completed.

SWI-Prolog compiles code as it is read from the file, and directives are executed as goals. This
implies that directives may call any predicate that has been defined before the point where the directive
appears. It also accepts ?- ⟨term⟩. as a synonym.

SWI-Prolog does not have a separate reconsult/1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

Advanced topics are handled in subsequent sections: mutually dependent files (section 4.3.2),
multithreaded loading (section 4.3.2) and reloading running code (section 4.3.2).

The core of the family of loading predicates is load files/2. The predicates consult/1,
ensure loaded/1, use module/1, use module/2 and reexport/1 pass the file argument
directly to load files/2 and pass additional options as expressed in the table 4.1:

5It does work for normal loading, but not for qcompile/1.

SWI-Prolog 9.3 Reference Manual

116 CHAPTER 4. BUILT-IN PREDICATES

Predicate if must be module import
consult/1 true false all
ensure loaded/1 not loaded false all
use module/1 not loaded true all
use module/2 not loaded true specified
reexport/1 not loaded true all
reexport/2 not loaded true specified

Table 4.1: Properties of the file-loading predicates. The import column specifies what is imported if
the loaded file is a module file.

load files(:Files)
Equivalent to load files(Files, []). Same as consult/1, See load files/2 for sup-
ported options.

load files(:Files, +Options)
The predicate load files/2 is the parent of all the other loading predicates except for
include/1. It currently supports a subset of the options of Quintus load files/2. Files
is either a single source file or a list of source files. The specification for a source file is handed
to absolute file name/2. See this predicate for the supported expansions. Options is a
list of options using the format OptionName(OptionValue).

The following options are currently supported:

autoload(Bool)
If true (default false), indicate that this load is a demand load. This implies that,
depending on the setting of the Prolog flag verbose autoload, the load action is
printed at level informational or silent. See also print message/2 and
current prolog flag/2.

check script(Bool)
If false (default true), do not check the first character to be # and skip the first line
when found.

derived from(File)
Indicate that the loaded file is derived from File. Used by make/0 to time-check and
load the original file rather than the derived file.

dialect(+Dialect)
Load Files with enhanced compatibility with the target Prolog system identified by Di-
alect. See expects dialect/1 and section C for details.

encoding(Encoding)
Specify the way characters are encoded in the file. Default is taken from the Prolog flag
encoding. See section 2.18.1 for details.

expand(Bool)
If true, run the filenames through expand file name/2 and load the returned files.
Default is false, except for consult/1 which is intended for interactive use. Flexible
location of files is defined by file search path/2.

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 117

format(+Format)
Used to specify the file format if data is loaded from a stream using the stream(Stream)
option. Default is source, loading Prolog source text. If qlf, load QLF data (see
qcompile/1).

if(Condition)
Load the file only if the specified condition is satisfied. The value true loads the file
unconditionally, changed loads the file if it was not loaded before or has been modified
since it was loaded the last time, not loaded loads the file if it was not loaded before,
and exists is as changed, but the call load files/2 silently if the file does not
exist.

imports(Import)
Specify what to import from the loaded module. The default for use module/1 is
all. Import is passed from the second argument of use module/2. Traditionally it is
a list of predicate indicators to import. As part of the SWI-Prolog/YAP integration, we
also support “Pred as Name” to import a predicate under another name. Finally, Import
can be the term except(Exceptions), where Exceptions is a list of predicate indicators
that specify predicates that are not imported or Pred as Name terms to denote renamed
predicates. See also reexport/2 and use module/2.6

If Import equals all, all operators are imported as well. Otherwise, operators are not
imported. Operators can be imported selectively by adding terms op(Pri,Assoc,Name) to
the Import list. If such a term is encountered, all exported operators that unify with this
term are imported. Typically, this construct will be used with all arguments unbound to
import all operators or with only Name bound to import a particular operator.

modified(TimeStamp)
Claim that the source was loaded at TimeStamp without checking the source. This option
is intended to be used together with the stream(Input) option, for example after
extracting the time from an HTTP server or database.

module(+Module)
Load the indicated file into the given module, overruling the module name specified in
the :- module(Name, ...) directive. This currently serves two purposes: (1) allow
loading two module files that specify the same module into the same process and force
and (2): force loading source code in a specific module, even if the code provides its own
module name. Experimental.

must be module(Bool)
If true, raise an error if the file is not a module file. Used by use module/[1,2].

qcompile(Atom)
How to deal with quick-load-file compilation by qcompile/1. Values are:

never
Default. Do not use qcompile unless called explicitly.

auto
Use qcompile for all writeable files. See comment below.

6BUG: Name/Arity as NewName is currently implemented using a link clause. This harms efficiency and does not allow
for querying the relation through predicate property/2.

SWI-Prolog 9.3 Reference Manual

118 CHAPTER 4. BUILT-IN PREDICATES

large
Use qcompile if the file is ‘large’. Currently, files larger than 100 Kbytes are consid-
ered large.

part
If load files/2 appears in a directive of a file that is compiled into Quick Load
Format using qcompile/1, the contents of the argument files are included in the
.qlf file instead of the loading directive.

If this option is not present, it uses the value of the Prolog flag qcompile as default.

optimise(+Boolean)
Explicitly set the optimization for compiling this module. See optimise.

redefine module(+Action)
Defines what to do if a file is loaded that provides a module that is already loaded from
another file. Action is one of false (default), which prints an error and refuses to load
the file, or true, which uses unload file/1 on the old file and then proceeds loading
the new file. Finally, there is ask, which starts interaction with the user. ask is only
provided if the stream user input is associated with a terminal.

reexport(Bool)
If true re-export the imported predicate. Used by reexport/1 and reexport/2.

register(Bool)
If false, do not register the load location and options. This option is used by
make/0 and load hotfixes/1 to avoid polluting the load-context database. See
source file property/2.

sandboxed(Bool)
Load the file in sandboxed mode. This option controls the flag sandboxed load. The
only meaningful value for Bool is true. Using false while the Prolog flag is set to
true raises a permission error.

scope settings(Bool)
Scope style check/1 and expects dialect/1 to the file and files loaded from
the file after the directive. Default is true. The system and user initialization files (see
-f and -F) are loading with scope settings(false).

silent(Bool)
If true, load the file without printing a message. The specified value is the default for
all files loaded as a result of loading the specified files. This option writes the Prolog flag
verbose load with the negation of Bool.

stream(Input)
This SWI-Prolog extension compiles the data from the stream Input. If this option is
used, Files must be a single atom which is used to identify the source location of the
loaded clauses as well as to remove all clauses if the data is reconsulted.
This option is added to allow compiling from non-file locations such as databases, the
web, the user (see consult/1) or other servers. It can be combined with format(qlf)
to load QLF data from a stream.

The load files/2 predicate can be hooked to load other data or data from objects other than
files. See prolog load file/2 for a description and http/http load for an example.
All hooks for load files/2 are documented in section B.10.

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 119

consult(:File)
Read File as a Prolog source file. Calls to consult/1 may be abbreviated by just typing a
number of filenames in a list. Examples:

?- consult(load). % consult load or load.pl
?- [library(lists)]. % load library lists
?- [user]. % Type program on the terminal

The predicate consult/1 is equivalent to load_files(File, []), except for handling
the special file user, which reads clauses from the terminal. See also the stream(Input)
option of load files/2. Abbreviation using ?- [file1,file2]. does not work for
the empty list ([]). This facility is implemented by defining the list as a predicate. Applications
may only rely on using the list abbreviation at the Prolog toplevel and in directives.

ensure loaded(:File)
If the file is not already loaded, this is equivalent to consult/1. Otherwise, if the file defines
a module, import all public predicates. Finally, if the file is already loaded, is not a module
file, and the context module is not the global user module, ensure loaded/1 will call
consult/1.

With this semantics, we hope to get as close as possible to the clear semantics with-
out the presence of a module system. Applications using modules should consider using
use module/[1,2].

Equivalent to load_files(Files, [if(not_loaded)]).7

include(+File) [ISO]

Textually include the content of File at the position where the directive
:- include(File). appears. The include construct is only honoured if it appears
as a directive in a source file. Textual include (similar to C/C++ #include) is obviously useful
for sharing declarations such as dynamic/1 or multifile/1 by including a file with
directives from multiple files that use these predicates.

Textually including files that contain clauses is less obvious. Normally, in SWI-Prolog, clauses
are owned by the file in which they are defined. This information is used to replace the old
definition after the file has been modified and is reloaded by, e.g., make/0. As we understand
it, include/1 is intended to include the same file multiple times. Including a file holding
clauses multiple times into the same module is rather meaningless as it just duplicates the same
clauses. Including a file holding clauses in multiple modules does not suffer from this problem,
but leads to multiple equivalent copies of predicates. Using use module/1 can achieve the
same result while sharing the predicates.

If include/1 is used to load files holding clauses, and if these files are loaded only once,
then these include/1 directives can be replaced by other predicates (such as consult/1).
However, there are several cases where either include/1 has no alternative, or using any
alternative also requires other changes. An example of the former is using include/1 to
share directives. An example of the latter are cases where clauses of different predicates
are distributed over multiple files: If these files are loaded with include/1, the directive

7On older versions the condition used to be if(changed). Poor time management on some machines or copying
often caused problems. The make/0 predicate deals with updating the running system after changing the source code.

SWI-Prolog 9.3 Reference Manual

120 CHAPTER 4. BUILT-IN PREDICATES

discontiguous/1 is appropriate, whereas if they are consulted, one must use the directive
multifile/1.

To accommodate included files holding clauses, SWI-Prolog distinguishes between the source
location of a clause (in this case the included file) and the owner of a clause (the file that includes
the file holding the clause). The source location is used by, e.g., edit/1, the graphical tracer,
etc., while the owner is used to determine which clauses are removed if the file is modified.
Relevant information is found with the following predicates:

• source file/2 describes the owner relation.

• predicate property/2 describes the source location (of the first clause).

• clause property/2 provides access to both source and ownership.

• source file property/2 can be used to query include relationships between files.

require(+Predicates)
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. Predicates is either a list of predicate indicators or a comma-list
of predicate indicators. First, all built-in predicates are removed from the set. The remaining
predicates are searched using the library index used for autoloading and mapped to a set of
autoload/2 directives. This implies that the targets will be loaded lazily if autoloading is
not completely disabled and loaded using use module/2 otherwise. See autoload.

The require/1 directive provides less control over the exact nature and location of the pred-
icate. As autoload/2, it prevents a local definition of this predicate. As SWI-Prolog guaran-
tees that the set of built-in predicates and predicates available for autoloading is unambiguous
(i.e., has no duplicates) the specification is unambiguous. It provides four advantages over
autoload/2: (1) the user does not have to remember the exact library, (2) the directive can
be supported in other Prolog systems8, providing compatibility despite differences in library
and built-in predicate organization, (3) it is robust against changes to the SWI-Prolog libraries
and (4) it is less typing.

encoding(+Encoding)
This directive can appear anywhere in a source file to define how characters are encoded in the
remainder of the file. It can be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section 2.18.1.

make
Consult all source files that have been changed since they were consulted. It checks all loaded
source files: files loaded into a compiled state using pl -c ... and files loaded using
consult/1 or one of its derivatives. The predicate make/0 is called after edit/1,
automatically reloading all modified files. If the user uses an external editor (in a separate
window), make/0 is normally used to update the program after editing. In addition, make/0
updates the autoload indices (see section 2.14) and runs list undefined/0 from the
check library to report on undefined predicates.

library directory(?Atom)
Dynamic predicate used to specify library directories. Defaults to app config(lib) (see

8SICStus provides it

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 121

file search path/2) and the system’s library (in this order) are defined. The user may
add library directories using assertz/1, asserta/1 or remove system defaults using
retract/1. Deprecated. New code should use file search path/2.

file search path(+Alias, -Path)
Dynamic multifile hook predicate used to specify ‘path aliases’. This hook is called by
absolute file name/3 to search files specified as Alias(Name), e.g., library(lists).
This feature is best described using an example. Given the definition:

file_search_path(demo, ’/usr/lib/prolog/demo’).

the file specification demo(myfile) will be expanded to /usr/lib/prolog/demo/
myfile. The second argument of file search path/2 may be another alias.

Below is the initial definition of the file search path. This path implies swi(⟨Path⟩) and refers
to a file in the SWI-Prolog home directory. The alias foreign(⟨Path⟩) is intended for storing
shared libraries (.so or .DLL files). See also use foreign library/1.

user:(file_search_path(library, Dir) :-
library_directory(Dir)).

user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).

user:file_search_path(swi, Home) :-
current_prolog_flag(shared_home, Home).

user:file_search_path(library, app_config(lib)).
user:file_search_path(library, swi(library)).
user:file_search_path(library, swi(library/clp)).
user:file_search_path(foreign, swi(ArchLib)) :-

current_prolog_flag(apple_universal_binary, true),
ArchLib = ’lib/fat-darwin’.

user:file_search_path(foreign, swi(ArchLib)) :-
\+ current_prolog_flag(windows, true),
current_prolog_flag(arch, Arch),
atom_concat(’lib/’, Arch, ArchLib).

user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(msys2, true),
current_prolog_flag(arch, Arch),
atomic_list_concat([lib, Arch], /, ArchLib).

user:file_search_path(foreign, swi(SoLib)) :-
current_prolog_flag(msys2, true),
current_prolog_flag(arch, Arch),
atomic_list_concat([bin, Arch], /, SoLib).

user:file_search_path(foreign, swi(SoLib)) :-
(current_prolog_flag(windows, true)
-> SoLib = bin
; SoLib = lib
).

user:file_search_path(path, Dir) :-

SWI-Prolog 9.3 Reference Manual

122 CHAPTER 4. BUILT-IN PREDICATES

getenv(’PATH’, Path),
(current_prolog_flag(windows, true)
-> atomic_list_concat(Dirs, (;), Path)
; atomic_list_concat(Dirs, :, Path)
),
’$member’(Dir, Dirs).

user:file_search_path(user_app_data, Dir) :-
’$xdg_prolog_directory’(data, Dir).

user:file_search_path(common_app_data, Dir) :-
’$xdg_prolog_directory’(common_data, Dir).

user:file_search_path(user_app_config, Dir) :-
’$xdg_prolog_directory’(config, Dir).

user:file_search_path(common_app_config, Dir) :-
’$xdg_prolog_directory’(common_config, Dir).

user:file_search_path(app_data, user_app_data(’.’)).
user:file_search_path(app_data, common_app_data(’.’)).
user:file_search_path(app_config, user_app_config(’.’)).
user:file_search_path(app_config, common_app_config(’.’)).
user:file_search_path(app, swi(app)).
user:file_search_path(app, app_data(app)).
user:file_search_path(working_directory, CWD) :-

working_directory(CWD, CWD).

The ’$xdg prolog directory’/2 uses either the XDG Base Directory or
win folder/2 on Windows. On Windows, user config is mapped to roaming appdata
(CSIDL APPDATA), user data to the non-roaming (CSIDL LOCAL APPDATA) and common
data to (CSIDL COMMON APPDATA).

The file search path/2 expansion is used by all loading predicates as well as by
absolute file name/[2,3].

The Prolog flag verbose file search can be set to true to help debugging Prolog’s
search for files.

expand file search path(+Spec, -Path) [nondet]

Unifies Path with all possible expansions of the filename specification Spec. See also
absolute file name/3.

prolog file type(?Extension, ?Type)
This dynamic multifile predicate defined in module user determines the extensions considered
by file search path/2. Extension is the filename extension without the leading dot, and
Type denotes the type as used by the file type(Type) option of file search path/2.
Here is the initial definition of prolog file type/2:

user:prolog_file_type(pl, prolog).
user:prolog_file_type(Ext, prolog) :-

current_prolog_flag(associate, Ext),
Ext \== pl.

user:prolog_file_type(qlf, qlf).

SWI-Prolog 9.3 Reference Manual

https://wiki.archlinux.org/index.php/XDG_Base_Directory

4.3. LOADING PROLOG SOURCE FILES 123

user:prolog_file_type(Ext, executable) :-
current_prolog_flag(shared_object_extension, Ext).

Users can add extensions for Prolog source files to avoid conflicts (for example with perl)
as well as to be compatible with another Prolog implementation. We suggest using .pro for
avoiding conflicts with perl. Overriding the system definitions can stop the system from
finding libraries.

source file(?File)
True if File is a loaded Prolog source file. File is the absolute and canonical path to the source
file.

source file(:Pred, ?File)
True if the predicate specified by Pred is owned by file File, where File is an absolute path name
(see absolute file name/2). Can be used with any instantiation pattern, but the database
only maintains the source file for each predicate. If Pred is a multifile predicate this predicate
succeeds for all files that contribute clauses to Pred.9 See also clause property/2. Note
that the relation between files and predicates is more complicated if include/1 is used. The
predicate describes the owner of the predicate. See include/1 for details.

source file property(?File, ?Property)
True when Property is a property of the loaded file File. If File is non-var, it can be a file
specification that is valid for load files/2. Defined properties are:

derived from(Original, OriginalModified)
File was generated from the file Original, which was last modified at time OriginalMod-
ified at the time it was loaded. This property is available if File was loaded using the
derived from(Original) option to load files/2.

includes(IncludedFile, IncludedFileModified)
File used include/1 to include IncludedFile. The last modified time of IncludedFile
was IncludedFileModified at the time it was included.

included in(MasterFile, Line)
File was included into MasterFile from line Line. This is the inverse of the includes
property.

load context(Module, Location, Options)
Module is the module into which the file was loaded. If File is a module, this is the
module into which the exports are imported. Otherwise it is the module into which the
clauses of the non-module file are loaded. Location describes the file location from
which the file was loaded. It is either a term ⟨file⟩:⟨line⟩ or the atom user if the file was
loaded from the terminal or another unknown source. Options are the options passed to
load files/2. Note that all predicates to load files are mapped to load files/2,
using the option argument to specify the exact behaviour.

load count(-Count)
Count is the number of times the file have been loaded, i.e., 1 (one) if the file has been
loaded once.

9The current implementation performs a linear scan through all clauses to establish this set of files.

SWI-Prolog 9.3 Reference Manual

124 CHAPTER 4. BUILT-IN PREDICATES

modified(Stamp)
File modification time when File was loaded. This is used by make/0 to find files whose
modification time is different from when it was loaded.

source(Source)
One of file if the source was loaded from a file, resource if the source was loaded
from a resource or state if the file was included in the saved state.

module(Module)
File is a module file that declares the module Module.

number of clauses(Count)
Count is the number of clauses associated with File. Note that clauses loaded from in-
cluded files are counted as part of the main file.

reloading
Present if the file is currently being reloaded.

exists source(+Source) [semidet]

True if Source (a term valid for load files/2) exists. Fails without error if this is not the
case. The predicate is intended to be used with conditional compilation (see section 4.3.1 For
example:

:- if(exists_source(library(error))).
:- use_module_library(error).
:- endif.

The implementation uses absolute file name/3 using file type(prolog).

exists source(+Source, -File) [semidet]

As exists source/1, binding File to an atom describing the full absolute path to the
source file.

unload file(+File)
Remove all clauses loaded from File. If File loaded a module, clear the module’s export list
and disassociate it from the file. File is a canonical filename or a file indicator that is valid for
load files/2.

This predicate should be used with care. The multithreaded nature of SWI-Prolog makes re-
moving static code unsafe. Attempts to do this should be reserved for development or situations
where the application can guarantee that none of the clauses associated to File are active.

prolog load context(?Key, ?Value)
Obtain context information during compilation. This predicate can be used from directives
appearing in a source file to get information about the file being loaded as well as by the
term expansion/2 and goal expansion/2 hooks. See also source location/2
and if/1. The following keys are defined:

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 125

Key Description
directory Directory in which source lives (absolute path)
dialect Compatibility mode. See expects dialect/1.
file Similar to source, but returns the file being included when called while

an include file is being processed (absolute path)
module Module into which file is loaded
reload true if the file is being reloaded. Not present on first load
script Boolean that indicates whether the file is loaded as a script file (see -s)
source File being loaded (absolute path). If the system is processing an included

file, the value is the main file. Returns the original Prolog file when
loading a .qlf file.

stream Stream identifier (see current input/1)
term position Start position of last term read. See also stream property/2

(position property and stream position data/3.10

term Term being expanded by expand term/2.
variable names A list of ‘Name = Var’ of the last term read. See read term/2 for

details.

The directory is commonly used to add rules to file search path/2, setting up a
search path for finding files with absolute file name/3. For example:

:- dynamic user:file_search_path/2.
:- multifile user:file_search_path/2.

:- prolog_load_context(directory, Dir),
asserta(user:file_search_path(my_program_home, Dir)).

...
absolute_file_name(my_program_home(’README.TXT’), ReadMe,

[access(read)]),
...

source location(-File, -Line)
If the last term has been read from a physical file (i.e., not from the file user or a string), unify
File with an absolute path to the file and Line with the line number in the file. New code should
use prolog load context/2.

at halt(:Goal)
Register Goal to be run from PL cleanup(), which is called when the system halts. The
hooks are run in the reverse order they were registered (FIFO). Success or failure executing
a hook is ignored. If the hook raises an exception this is printed using print message/2.
An attempt to call halt/[0,1] from a hook is ignored. Hooks may call cancel halt/1,
causing halt/0 and PL halt(0) to print a message indicating that halting the system has
been cancelled.

SWI-Prolog 9.3 Reference Manual

126 CHAPTER 4. BUILT-IN PREDICATES

cancel halt(+Reason)
If this predicate is called from a hook registered with at halt/1, halting Prolog is cancelled
and an informational message is printed that includes Reason. This is used by the development
tools to cancel halting the system if the editor has unsaved data and the user decides to cancel.

:- initialization(:Goal) [ISO]

Call Goal after loading the source file in which this directive appears has been completed. In
addition, Goal is executed if a saved state created using qsave program/1 is restored.

The ISO standard only allows for using :- Term if Term is a directive. This means that
arbitrary goals can only be called from a directive by means of the initialization/1
directive. SWI-Prolog does not enforce this rule.

The initialization/1 directive must be used to do program initialization in saved states
(see qsave program/1). A saved state contains the predicates, Prolog flags and operators
present at the moment the state was created. Other resources (records, foreign resources, etc.)
must be recreated using initialization/1 directives or from the entry goal of the saved
state.

Up to SWI-Prolog 5.7.11, Goal was executed immediately rather than after load-
ing the program text in which the directive appears as dictated by the ISO stan-
dard. In many cases the exact moment of execution is irrelevant, but there are
exceptions. For example, load foreign library/1 must be executed immedi-
ately to make the loaded foreign predicates available for exporting. SWI-Prolog
now provides the directive use foreign library/1 to ensure immediate loading as
well as loading after restoring a saved state. If the system encounters a directive
:- initialization(load foreign library(...)), it will load the foreign li-
brary immediately and issue a warning to update your code. This behaviour can be extended
by providing clauses for the multifile hook predicate prolog:initialize now(Term, Ad-
vice), where Advice is an atom that gives advice on how to resolve the compatibility issue.

initialization(:Goal, +When)
Similar to initialization/1, but allows for specifying when Goal is executed while
loading the program text:

now
Execute Goal immediately.

after load
Execute Goal after loading the program text in which the directive appears. This is the
same as initialization/1.

prepare state
Execute Goal as part of qsave program/2. This hook can be used for example to
eagerly execute initialization that is normally done lazily on first usage.

restore state
Do not execute Goal while loading the program, but only when restoring a saved state.11

program
Execute Goal once after executing the -g goals at program startup. Registered goals

11Used to be called restore. restore is still accepted for backward compatibility.

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 127

are executed in the order encountered and a failure or exception causes the Prolog to
exit with non-zero exit status. These goals are not executed if the -l is given to merely
load files. In that case they may be executed explicitly using initialize/0. See also
section 2.11.1.

main
When Prolog starts, the last goal registered using initialization(Goal, main) is
executed as main goal. If Goal fails or raises an exception, the process terminates with
non-zero exit code. If not explicitly specified using the -t the toplevel goal is set to
halt/0, causing the process to exit with status 0. An explicitly specified toplevel is exe-
cuted normally. This implies that -t prolog causes the application to start the normal
interactive toplevel after completing Goal. See also the Prolog flag toplevel goal
and section 2.11.1.

initialize [det]

Run all initialization goals registered using initialization(Goal, program). Raises an er-
ror initialization error(Reason, Goal, File:Line) if Goal fails or raises an exception.
Reason is failed or the exception raised.

compiling
True if the system is compiling source files with the -c option or qcompile/1 into
an intermediate code file. Can be used to perform conditional code optimisations in
term expansion/2 (see also the -O option) or to omit execution of directives during
compilation.

4.3.1 Conditional compilation and program transformation

ISO Prolog defines no way for program transformations such as macro expansion or conditional com-
pilation. Expansion through term expansion/2 and expand term/2 can be seen as part of the
de-facto standard. This mechanism can do arbitrary translation between valid Prolog terms read from
the source file to Prolog terms handed to the compiler. As term expansion/2 can return a list,
the transformation does not need to be term-to-term.

Various Prolog dialects provide the analogous goal expansion/2 and expand goal/2 that
allow for translation of individual body terms, freeing the user of the task to disassemble each clause.

term expansion(+Term1, -Term2)
Dynamic and multifile predicate, normally not defined. When defined by the user all terms
read during consulting are given to this predicate. If the predicate succeeds Prolog will assert
Term2 in the database rather than the read term (Term1). Term2 may be a term of the form
?- Goal. or :- Goal. Goal is then treated as a directive. If Term2 is a list, all terms of
the list are stored in the database or called (for directives). If Term2 is of the form below, the
system will assert Clause and record the indicated source location with it:

’$source location’(⟨File⟩, ⟨Line⟩):⟨Clause⟩

When compiling a module (see chapter 6 and the directive module/2), expand term/2
will first try term expansion/2 in the module being compiled to allow for term expan-
sion rules that are local to a module. If there is no local definition, or the local definition
fails to translate the term, expand term/2 will try term expansion/2 in module user.

SWI-Prolog 9.3 Reference Manual

128 CHAPTER 4. BUILT-IN PREDICATES

For compatibility with SICStus and Quintus Prolog, this feature should not be used. See also
expand term/2, goal expansion/2 and expand goal/2.

It is possible to act on the beginning and end of a file by expanding the terms begin of file
and end of file. The latter is supported by most Prolog systems that support term expan-
sion as read term/3 returns end of file on reaching the end of the input. Expanding
begin of file may be used to initialise the compilation, for example base on the file name
extension. It was added in SWI-Prolog 8.1.1.

The current macro-expansion mechanism originates from Prolog systems in the 1980s and
1990s. It has several flaws, (1) the hooks act globally (except for definitions in a module),
(2) it is hard to deal with interactions between transformations, (3) macros can not be reused
between modules using the normal module export/import protocol and (4) it is hard to make
source code aware tools such as the graphical debugger act properly in the context of macro
expansion. Several Prolog implementations have tried to implement better expansion mecha-
nisms. None of these solve all problems and all are largely incompatible with our current macro
expansion. Future versions may provide a new mechanism to solve these issues.

Controlled interaction is provided between macro expansion defined in a module and the user
and system modules. Here, SWI-Prolog uses a pipeline where the result of local module ex-
pansion is the input for the expansion in user, which is the input for the expansion in system.
See also section 6.10.

Scoping, i.e., make a rule defined in a module only active if this module is imported into the
module being compiled, can be emulated by defining the macro globally in the user module
and using prolog load context/2 and some logic to verify the macro expansion should
apply. If (goal) expansion effectively defined inlining it is good practice to also define the
predicate and have the macro expansion check that the predicate is in scope. Here is an example.

:- module(m1, [double/2]).

double(X, D) :- D is X*2.

user:goal_expansion(double(X,D), D is X*2) :-
prolog_load_context(module, M),
predicate_property(M:double(_,_), imported_from(m1)).

For term expansion that is not related to a specific predicate we can define a sentinel predicate
rather than using the goal predicate and check it is imported into the current module to verify
that the module that defines the expansion is imported into the current compilation context.

expand term(+Term1, -Term2)
This predicate is normally called by the compiler on terms read from the input to perform
preprocessing. It consists of four steps, where each step processes the output of the previous
step.

1. Test conditional compilation directives and translate all input to [] if we are in a ‘false
branch’ of the conditional compilation. See section 4.3.1.

2. Call term expansion/2. This predicate is first tried in the module that is be-
ing compiled and then in modules from which this module inherits according to

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 129

default module/2. The output of the expansion in a module is used as input for the
next module. Using the default setup and when compiling a normal application module M,
this implies expansion is executed in M, user and finally in system. Library modules
inherit directly from system and can thus not be re-interpreted by term expansion rules
in user.

3. Call DCG expansion (dcg translate rule/2).

4. Call expand goal/2 on each body term that appears in the output of the previous steps.

goal expansion(+Goal1, -Goal2)
Like term expansion/2, goal expansion/2 provides for macro expansion of Prolog
source code. Between expand term/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handed to expand goal/2, which uses the goal expansion/2
hook to do user-defined expansion.

The predicate goal expansion/2 is first called in the module that is being compiled, and
then follows the module inheritance path as defined by default module/2, i.e., by de-
fault user and system. If Goal is of the form Module:Goal where Module is instantiated,
goal expansion/2 is called on Goal using rules from module Module followed by default
modules for Module.

Only goals appearing in the body of clauses when reading a source file are expanded using
this mechanism, and only if they appear literally in the clause, or as an argument to a defined
meta-predicate that is annotated using ‘0’ (see meta predicate/1). Other cases need a real
predicate definition.

The expansion hook can use prolog load context/2 to obtain information about the con-
text in which the goal is expanded such as the module, variable names or the encapsulating term.

expand goal(+Goal1, -Goal2)
This predicate is normally called by the compiler to perform preprocessing using
goal expansion/2. The predicate computes a fixed-point by applying transforma-
tions until there are no more changes. If optimisation is enabled (see -O and optimise),
expand goal/2 simplifies the result by removing unneeded calls to true/0 and fail/0
as well as trivially unreachable branches.

If goal expansion/2 wraps a goal as in the example below the system still reaches fixed-
point as it prevents re-expanding the expanded term while recursing. It does re-enable expansion
on the arguments of the expanded goal as illustrated in t2/1 in the example.12

:- meta_predicate run(0).

may_not_fail(test(_)).
may_not_fail(run(_)).

goal_expansion(G, (G *-> true ; error(goal_failed(G),_))) :-
may_not_fail(G).

12After discussion with Peter Ludemann and Paulo Moura on the forum.

SWI-Prolog 9.3 Reference Manual

130 CHAPTER 4. BUILT-IN PREDICATES

t1(X) :- test(X).
t2(X) :- run(run(X)).

Is expanded into

t1(X) :-
(test(X)

*-> true
; error(goal_failed(test(X)), _)
).

t2(X) :-
(run((run(X)*->true;error(goal_failed(run(X)), _)))

*-> true
; error(goal_failed(run(run(X))), _)
).

Note that goal expansion should not bind any variables in the clause. Doing so may impact the
semantics of the clause if the variable is also used elsewhere. In the general case this is not
verified. It is verified for \+/1 and ;/2, resulting in an exception.

compile aux clauses(+Clauses)
Compile clauses on behalf of goal expansion/2. This predicate compiles the argument
clauses into static predicates, associating the predicates with the current file but avoids changing
the notion of current predicate and therefore discontiguous warnings.

Note that in some cases multiple expansions of similar goals can share the same compiled
auxiliary predicate. In such cases, the implementation of goal expansion/2 can use
predicate property/2 using the property defined to test whether the predicate is al-
ready defined in the current context.

dcg translate rule(+In, -Out)
This predicate performs the translation of a term Head-->Body into a normal Prolog clause.
Normally this functionality should be accessed using expand term/2.

var property(+Var, ?Property)
True when Property is a property of Var. These properties are available during goal- and
term-expansion. Defined properties are below. Future versions are likely to provide more
properties, such as whether the variable is referenced in the remainder of the term. See also
goal expansion/2.

fresh(Bool)
Bool has the value true if the variable is guaranteed to be unbound at entry of the goal,
otherwise its value is false. This implies that the variable first appears in this goal or a
previous appearance was in a negation (\+/1) or a different branch of a disjunction.

singleton(Bool)
Bool has the value true if the variable is a syntactic singleton in the term it appears
in. Note that this tests that the variable appears exactly once in the term being expanded

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 131

without making any claim on the syntax of the variable. Variables that appear only once in
multiple branches are not singletons according to this property. Future implementations
may improve on that.

name(Name)
True when variable appears with the given name in the source.

Program transformation with source layout info

This sections documents extended versions of the program transformation predicates that also trans-
form the source layout information. Extended layout information is currently processed, but unused.
Future versions will use for the following enhancements:

• More precise locations of warnings and errors

• More reliable setting of breakpoints

• More reliable source layout information in the graphical debugger.

expand goal(+Goal1, ?Layout1, -Goal2, -Layout2)
goal expansion(+Goal1, ?Layout1, -Goal2, -Layout2)
expand term(+Term1, ?Layout1, -Term2, -Layout2)
term expansion(+Term1, ?Layout1, -Term2, -Layout2)

dcg translate rule(+In, ?LayoutIn, -Out, -LayoutOut)
These versions are called before their 2-argument counterparts. The input layout term is either
a variable (if no layout information is available) or a term carrying detailed layout information
as returned by the subterm positions of read term/2. The output layout should be a
variable if no layout information can be computed for the expansion; a sub-term can also be a
variable to indicate “don’t know”.

Conditional compilation

Conditional compilation builds on the same principle as term expansion/2,
goal expansion/2 and the expansion of grammar rules to compile sections of the source
code conditionally. One of the reasons for introducing conditional compilation is to simplify writing
portable code. See section C for more information. Here is a simple example:

:- if(\+source_exports(library(lists), suffix/2)).

suffix(Suffix, List) :-
append(_, Suffix, List).

:- endif.

Note that these directives can only appear as separate terms in the input. SWI-Prolog accommodates
syntax extensions under conditional compilation by silently ignoring syntax errors when in the false
branch. This allow, for example, for the code below. With rational number support 1r3 denotes the

SWI-Prolog 9.3 Reference Manual

132 CHAPTER 4. BUILT-IN PREDICATES

rational number 1/3 while without it is a syntax error. Note that this only works properly if (1) the
syntax error still allows to re-synchronize on the full stop of the invalid clause and (2) the subsequent
conditional compilation directive is valid.

:- if(current_prolog_flag(bounded, false)).
one_third(1r3).
:- endif.

Typical usage scenarios include:

• Load different libraries on different dialects.

• Define a predicate if it is missing as a system predicate.

• Realise totally different implementations for a particular part of the code due to different capa-
bilities.

• Realise different configuration options for your software.

:- if(:Goal)
Compile subsequent code only if Goal succeeds. For enhanced portability, Goal is processed
by expand goal/2 before execution. If an error occurs, the error is printed and processing
proceeds as if Goal has failed.

:- elif(:Goal)
Equivalent to :- else. :-if(Goal). ... :- endif. In a sequence as below, the
section below the first matching elif is processed. If no test succeeds, the else branch is
processed.

:- if(test1).
section_1.
:- elif(test2).
section_2.
:- elif(test3).
section_3.
:- else.
section_else.
:- endif.

:- else
Start ‘else’ branch.

:- endif
End of conditional compilation.

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 133

4.3.2 Reloading files, active code and threads

Traditionally, Prolog environments allow for reloading files holding currently active code. In particu-
lar, the following sequence is a valid use of the development environment:

• Trace a goal

• Find unexpected behaviour of a predicate

• Enter a break using the b command

• Fix the sources and reload them using make/0

• Exit the break, retry executing the now fixed predicate using the r command

Reloading a previously loaded file is safe, both in the debug scenario above and when the code
is being executed by another thread. Executing threads switch atomically to the new definition of
modified predicates, while clauses that belong to the old definition are (eventually) reclaimed by
garbage collect clauses/0.13 Below we describe the steps taken for reloading a file to help
understanding the limitations of the process.

1. If a file is being reloaded, a reload context is associated to the file administration. This context
includes a table keeping track of predicates and a table keeping track of the module(s) associated
with this source.

2. If a new predicate is found, an entry is added to the context predicate table. Three options are
considered:

(a) The predicate is new. It is handled the same as if the file was loaded for the first time.

(b) The predicate is foreign or thread local. These too are treated as if the file was loaded for
the first time.

(c) Normal predicates. Here we initialise a pointer to the current clause.

3. New clauses for ‘normal predicates’ are considered as follows:

(a) If the clause’s byte-code is the same as the predicates current clause, discard the clause
and advance the current clause pointer.

(b) If the clause’s byte-code is the same as some clause further into the clause list of the
predicate, discard the new clause, mark all intermediate clauses for future deletion, and
advance the current clause pointer to the first clause after the matched one.

(c) If the clause’s byte-code matches no clause, insert it for future activation before the current
clause and keep the current clause.

4. Properties such as dynamic or meta predicate are in part applied immediately and
in part during the fixup process after the file completes loading. Currently, dynamic and
thread local are applied immediately.

5. New modules are recorded in the reload context. Export declarations (the module’s public list
and export/1 calls) are both applied and recorded.

13As of version 7.3.12. Older versions wipe all clauses originating from the file before loading the new clauses. This
causes threads that executes the code to (typically) die with an undefined predicate exception.

SWI-Prolog 9.3 Reference Manual

134 CHAPTER 4. BUILT-IN PREDICATES

6. When the end-of-file is reached, the following fixup steps are taken

(a) For each predicate

i. The current clause and subsequent clauses are marked for future deletion.
ii. All clauses marked for future deletion or creation are (in)activated by changing their

‘erased’ or ‘created’ generation. Erased clauses are (eventually) reclaimed by the
clause garbage collector, see garbage collect clauses/0.

iii. Pending predicate property changes are applied.

(b) For each module

i. Exported predicates that are not encountered in the reload context are removed from
the export list.

The above generally ensures that changes to the content of source files can typically be activated
safely using make/0. Global changes such as operator changes, changes of module names, changes
to multi-file predicates, etc. sometimes require a restart. In almost all cases, the need for restart
is indicated by permission or syntax errors during the reload or existence errors while running the
program.

In some cases the content of a source file refers ‘to itself’. This is notably the case if local
rules for goal expansion/2 or term expansion/2 are defined or goals are executed using
directives.14. Up to version 7.5.12 it was typically needed to reload the file twice, once for updating
the code that was used for compiling the remainder of the file and once to effectuate this. As of
version 7.5.13, conventional transaction semantics apply. This implies that for the thread performing
the reload the file’s content is first wiped and gradually rebuilt, while other threads see an atomic
update from the old file content to the new.15

Errors and warnings during compilation

Errors and warnings reported while compiling a file are reported using print message/2.
Typical errors are syntax errors, errors during macro expansion by term expansion/2 and
goal expansion/2, compiler errors such as illegal clauses or an attempt to redefine a sys-
tem predicate and errors caused by executing directives, notably using initialization/1 and
initialization/2.

Merely reporting error messages and warnings is typically desirable for interactive usage. Non-
interactive applications often require to be notified of such issues, typically using the exit code of the
process. We can distinguish two types of errors and warnings: (1) those resulting from loading an
invalid program and (2) messages that result from running the program. A typical example is user
code that wishes to try something and in case of an error report this and continue.

...,
E = error(_,_),
catch(do_something, E,

print_message(error, E)),
...

14Note that initialization/1 directives are executed after loading the file. SWI-Prolog allows for directives that
are executed while loading the file using :- Goal. or initialization/2

15This feature was implemented by Keri Harris.

SWI-Prolog 9.3 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 135

User code may be (and often is) started from directives, while running user code may involve compi-
lation due to autoloading, loading of data files, etc. As a result, it is unclear whether an error message
should merely be printed, should result in a non-zero exit status at the end or should immediately
terminate the process.

The default behaviour is defined by the Prolog flags on error and on warning. It can be fine
tuned by defining the hook predicate message hook/3. The compiler calls print message/2
using the level silent and the message below if errors or warnings where printed during the execu-
tion of load files/2.

load file errors(File, Errors, Warnings)
Here, File is the raw file specification handed to load files/2, i.e., ’myfile.pl’ or
library(lists), Errors is the number of errors printed while loading and Warnings is
the number of warnings printed while loading. Note that these counts include messages from
(initialization) directives.

This allows the user to fine tune the behaviour on errors and, for example, halt the process on a
non-zero error count right after loading the file with errors using the code below.

:- multifile user:message_hook/3.

user:message_hook(load_file_errors(_File, Errors, _Warnings),
_Level, _Lines) :-

Errors > 0,
halt(1).

Compilation of mutually dependent code

Large programs are generally split into multiple files. If file A accesses predicates from file B which
accesses predicates from file A, we consider this a mutual or circular dependency. If traditional
load predicates (e.g., consult/1) are used to include file B from A and A from B, loading ei-
ther file results in a loop. This is because consult/1 is mapped to load files/2 using the
option if(true)(.) Such programs are typically loaded using a load file that consults all required
(non-module) files. If modules are used, the dependencies are made explicit using use module/1
statements. The use module/1 predicate, however, maps to load files/2 with the option
if(not loaded)(.) A use module/1 on an already loaded file merely makes the public predi-
cates of the used module available.

Summarizing, mutual dependency of source files is fully supported with no precautions when
using modules. Modules can use each other in an arbitrary dependency graph. When using
consult/1, predicate dependencies between loaded files can still be arbitrary, but the consult rela-
tions between files must be a proper tree.

Compilation with multiple threads

This section discusses compiling files for the first time. For reloading, see section 4.3.2.
Multiple threads can compile files concurrently. This requires special precautions only if multiple

threads wish to load the same file at the same time. Therefore, load files/2 checks whether some

SWI-Prolog 9.3 Reference Manual

136 CHAPTER 4. BUILT-IN PREDICATES

other thread is already loading the file. If not, it starts loading the file. If a thread detects that another
thread is already loading the file the thread blocks until the other thread finishes loading the file. After
waiting, and if the file is a module file, it imports the exported predicates and operators from the
module.

Note that this schema does not prevent deadlocks under all situations. Consider two mutually
dependent (see section 4.3.2) module files A and B, where thread 1 starts loading A and thread 2
starts loading B at the same time. Both threads will deadlock when trying to load the used module.

The current implementation does not detect such cases and the involved threads will freeze. This
problem can be avoided if a mutually dependent collection of files is always loaded from the same
start file.

4.3.3 Quick load files

SWI-Prolog supports compilation of individual or multiple Prolog source files into ‘Quick Load Files’.
A ‘Quick Load File’ (.qlf file) stores the contents of the file in a precompiled format.

These files load considerably faster than source files and are normally more compact. They are
machine-independent and may thus be loaded on any implementation of SWI-Prolog. Note, however,
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created using qcompile/1. They are loaded using consult/1 or one
of the other file-loading predicates described in section 4.3. If consult/1 is given an explicit .pl
file, it will load the Prolog source. When given a .qlf file, it will load the file. When no extension is
specified, it will load the .qlf file when present and the .pl file otherwise.

qcompile(:File)
Takes a file specification as consult/1, etc., and, in addition to the normal compilation,
creates a Quick Load File from File. The file extension of this file is .qlf. The basename of
the Quick Load File is the same as the input file.

If the file contains ‘:- consult(+File)’, ‘:- [+File]’ or
‘:- load files(+File, [qcompile(part), ...])’ statements, the referred
files are compiled into the same .qlf file. Other directives will be stored in the .qlf file and
executed in the same fashion as when loading the .pl file.

For term expansion/2, the same rules as described in section 2.11 apply.

Conditional execution or optimisation may test the predicate compiling/0.

Source references (source file/2) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

qcompile(:File, +Options)
As qcompile/1, but processes additional options as defined by load files/2. Options
are passed to load files/2. In addition the following options are processed:

include(+Include)
What to include into the QLF file. Currently accepts only a single value: the atom user.
When specified, files loaded indirectly from File that to not come from the Prolog library
are included into the .qlf file. This may be used to generate a single file from an
application. The result is comparable to a save state (see qsave program/2) with the
following differences:

SWI-Prolog 9.3 Reference Manual

4.4. EDITOR INTERFACE 137

• Only your application code is included. The Prolog libraries and boot files are not.
• Only Prolog code is included, .qlf files cannot include arbitrary resources.
• The file can be loaded into a running Prolog process, while a saved state can only be

loaded into a virgin Prolog virtual machine.

4.4 Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implemented by edit/1 and consists of three parts:
locating, selecting and starting the editor. Any of these parts may be customized. See section 4.4.1.

The built-in edit specifications for edit/1 (see prolog edit:locate/3) are described in
the table below:

Fully specified objects
⟨Module⟩:⟨Name⟩/⟨Arity⟩ Refers to a predicate
module(⟨Module⟩) Refers to a module
file(⟨Path⟩) Refers to a file
source file(⟨Path⟩) Refers to a loaded source file

Ambiguous specifications
⟨Name⟩/⟨Arity⟩ Refers to this predicate in any module
⟨Name⟩ Refers to (1) the named predicate in any module with any

arity, (2) a (source) file, or (3) a module.

edit(+Specification)
First, exploit prolog edit:locate/3 to translate Specification into a list of Locations.
If there is more than one ‘hit’, the user is asked to select from the locations found. Finally,
prolog edit:edit source/1 is used to invoke the user’s preferred editor. Typically,
edit/1 can be handed the name of a predicate, module, basename of a file, XPCE class,
XPCE method, etc.

edit
Edit the ‘default’ file using edit/1. The default file is either the first .pl file from the
commandline (the associated file, see the Prolog flag associated file or the first script
file specified using the -s or -l command line option. When using the Windows shell while
SWI-Prolog is associated with the .pl extension this is the file loaded by double-clicking a
.pl file. See also section 2.11.1.

4.4.1 Customizing the editor interface

The predicates described in this section are hooks that can be defined to disambiguate specifications
given to edit/1, find the related source, and open an editor at the given source location.

prolog edit:locate(+Spec, -FullSpec, -Location)
Where Spec is the specification provided through edit/1. This multifile predicate is used to
enumerate locations where an object satisfying the given Spec can be found. FullSpec is unified
with the complete specification for the object. This distinction is used to allow for ambiguous
specifications. For example, if Spec is an atom, which appears as the basename of a loaded file
and as the name of a predicate, FullSpec will be bound to file(Path) or Name/Arity.

SWI-Prolog 9.3 Reference Manual

138 CHAPTER 4. BUILT-IN PREDICATES

Location is a list of attributes of the location. Normally, this list will contain the term
file(File) and, if available, the term line(Line).

prolog edit:locate(+Spec, -Location)
Same as prolog edit:locate/3, but only deals with fully specified objects.

prolog edit:edit source(+Location)
Start editor on Location. See prolog edit:locate/3 for the format of a location term.
This multifile predicate is normally not defined. If it succeeds, edit/1 assumes the editor is
started.

If it fails, edit/1 uses its internal defaults, which are defined by the Prolog flag editor
and/or the environment variable EDITOR. The following rules apply. If the Prolog flag
editor is of the format $⟨name⟩, the editor is determined by the environment variable ⟨name⟩.
Else, if this flag is pce emacs or built in and XPCE is loaded or can be loaded, the built-in
Emacs clone is used. Else, if the environment EDITOR is set, this editor is used. Finally, vi is
used as default on Unix systems and notepad on Windows.

See the default user preferences file customize/init.pl for examples.

prolog edit:edit command(+Editor, -Command)
Determines how Editor is to be invoked using shell/1. Editor is the determined editor
(see prolog edit:edit source/1), without the full path specification, and without a
possible (.exe) extension. Command is an atom describing the command. The following
%-sequences are replaced in Command before the result is handed to shell/1:

%e Replaced by the (OS) command name of the editor
%f Replaced by the (OS) full path name of the file
%d Replaced by the line number

If the editor can deal with starting at a specified line, two clauses should be provided. The first
pattern invokes the editor with a line number, while the second is used if the line number is
unknown.

The default contains definitions for vi, emacs, emacsclient, vim, notepad∗ and
wordpad∗. Starred editors do not provide starting at a given line number.

Please contribute your specifications to bugs@swi-prolog.org.

prolog edit:load
Normally an undefined multifile predicate. This predicate may be defined to provide loading
hooks for user extensions to the edit module. For example, XPCE provides the code below to
load swi edit, containing definitions to locate classes and methods as well as to bind this
package to the PceEmacs built-in editor.

:- multifile prolog_edit:load/0.

prolog_edit:load :-
ensure_loaded(library(swi_edit)).

SWI-Prolog 9.3 Reference Manual

4.5. VERIFY TYPE OF A TERM 139

4.5 Verify Type of a Term

Type tests are semi-deterministic predicates that succeed if the argument satisfies the requested type.
Type-test predicates have no error condition and do not instantiate their argument. See also library
error.

var(@Term) [ISO]

True if Term currently is a free variable.

nonvar(@Term) [ISO]

True if Term currently is not a free variable.

integer(@Term) [ISO]

True if Term is bound to an integer.

float(@Term) [ISO]

True if Term is bound to a floating point number.

rational(@Term)
True if Term is bound to a rational number. Rational numbers include integers.

rational(@Term, -Numerator, -Denominator)
True if Term is a rational number with given Numerator and Denominator. The Numerator and
Denominator are in canonical form, which means Denominator is a positive integer and there
are no common divisors between Numerator and Denominator.

number(@Term) [ISO]

True if Term is bound to a rational number (including integers) or a floating point number.

atom(@Term) [ISO]

True if Term is bound to an atom.

blob(@Term, ?Type)
True if Term is a blob of type Type. See section 12.4.10.

string(@Term)
True if Term is bound to a string. Note that string here refers to the built-in atomic type string as
described in section 5.2. Starting with version 7, the syntax for a string object is text between
double quotes, such as "hello".16 See also the Prolog flag double quotes.

atomic(@Term) [ISO]

True if Term is bound (i.e., not a variable) and is not compound. Thus, atomic acts as if defined
by:

atomic(Term) :-
nonvar(Term),
\+ compound(Term).

16In traditional Prolog systems, double quoted text is often mapped to a list of character codes.

SWI-Prolog 9.3 Reference Manual

140 CHAPTER 4. BUILT-IN PREDICATES

SWI-Prolog defines the following atomic datatypes: atom (atom/1), string (string/1), in-
teger (integer/1), floating point number (float/1), rational (rational/1) and blob
(blob/2). In addition, the symbol [] (empty list) is atomic, but not an atom. See section 5.1.

compound(@Term) [ISO]

True if Term is bound to a compound term. See also functor/3 =../2,
compound name arity/3 and compound name arguments/3.

callable(@Term) [ISO]

True if Term is bound to an atom or a compound term. This was intended as a type-test for
arguments to call/1, call/2 etc. Note that callable only tests the surface term. Terms
such as (22,true) are considered callable, but cause call/1 to raise a type error. Module-
qualification of meta-argument (see meta predicate/1) using :/2 causes callable to
succeed on any meta-argument.17 Consider the program and query below:

:- meta_predicate p(0).

p(G) :- callable(G), call(G).

?- p(22).
ERROR: Type error: ‘callable’ expected, found ‘22’
ERROR: In:
ERROR: [6] p(user:22)

ground(@Term) [ISO]

True if Term holds no free variables. See also nonground/2 and term variables/2.

cyclic term(@Term)
True if Term contains cycles, i.e. is an infinite term. See also acyclic term/1 and sec-
tion 2.16.18

acyclic term(@Term) [ISO]

True if Term does not contain cycles, i.e. can be processed recursively in finite time. See also
cyclic term/1 and section 2.16.

4.6 Comparison and Unification of Terms

Although unification is mostly done implicitly while matching the head of a predicate, it is also pro-
vided by the predicate =/2.

?Term1 = ?Term2 [ISO]

Unify Term1 with Term2. True if the unification succeeds. It acts as if defined by the following
fact:

17We think that callable/1 should be deprecated and there should be two new predicates, one performing a test for
callable that is minimally module aware and possibly consistent with type-checking in call/1 and a second predicate that
tests for atom or compound.

18The predicates cyclic term/1 and acyclic term/1 are compatible with SICStus Prolog. Some Prolog systems
supporting cyclic terms use is cyclic/1.

SWI-Prolog 9.3 Reference Manual

4.6. COMPARISON AND UNIFICATION OF TERMS 141

=(Term, Term).

For behaviour on cyclic terms see the Prolog flag occurs check. Calls to =/2 in a clause
body are compiled and may be (re)moved depending on the Prolog flag optimise unify.
See also section 2.17.3.

@Term1 \= @Term2 [ISO]

Equivalent to \+Term1 = Term2.

This predicate is logically sound if its arguments are sufficiently instantiated. In other cases,
such as ?- X \= Y., the predicate fails although there are solutions. This is due to the
incomplete nature of \+/1.

To make your programs work correctly also in situations where the arguments are not yet suffi-
ciently instantiated, use dif/2 instead.

4.6.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so-called “standard order”.
This order is defined as follows:

1. Variables < Numbers < Strings < Atoms < Compound Terms

2. Variables are sorted by address.

3. Numbers are compared by value. Mixed rational/float are compared using cmpr/2.19 NaN
is considered smaller than all numbers, including -inf. If the comparison is equal, the float
is considered the smaller value. If the Prolog flag iso is defined, all floating point numbers
precede all rationals.

4. Strings are compared alphabetically.

5. Atoms are compared alphabetically.

6. Compound terms are first checked on their arity, then on their functor name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

Although variables are ordered, there are some unexpected properties one should keep in mind
when relying on variable ordering. This applies to the predicates below as to predicate such as
sort/2 as well as libraries that reply on ordering such as library assoc and library ordsets.
Obviously, an established relation A @< B no longer holds if A is unified with e.g., a number. Also
unifying A with B invalidates the relation because they become equivalent (==/2) after unification.

As stated above, variables are sorted by address, which implies that they are sorted by ‘age’, where
‘older’ variables are ordered before ‘newer’ variables. If two variables are unified their ‘shared’ age is
the age of oldest variable. This implies we can examine a list of sorted variables with ‘newer’ (fresh)
variables without invalidating the order. Attaching an attribute, see section 8.1, turns an ‘old’ variable
into a ‘new’ one as illustrated below. Note that the first always succeeds as the first argument of a term
is always the oldest. This only applies for the first attribute, i.e., further manipulation of the attribute
list does not change the ‘age’.

19Up to 9.1.4, comparison was done as float.

SWI-Prolog 9.3 Reference Manual

142 CHAPTER 4. BUILT-IN PREDICATES

?- T = f(A,B), A @< B.
T = f(A, B).

?- T = f(A,B), put_attr(A, name, value), A @< B.
false.

The above implies you can use e.g., an assoc (from library assoc, implemented as an AVL tree)
to maintain information about a set of variables. You must be careful about what you do with the
attributes though. In many cases it is more robust to use attributes to register information about
variables.

Note that the standard order is not well defined on rational trees, also known as cyclic terms. This
issue was identified by Mats Carlsson, quoted below. See also issue#1162 on GitHub.

Consider the terms A and B defined by the equations

[1] A = s(B,0).
[2] B = s(A,1).

• Clearly, A and B are not identical, so either A @< B or A @> B must hold.

• Assume A @< B. But then, s(A,1) @> s(B,0) i.e., B @< A. Contradiction.

• Assume A @> B. But then, s(A,1) @< s(B,0) i.e., B @< A. Contradiction.

@Term1 == @Term2 [ISO]

True if Term1 is equivalent to Term2. A variable is only identical to a sharing variable.

@Term1 \== @Term2 [ISO]

Equivalent to \+Term1 == Term2.

@Term1 @< @Term2 [ISO]

True if Term1 is before Term2 in the standard order of terms.

@Term1 @=< @Term2 [ISO]

True if both terms are equal (==/2) or Term1 is before Term2 in the standard order of terms.

@Term1 @> @Term2 [ISO]

True if Term1 is after Term2 in the standard order of terms.

@Term1 @>= @Term2 [ISO]

True if both terms are equal (==/2) or Term1 is after Term2 in the standard order of terms.

compare(?Order, @Term1, @Term2) [ISO]

Determine or test the Order between two terms in the standard order of terms. Order is one of
<, > or =, with the obvious meaning.

SWI-Prolog 9.3 Reference Manual

https://swi-prolog.discourse.group/t/how-to-compare-3-without-surprises-on-non-ground-terms/6386/42=jan
https://github.com/SWI-Prolog/swipl-devel/issues/1162

4.6. COMPARISON AND UNIFICATION OF TERMS 143

4.6.2 Special unification and comparison predicates

This section describes special purpose variations on Prolog unification. The predicate
unify with occurs check/2 provides sound unification and is part of the ISO standard. The
predicate subsumes term/2 defines ‘one-sided unification’ and is part of the ISO proposal estab-
lished in Edinburgh (2010). Finally, unifiable/3 is a ‘what-if’ version of unification that is often
used as a building block in constraint reasoners.

unify with occurs check(+Term1, +Term2) [ISO]

As =/2, but using sound unification. That is, a variable only unifies to a term if this term does
not contain the variable itself. To illustrate this, consider the two queries below.

1 ?- A = f(A).
A = f(A).
2 ?- unify_with_occurs_check(A, f(A)).
false.

The first statement creates a cyclic term, also called a rational tree. The second executes log-
ically sound unification and thus fails. Note that the behaviour of unification through =/2 as
well as implicit unification in the head can be changed using the Prolog flag occurs check.

The SWI-Prolog implementation of unify with occurs check/2 is cycle-safe and only
guards against creating cycles, not against cycles that may already be present in one of the
arguments. This is illustrated in the following two queries:

?- X = f(X), Y = X, unify_with_occurs_check(X, Y).
X = Y, Y = f(Y).
?- X = f(X), Y = f(Y), unify_with_occurs_check(X, Y).
X = Y, Y = f(Y).

Some other Prolog systems interpret unify with occurs check/2 as if defined by the
clause below, causing failure on the above two queries. Direct use of acyclic term/1 is
portable and more appropriate for such applications.

unify_with_occurs_check(X,X) :- acyclic_term(X).

+Term1 =@= +Term2
True if Term1 is a variant of (or structurally equivalent to) Term2. Testing for a variant is
weaker than equivalence (==/2), but stronger than unification (=/2). Two terms A and B are
variants iff there exists a renaming of the variables in A that makes A equivalent (==) to B and
vice versa.20 Examples:

20Row 7 and 8 of this table may come as a surprise, but row 8 is satisfied by (left-to-right) A → C, B → A and (right-
to-left) C → A, A → B. If the same variable appears in different locations in the left and right term, the variant relation
can be broken by consistent binding of both terms. E.g., after binding the first argument in row 8 to a value, both terms are
no longer variant.

SWI-Prolog 9.3 Reference Manual

144 CHAPTER 4. BUILT-IN PREDICATES

1 a =@= A false
2 A =@= B true
3 x(A,A) =@= x(B,C) false
4 x(A,A) =@= x(B,B) true
5 x(A,A) =@= x(A,B) false
6 x(A,B) =@= x(C,D) true
7 x(A,B) =@= x(B,A) true
8 x(A,B) =@= x(C,A) true

A term is always a variant of a copy of itself. Term copying takes place in, e.g., copy term/2,
findall/3 or proving a clause added with asserta/1. In the pure Prolog world (i.e.,
without attributed variables), =@=/2 behaves as if defined below. With attributed variables,
variant of the attributes is tested rather than trying to satisfy the constraints.

A =@= B :-
copy_term(A, Ac),
copy_term(B, Bc),
numbervars(Ac, 0, N),
numbervars(Bc, 0, N),
Ac == Bc.

The SWI-Prolog implementation is cycle-safe and can deal with variables that are shared be-
tween the left and right argument. Its performance is comparable to ==/2, both on success and
(early) failure. 21

This predicate is known by the name variant/2 in some other Prolog systems. Be aware
of possible differences in semantics if the arguments contain attributed variables or share vari-
ables.22

+Term1 \=@= +Term2
Equivalent to ‘\+Term1 =@= Term2’. See =@=/2 for details.

subsumes term(@Generic, @Specific) [ISO]

True if Generic can be made equivalent to Specific by only binding variables in Generic. The
current implementation performs the unification and ensures that the variable set of Specific is
not changed by the unification. On success, the bindings are undone.23 This predicate respects
constraints.

See section 5.6 for defining clauses whose head is unified using single sided unification.

term subsumer(+Special1, +Special2, -General)
General is the most specific term that is a generalisation of Special1 and Special2. The imple-
mentation can handle cyclic terms.

unifiable(@X, @Y, -Unifier)
If X and Y can unify, unify Unifier with a list of Var = Value, representing the bindings required

21The current implementation is contributed by Kuniaki Mukai.
22In many systems variant is implemented using two calls to subsumes term/2.
23This predicate is often named subsumes chk/2 in older Prolog dialects. The current name was established in the ISO

WG17 meeting in Edinburgh (2010). The chk postfix was considered to refer to determinism as in e.g., memberchk/2.

SWI-Prolog 9.3 Reference Manual

4.7. CONTROL PREDICATES 145

to make X and Y equivalent.24 This predicate can handle cyclic terms. Attributed variables are
handled as normal variables. Associated hooks are not executed.

?=(@Term1, @Term2)
Succeeds if the syntactic equality of Term1 and Term2 can be decided safely, i.e. if the result of
Term1 == Term2 will not change due to further instantiation of either term. It behaves as if
defined by ?=(X,Y) :- \+ unifiable(X,Y,[_|_]).

4.7 Control Predicates

The predicates of this section implement control structures. Normally the constructs in this section,
except for repeat/0, are translated by the compiler. Please note that complex goals passed as ar-
guments to meta-predicates such as findall/3 below cause the goal to be compiled to a temporary
location before execution. It is faster to define a sub-predicate (i.e., one character atoms/1
in the example below) and make a call to this simple predicate. See also the Prolog flag
compile meta arguments.

one_character_atoms(As) :-
findall(A, (current_atom(A), atom_length(A, 1)), As).

fail [ISO]

Always fail. The predicate fail/0 is translated into a single virtual machine instruction.

false [ISO]

Same as fail, but the name has a more declarative connotation.

true [ISO]

Always succeed. The predicate true/0 is translated into a single virtual machine instruction.

repeat [ISO]

Always succeed, provide an infinite number of choice points.

! [ISO]

Cut. Discard all choice points created since entering the predicate in which the cut appears.
In other words, commit to the clause in which the cut appears and discard choice points that
have been created by goals to the left of the cut in the current clause. Meta calling is opaque to
the cut. This implies that cuts that appear in a term that is subject to meta-calling (call/1)
only affect choice points created by the meta-called term. The following control structures are
transparent to the cut: ;/2, ->/2 and *->/2. Cuts appearing in the condition part of ->/2
and *->/2 are opaque to the cut. The table below explains the scope of the cut with examples.
Prunes here means “prunes X choice point created by X”.

24This predicate was introduced for the implementation of dif/2 and when/2 after discussion with Tom Schrijvers and
Bart Demoen. None of us is really happy with the name and therefore suggestions for a new name are welcome.

SWI-Prolog 9.3 Reference Manual

146 CHAPTER 4. BUILT-IN PREDICATES

t0 :- (a, !, b). % prunes a/0 and t0/0
t1 :- (a, !, fail ; b). % prunes a/0 and t1/0
t2 :- (a -> b, ! ; c). % prunes b/0 and t2/0
t3 :- (a, !, b -> c ; d). % prunes a/0
t4 :- call((a, !, fail ; b)). % prunes a/0
t5 :- \+(a, !, fail). % prunes a/0

:Goal1 , :Goal2 [ISO]

Conjunction (and). True if both Goal1 and Goal2 are true.

:Goal1 ; :Goal2 [ISO]

Disjunction (or). True if either Goal1 or Goal2 succeeds. Note that the semantics change if
Goal1 contains ->/2 or *->/2. ;/2 is transparent to cuts. See !/0 for details. For example:

?- (between(1,2,X) ; X = a).
X = 1 ;
X = 2 ;
X = a.

It is strongly advised to always use parenthesis around disjunctions. Conjunctions inside a
disjunction should not use parenthesis. Traditionally the ; is placed at the start of the line rather
than at the end because a ; at the end of a line is easily overlooked. Below is an example of the
preferred style used in SWI-Prolog.25

p :-
a,
(b,

c
; d
).

Although ;/2 is a control structure that is normally handled by the compiler, SWI-Prolog
implements ;/2 as a true predicate to support call/2 and friends as well as to allow for
querying predicate properties, for example to support code analysis.

:Goal1 | :Goal2
Equivalent to ;/2. Retained for compatibility only. New code should use ;/2.

:Condition -> :Action [ISO]

If-then and If-Then-Else. The ->/2 construct commits to the choices made at its left-hand
side, destroying choice points created inside the clause (by ;/2), or by goals called by this
clause. Unlike !/0, the choice point of the predicate as a whole (due to multiple clauses) is
not destroyed. Disregarding the interaction with !/0, the combination ;/2 and ->/2 acts as
if defined as:

25Some users prefer a newline after the ;.

SWI-Prolog 9.3 Reference Manual

4.7. CONTROL PREDICATES 147

If -> Then; _Else :- If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.

Please note that (If -> Then) acts as (If -> Then ; fail), making the construct fail if the condition
fails. This unusual semantics is part of the ISO and all de-facto Prolog standards.

Please note that (if->then;else) is read as ((if->then);else) and that the combined semantics
of this syntactic construct as defined above is different from the simple nesting of the two
individual constructs, i.e., the semantics of ->/2 changes when embedded in ;/2. See also
once/1.

As with ;/2, this construct is always nested in parenthesis. Here is an example of the preferred
layout for SWI-Prolog.

p :-
a,
(b,

c
-> d,

e
; f
-> g
; h
).

:Condition *-> :Action ; :Else
This construct implements the so-called ‘soft-cut’. The control is defined as follows: If Con-
dition succeeds at least once, the semantics is the same as (call(Condition), Action).26 If
Condition does not succeed, the semantics is that of (\+ Condition, Else). In other words, if
Condition succeeds at least once, simply behave as the conjunction of call(Condition) and
Action, otherwise execute Else. The construct is known under the name if/3 in some other
Prolog implementations.

The construct A *-> B, i.e., without an Else branch, the semantics is the same as (call(A), B).

This construct is rarely used. An example use case is the implementation of OPTIONAL in
SPARQL. The optional construct should preserve all solutions if the argument succeeds as least
once but still succeed otherwise. This is implemented as below.

optional(Goal) :-
(Goal

*-> true
; true
).

26Note that the Condition is wrapped in call/1, limiting the scope of the cut (!/0

SWI-Prolog 9.3 Reference Manual

148 CHAPTER 4. BUILT-IN PREDICATES

Now calling e.g., optional(member(X, [a,b])) has the solutions X = a and X = b,
while optional(member(X,[])) succeeds without binding X .

\+ :Goal [ISO]

True if ‘Goal’ cannot be proven (mnemonic: + refers to provable and the backslash (\) is
normally used to indicate negation in Prolog). In contrast to the ISO standard, but compatible
with several other Prolog systems, SWI-Prolog implements \+/1 as a control structure. This
implies that its argument is compiled as part of the enclosing clause and possible variables in
goal positions are translated to call/1. As a result, if such a variable is at runtime bound to a
(!/0), the cut is scoped to the call/1 call rather than the enclosing \+/1.

Many Prolog implementations (including SWI-Prolog) provide not/1. The not/1 alternative
is deprecated due to its strong link to logical negation.

4.8 Meta-Call Predicates

Meta-call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

call(:Goal) [ISO]

Call Goal. This predicate is normally used for goals that are not known at compile time. For
example, the Prolog toplevel essentially performs read(Goal), call(Goal). Also a
meta predicates such as ignore/1 are defined using call:

ignore(Goal) :- call(Goal), !.
ignore(_).

Note that a plain variable as a body term acts as call/1 and the above is equivalent to the code
below. SWI-Prolog produces the same code for these two programs and listing/1 prints
the program above.

ignore(Goal) :- Goal, !.
ignore(_).

Note that call/1 restricts the scope of the cut (!/0). A cut inside Goal only affects choice
points created by Goal.

call(:Goal, +ExtraArg1, . . .) [ISO]

Append ExtraArg1, ExtraArg2, . . . to the argument list of Goal and call the result. For example,
call(plus(1), 2, X) will call plus(1, 2, X), binding X to 3.

The call/[2..] construct is handled by the compiler. The predicates call/[2-8] are defined
as real (meta-)predicates and are available to inspection through current predicate/1,

SWI-Prolog 9.3 Reference Manual

4.8. META-CALL PREDICATES 149

predicate property/2, etc.27 Higher arities are handled by the compiler and runtime
system, but the predicates are not accessible for inspection.28

apply(:Goal, +List) [deprecated]

Append the members of List to the arguments of Goal and call the resulting term. For example:
apply(plus(1), [2, X]) calls plus(1, 2, X). New code should use call/[2..] if
the length of List is fixed.

not(:Goal) [deprecated]

True if Goal cannot be proven. Retained for compatibility only. New code should use \+/1.

once(:Goal) [ISO]

Make a possibly nondet goal semidet, i.e., succeed at most once. Defined as:

once(Goal) :-
call(Goal), !.

once/1 can in many cases be replaced with ->/2. The only difference is how the cut behaves
(see !/0). The following two clauses below are identical. Be careful about the interaction
with ;/2. The apply macros library defines an inline expansion of once/1, mapping it
to (Goal->true;fail). Using the full if-then-else constructs prevents its semantics from
being changed when embedded in a ;/2 disjunction.

1) a :- once((b, c)), d.
2) a :- b, c -> d.

ignore(:Goal)
Calls Goal as once/1, but succeeds, regardless of whether Goal succeeded or not. Defined as:

ignore(Goal) :-
Goal, !.

ignore(_).

call with depth limit(:Goal, +Limit, -Result)
If Goal can be proven without recursion deeper than Limit levels,
call with depth limit/3 succeeds, binding Result to the deepest recursion level
used during the proof. Otherwise, Result is unified with depth limit exceeded if the
limit was exceeded during the proof, or the entire predicate fails if Goal fails without exceeding
Limit.

The depth limit is guarded by the internal machinery. This may differ from the depth computed
based on a theoretical model. For example, true/0 is translated into an inline virtual machine
instruction. Also, repeat/0 is not implemented as below, but as a non-deterministic foreign
predicate.

27Arities 2..8 are demanded by ISO/IEC 13211-1:1995/Cor.2:2012.
28Future versions of the reflective predicate may fake the presence of call/9... Full logical behaviour, generating all

these pseudo predicates, is probably undesirable and will become impossible if max arity is removed.

SWI-Prolog 9.3 Reference Manual

150 CHAPTER 4. BUILT-IN PREDICATES

repeat.
repeat :-

repeat.

As a result, call with depth limit/3 may still loop infinitely on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem provers to realise techniques like iterative deepen-
ing. See also call with inference limit/3. It was implemented after discussion with
Steve Moyle smoyle@ermine.ox.ac.uk.

call with inference limit(:Goal, +Limit, -Result)
Equivalent to call(Goal), but limits the number of inferences for each solution of Goal.29.
Execution may terminate as follows:

• If Goal does not terminate before the inference limit is exceeded, Goal is aborted by inject-
ing the exception inference limit exceeded into its execution. After termination
of Goal, Result is unified with the atom inference limit exceeded. Otherwise,

• If Goal fails, call with inference limit/3 fails.

• If Goal succeeds without a choice point, Result is unified with !.

• If Goal succeeds with a choice point, Result is unified with true.

• If Goal throws an exception, call with inference limit/3 re-throws the excep-
tion.

An inference is defined as a call or redo on a predicate. Please note that some primitive built-in
predicates are compiled to virtual machine instructions for which inferences are not counted.
The execution of predicates defined in other languages (e.g., C, C++) count as a single inference.
This includes potentially expensive built-in predicates such as sort/2.

Calls to this predicate may be nested. An inner call that sets the limit below the current is
honoured. An inner call that would terminate after the current limit does not change the effective
limit. See also call with depth limit/3 and call with time limit/2.

setup call cleanup(:Setup, :Goal, :Cleanup)
Calls (once(Setup), Goal). If Setup succeeds, Cleanup will be called exactly once after
Goal is finished: either on failure, deterministic success, commit, or an exception. The exe-
cution of Setup is protected from asynchronous interrupts like call with time limit/2
(package clib) or thread signal/2. In most uses, Setup will perform temporary
side-effects required by Goal that are finally undone by Cleanup.

Success or failure of Cleanup is ignored, and choice points it created are destroyed (as
once/1). If Cleanup throws an exception, this is executed as normal while it was not trig-
gered as the result of an exception the exception is propagated as normal. If Cleanup was
triggered by an exception the rules are described in section 4.10.2

29This predicate was realised after discussion with Ulrich Neumerkel and Markus Triska.

SWI-Prolog 9.3 Reference Manual

4.8. META-CALL PREDICATES 151

Typically, this predicate is used to cleanup permanent data storage required to execute Goal,
close file descriptors, etc. The example below provides a non-deterministic search for a term in
a file, closing the stream as needed.

term_in_file(Term, File) :-
setup_call_cleanup(open(File, read, In),

term_in_stream(Term, In),
close(In)).

term_in_stream(Term, In) :-
repeat,
read(In, T),
(T == end_of_file
-> !, fail
; T = Term
).

Note that it is impossible to implement this predicate in Prolog. The closest approxima-
tion would be to read all terms into a list, close the file and call member/2. With-
out setup call cleanup/3 there is no way to gain control if the choice point left by
repeat/0 is removed by a cut or an exception.

setup call cleanup/3 can also be used to test determinism of a goal, providing a portable
alternative to deterministic/1:

?- setup_call_cleanup(true,(X=1;X=2), Det=yes).

X = 1 ;

X = 2,
Det = yes ;

This predicate is under consideration for inclusion into the ISO standard. For compatibility with
other Prolog implementations see call cleanup/2.

setup call catcher cleanup(:Setup, :Goal, +Catcher, :Cleanup)
Similar to setup call cleanup(Setup, Goal, Cleanup) with additional information on the
reason for calling Cleanup. Prior to calling Cleanup, Catcher unifies with the termination code
(see below). If this unification fails, Cleanup is not called.

exit
Goal succeeded without leaving any choice points.

fail
Goal failed.

!
Goal succeeded with choice points and these are now discarded by the execution of a cut
(or other pruning of the search tree such as if-then-else).

SWI-Prolog 9.3 Reference Manual

152 CHAPTER 4. BUILT-IN PREDICATES

exception(Exception)
Goal raised the given Exception.

external exception(Exception)
Goal succeeded with choice points and these are now discarded due to an exception. For
example:

?- setup_call_catcher_cleanup(true, (X=1;X=2),
Catcher, writeln(Catcher)),

throw(ball).
external_exception(ball)
ERROR: Unhandled exception: Unknown message: ball

call cleanup(:Goal, :Cleanup)
Same as setup call cleanup(true, Goal, Cleanup). This is provided for compatibility
with a number of other Prolog implementations only. Do not use call cleanup/2 if
you perform side-effects prior to calling that will be undone by Cleanup. Instead, use
setup call cleanup/3 with an appropriate first argument to perform those side-effects.

undo(:Goal)
Add Goal to the trail. Goal is executed as ignore/1 on the first opportunity after backtrack-
ing to a point before the call to Goal. This predicate is intended to make otherwise persistent
changes to the database or created by foreign procedures backtrackable if it is possible to define
a goal that reverts the effect of the initial call. A typical use case is to define a backtrackable
assert.

b_assertz(Term) :-
assertz(Term, Ref),
undo(erase(Ref)).

Without undo/1 we can achieve something similar by leaving a choicepoint using the almost
portable30 alternative below.

b_assertz(Term) :-
assertz(Term, Ref),
(true
; erase(Ref),

fail
).

The undo/1 based solution avoids leaving a choice point open and, more importantly, keeps
undoing the assert also if the choice point from the second alternative is pruned.

Currently the following remarks apply

• Goal is copied when it is registered.

30assertz/2 is not part of the ISO standard but supported by multiple systems.

SWI-Prolog 9.3 Reference Manual

4.9. DELIMITED CONTINUATIONS 153

• “First opportunity” means after backtracking or at the first call port reached.

• Multiple undo goals may be scheduled that are executed as a batch. If multiple goals raise
an exception, the most urgent is preserved after all goals have been executed.

• It is not allowed for Goal to call undo/1. An attempt to do so results in a
permission error exception.

• Note that an exception that is caught higher in the call stack backtracks and therefore
ensures Goal is called.

See also snapshot/1 and transaction/1.

4.9 Delimited continuations

The predicates reset/3 and shift/1 implement delimited continuations for Prolog. Delimited
continuations for Prolog are described in [Schrijvers et al., 2013] (preprint PDF). The mechanism al-
lows for proper coroutines, two or more routines whose execution is interleaved, while they exchange
data. Note that coroutines in this sense differ from coroutines realised using attributed variables as
described in chapter 8.

Note that shift/1 captures the forward continuation. It notably does not capture choicepoints.
Choicepoints created before the continuation is captured remain open, while choicepoints created
when the continuation is executed live their normal life. Unfortunately the consequences for com-
mitting a choicepoint is complicated. In general a cut (!/0) in the continuation does not have the
expected result. Negation (\+/1) and if-then(-else) (->/2) behave as expected, provided the con-
tinuation is called immediately. This works because for \+/1 and ->/2 the continuation contains a
reference to the choicepoint that must be cancelled and this reference is restored when possible. If,
as with tabling, the continuation is saved and called later, the commit has no effect. We illustrate the
three scenarios using with the programs below.

t1 :-
reset(gbad, ball, Cont),
(Cont == 0
-> true
; writeln(resuming),

call(Cont)
).

gbad :-
n, !, fail.

gbad.

n :-
shift(ball),
writeln(n).

Here, the !/0 has no effect:

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/download/publications/iclp2013.pdf

154 CHAPTER 4. BUILT-IN PREDICATES

?- t1.
resuming
n
true.

The second example uses \+/1, which is essentially (G->fail;true).

t2 :-
reset(gok, ball, Cont),
(Cont == 0
-> true
; writeln(resuming),

call(Cont)
).

gok :-
\+ n.

In this scenario the normal semantics of \+/1 is preserved:

?- t1.
resuming
n
false.

In the last example we illustrate what happens if we assert the continuation to be executed later. We
write the negation using if-then-else to make it easier to explain the behaviour.

:- dynamic cont/1.

t3 :-
retractall(cont(_)),
reset(gassert, ball, Cont),
(Cont == 0
-> true
; asserta(cont(Cont))
).

c3 :-
cont(Cont),
writeln(resuming),
call(Cont).

gassert :-
(n

SWI-Prolog 9.3 Reference Manual

4.10. EXCEPTION HANDLING 155

-> fail
; true
).

Now, t3/0 succeeds twice. This is because n/0 shifts, so the commit to the fail/0 branch is not
executed and the true/0 branch is evaluated normally. Calling the continuation later using c3/0
fails because the choicepoint that realised the if-then-else does not exist in the continuation and thus
the effective continuation is the remainder of n/0 and fail/0 in gassert/0.

?- t3.
true ;
true.

?- c3.
resuming
n
false.

The suspension mechanism provided by delimited continuations is used to implement tabling
[Desouter et al., 2015], (available here). See section 7.

reset(:Goal, ?Ball, -Continuation)
Call Goal. If Goal calls shift/1 and the argument of shift/1 can be unified with Ball,31

shift/1 causes reset/3 to return, unifying Continuation with a goal that represents
the continuation after shift/1. In other words, meta-calling Continuation completes the
execution where shift left it. If Goal does not call shift/1, Continuation are unified with the
integer 0 (zero).32

shift(+Ball)
Abandon the execution of the current goal, returning control to just after the matching
reset/3 call. This is similar to throw/1 except that (1) nothing is ‘undone’ and (2) the
3th argument of reset/3 is unified with the continuation, which allows the code calling
reset/3 to resume the current goal.

shift for copy(+Ball) [experimental]

Similar to shift/1. This version is intended for situations where it is assumed the contin-
uation is copied and saved to be executed one or multiple times in a different context. This
notably prevents restoring choice points saved for \+/1, If->Then;Else, etc.

4.10 Exception handling

The predicates catch/3 and throw/1 provide ISO compliant raising and catching of exceptions.

31The argument order described in [Schrijvers et al., 2013] is reset(Goal,Continuation,Ball). We swapped the argu-
ment order for compatibility with catch/3

32Note that older versions also unify Ball with 0. Testing whether or not shift happened on Ball however is always
ambiguous.

SWI-Prolog 9.3 Reference Manual

https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/div-classtitletabling-as-a-library-with-delimited-controldiv/227B7C0227FD715CF159B6AF894DE96E

156 CHAPTER 4. BUILT-IN PREDICATES

catch(:Goal, +Catcher, :Recover) [ISO]

Behaves as call/1 if no exception is raised when executing Goal. If an exception is raised
using throw/1 while Goal executes, and the Goal is the innermost goal for which Catcher
unifies with the argument of throw/1, all choice points generated by Goal are cut, the system
backtracks to the start of catch/3 while preserving the thrown exception term, and Recover
is called as in call/1.

As of version 9.3.13, constraints (attributed variables) in Catcher are respected. If evaluating
the constraint raises an exception, the most urgent exception is preserved (see section 4.10.2)
and searching for a matching catch/3 call is continued. If both exceptions are equally urgent,
the exception raised by the constraint evaluation is preserved.

The overhead of calling a goal through catch/3 is comparable to call/1. Recovery from
an exception is much slower, especially if the exception term is large due to the copying
thereof or is decorated with a stack trace using, e.g., the library prolog stack based on
the prolog exception hook/5 hook predicate to rewrite exceptions.

throw(+Exception) [ISO]

Raise an exception. The system looks for the innermost catch/3 ancestor for which Excep-
tion unifies with the Catcher argument of the catch/3 call. See catch/3 for details.

ISO demands that throw/1 make a copy of Exception, walk up the stack to a catch/3 call,
backtrack and try to unify the copy of Exception with Catcher. SWI-Prolog delays backtrack-
ing until it actually finds a matching catch/3 goal. The advantage is that we can start the
debugger at the first possible location while preserving the entire exception context if there is
no matching catch/3 goal. This approach can lead to different behaviour if Goal and Catcher
of catch/3 call shared variables. We assume this to be highly unlikely and could not think of
a scenario where this is useful.33

In addition to explicit calls to throw/1, many built-in predicates throw exceptions directly
from C. If the Exception term cannot be copied due to lack of stack space, the following actions
are tried in order:

1. If the exception is of the form error(Formal, ImplementationDefined), try to raise the
exception without the ImplementationDefined part.

2. Try to raise error(resource error(stack), global).

3. Abort (see abort/0).

If an exception is raised in a call-back from C (see chapter 12) and not caught in the same
call-back, PL next solution() fails and the exception context can be retrieved using
PL exception().

catch with backtrace(:Goal, +Catcher, :Recover)
As catch/3, but if library prolog stack is loaded and an exception of the shape
error(Format, Context) is raised Context is extended with a backtrace. To catch an error and
print its message including a backtrace, use the following template:

:- use_module(library(prolog_stack)).

33I’d like to acknowledge Bart Demoen for his clarifications on these matters.

SWI-Prolog 9.3 Reference Manual

4.10. EXCEPTION HANDLING 157

...,
catch_with_backtrace(Goal, Error,

print_message(error, Error)),
...,

This is good practice for a catch-all wrapper around an application. See also main/0 from
library main.

4.10.1 Unwind exceptions

Starting with SWI-Prolog 9.3.13, SWI-Prolog introduces a new class of reserved exceptions. An
exception of the shape unwind(Term) is handled special by catch/3 and friends. Rather than
simply calling the Recover goal (third argument), catch/3 acts as if called as

catch(Goal, Ball, call_cleanup(once(Recover), throw(Ball)))

The above implies that cleanup that may be required on exceptions should use call cleanup/2 (or
one of its variations) or should perform the cleanup in the Recover goal. For example, the following
does not properly cleanup after an exception:

(catch(Goal, Error, true)
-> (var(Error)

-> <no exception>
; <cleanup> % NOT called on throw(unwind(...))

...

This implies that, unless the user ensures Recover does not terminate, the exception will unwind the
entire Prolog stack. While foreign code that catches these exceptions should propagate them to the
parent environment, we cannot enforce this behaviour.

Currently, this mechanism defines these values for Term:

abort
Abort the current Prolog thread. This exception is raised by abort/0. Previous versions
raised ’$aborted’ using the same unwind semantics.

halt(Status)
In the standard setup, if unwind(halt(Status)) is raised in the main thread, this system halts
with exit code Status

thread exit(ExitValue)
This exception is raised by thread exit/1. See this predicate for details.

4.10.2 Urgency of exceptions

Under some conditions an exception may be raised as a result of handling another exception. Below
are some of the scenarios:

SWI-Prolog 9.3 Reference Manual

158 CHAPTER 4. BUILT-IN PREDICATES

• The predicate setup call cleanup/3 calls the cleanup handler as a result of an exception
and the cleanup handler raises an exception itself. In this case the most urgent exception is
propagated into the environment.

• Raising an exception fails due to lack of resources, e.g., lack of stack space to store the excep-
tion. In this case a resource exception is raised. If that too fails the system tries to raise a re-
source exception without (stack) context. If that fails it will raise the exception unwind(abort),
also raised by abort/0.

• Certain callback operations raise an exception while processing another exception or a previous
callback already raised an exception before there was an opportunity to process the excep-
tion. The most notable callback subject to this issue are prolog event hook/1 (supporting
e.g., the graphical debugger), prolog exception hook/5 (rewriting exceptions, e.g., by
adding context) and print message/2 when called from the core facilities such as the in-
ternal debugger. As with setup call cleanup/3, the most urgent exception is preserved.

If the most urgent exceptions needs to be preserved, the following exception ordering is respected,
preserving the topmost matching error.

1. unwind(halt(_)) (halt/1)

2. unwind(thread_exit(_)) (thread exit/1)

3. unwind(abort) (abort/0)

4. time_limit_exceeded (call with time limit/2)

5. error(resource error(Resource), Context)

6. error(Formal, Context)

7. All other exceptions

Note The above resolution is not described in the ISO standard. This is not needed either because
ISO does not specify setup call cleanup/3 and does not deal with environment management
issues such as (debugger) callbacks. Neither does it define abort/0 or timeout handling. Notably
abort/0 and timeout are non-logical control structures. They are implemented on top of exceptions
as they need to unwind the stack, destroy choice points and call cleanup handlers in the same way.
However, the pending exception should not be replaced by another one before the intended handler is
reached. The abort exception cannot be caught, something which is achieved by wrapping the cleanup
handler of catch/3 into call cleanup(Handler, abort).

4.10.3 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an error
message, after which the predicate failed. If the Prolog flag debug on errorwas in effect (default),
the tracer was switched on. The combination of the error message and trace information is generally
sufficient to locate the error.

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user code, the interactive
top level will trap it to prevent termination.

SWI-Prolog 9.3 Reference Manual

4.10. EXCEPTION HANDLING 159

If we do not take special precautions, the context information associated with an unexpected
exception (i.e., a programming error) is lost. Therefore, if an exception is raised which is not caught
using catch/3 and the top level is running, the error will be printed, and the system will enter trace
mode.

If the system is in a non-interactive call-back from foreign code and there is no catch/3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the Prolog flag debug on error:

• current prolog flag(debug on error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed using PL exception(). This is the default.

• current prolog flag(debug on error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analyse the context of the error.

While looking for the context in which an exception takes place, it is advised to switch on debug
mode using the predicate debug/0. The hook prolog exception hook/5 can be used to add
more debugging facilities to exceptions. An example is the library http/http error, generating
a full stack trace on errors in the HTTP server library.

4.10.4 The exception term

General form of the ISO standard exception term

The predicate throw/1 takes a single argument, the exception term, and the ISO standard stipulates
that the exception term be of the form error(Formal, Context) with:

• Formal
the ‘formal’ description of the error, as listed in chapter 7.12.2 pp. 62-63 (”Error classification”)
of the ISO standard. It indicates the error class and possibly relevant error context information.
It may be a compound term of arity 1,2 or 3 - or simply an atom if there is no relevant error
context information.

• Context
additional context information beyond the one in Formal. If may be unset, i.e. a fresh variable,
or set to something that hopefully will help the programmer in debugging. The structure of
Context is left unspecified by the ISO Standard, so SWI-Prolog creates it own convention (see
below).

Thus, constructing an error term and throwing it might take this form (although you would not
use the illustrative explicit naming given here; instead composing the exception term directly in a
one-liner):

Exception = error(Formal, Context),
Context = ... some local convention ...,
Formal = type_error(ValidType, Culprit), % for "type error" for example
ValidType = integer, % valid atoms are listed in the ISO standard
Culprit = ... some value ...,
throw(Exception)

SWI-Prolog 9.3 Reference Manual

160 CHAPTER 4. BUILT-IN PREDICATES

Note that the ISO standard formal term expresses what should be the case or what is the expected
correct state, and not what is the problem. For example:

• •
If a variable is found to be uninstantiated but should be instantiated, the error term is
instantiation error: The problem is not that there is an unwanted instantiation, but
that the correct state is the one with an instantiated variable.

• •
In case a variable is found to be instantiated but should be uninstantiated (because it will be
used for output), the error term is uninstantiation error(Culprit): The problem is not
that there is lack of instantiation, but that the correct state is the one which Culprit (or one of its
subterms) is more uninstantiated than is the case.

• •
If you try to disassemble an empty list with compound name arguments/3, the error term
is type error(compound,[]). The problem is not that [] is (erroneously) a compound term,
but that a compound term is expected and [] does not belong to that class.

Throwing exceptions from applications and libraries

User predicates are free to choose the structure of their exception terms (i.e., they can define their own
conventions) but should adhere to the ISO standard if possible, in particular for libraries.

Notably, exceptions of the shape error(Formal,Context) are recognised by the development tools
and therefore expressing unexpected situations using these exceptions improves the debugging expe-
rience.

In SWI-Prolog, the second argument of the exception term, i.e., the Context argument, is generally
of the form context(Location, Message), where:

• Location
describes the execution context in which the exception occurred. While the Location ar-
gument may be specified as a predicate indicator (Name/Arity), it is typically filled by
the prolog stack library. This library recognises uncaught errors or errors caught by
catch with backtrace/3 and fills the Location argument with a backtrace.

• Message
provides an additional description of the error or can be left as a fresh variable if there is nothing
appropriate to fill in.

ISO standard exceptions can be thrown via the predicates exported from error. Termwise, these
predicates look exactly like the Formal of the ISO standard error term they throw:

• •
instantiation error/1 (the argument is not used: ISO specifies no argument)

• •
uninstantiation error/1

• •
type error/2

SWI-Prolog 9.3 Reference Manual

4.11. PRINTING MESSAGES 161

• •
domain error/2

• •
existence error/2

• •
existence error/3 (a SWI-Prolog extension that is not ISO)

• •
permission error/3

• •
representation error/1

• •
resource error/1

• •
syntax error/1

4.11 Printing messages

The predicate print message/2 is used to print a message term in a human-readable format.
The other predicates from this section allow the user to refine and extend the message system. A
common usage of print message/2 is to print error messages from exceptions. The code below
prints errors encountered during the execution of Goal, without further propagating the exception and
without starting the debugger.

...,
catch(Goal, E,

(print_message(error, E),
fail

)),
...

Another common use is to define message hook/3 for printing messages that are normally silent,
suppressing messages, redirecting messages or make something happen in addition to printing the
message.

print message(+Kind, +Term)
The predicate print message/2 is used by the system and libraries to print messages.
Kind describes the nature of the message, while Term is a Prolog term that describes the
content. Printing messages through this indirection instead of using format/3 to the
stream user error allows displaying the message appropriate to the application (termi-
nal, logfile, graphics), acting on messages based on their content instead of a string (see
message hook/3) and creating language specific versions of the messages. See also
section 4.11.1. The following message kinds are known:

SWI-Prolog 9.3 Reference Manual

162 CHAPTER 4. BUILT-IN PREDICATES

banner
The system banner message. Banner messages can be suppressed by setting the Prolog
flag verbose to silent.

debug(Topic)
Message from library(debug). See debug/3.

error
The message indicates an erroneous situation. This kind is used to print uncaught excep-
tions of type error(Formal, Context). See section introduction (section 4.11). An error
message causes the process to halt with status 1 if the Prolog flag on error is set to
halt and the message is not intercepted by message hook/3. Not intercepted error
messages increment the errors key for statistics/2.

help
User requested help message, for example after entering ‘h’ or ‘?’ to a prompt.

information
Information that is requested by the user. An example is statistics/0.

informational
Typically messages of events and progress that are considered useful to a developer. Such
messages can be suppressed by setting the Prolog flag verbose to silent.

silent
Message that is normally not printed. Applications may define message hook/3 to act
upon such messages.

trace
Messages from the (command line) tracer.

warning
The message indicates something dubious that is not considered fatal. For example,
discontiguous predicates (see discontiguous/1). A warning message causes the
process to halt with status 1 if the Prolog flag on warning is set to halt and the
message is not intercepted by message hook/3. Not intercepted warning messages
increment the warnings key for statistics/2.

The predicate print message/2 first translates the Term into a list of ‘message lines’ (see
print message lines/3 for details). Next, it calls the hook message hook/3 to allow
the user to intercept the message. If message hook/3 fails it prints the message unless Kind
is silent.

The print message/2 predicate and its rules are in the file
⟨plhome⟩/boot/messages.pl, which may be inspected for more information on the
error messages and related error terms. If you need to write messages from your own
predicates, it is recommended to reuse the existing message terms if applicable. If no existing
message term is applicable, invent a fairly unique term that represents the event and define a
rule for the multifile predicate prolog:message//1. See section 4.11.1 for a deeper discussion
and examples.

See also message to string/2.

print message lines(+Stream, +Prefix, +Lines)
Print a message (see print message/2) that has been translated to a list of message ele-
ments. The elements of this list are:

SWI-Prolog 9.3 Reference Manual

4.11. PRINTING MESSAGES 163

⟨Format⟩-⟨Args⟩
Where Format is an atom and Args is a list of format arguments. Handed to format/3.

flush
If this appears as the last element, Stream is flushed (see flush output/1) and no
final newline is generated. This is combined with a subsequent message that starts with
at same line to complete the line.

at same line
If this appears as first element, no prefix is printed for the first line and the line position is
not forced to 0 (see format/1, ˜N).

ansi(+Attributes, +Format, +Args)
This message may be intercepted by means of the hook
prolog:message line element/2. The library ansi term implements
this hook to achieve coloured output. If it is not intercepted it invokes format(Stream,
Format, Args).

url(Location)
Print a source location. Location is one of the terms File:Line:Column,
File:Line or File. When using library ansi term, this is translated into a
hyperlink for modern terminals.

url(URL, Label)
Print Label. When using library ansi term, this is translated into a hyperlink for
modern terminals.

nl
A new line is started. If the message is not complete, Prefix is printed before the remainder
of the message.

begin(Kind, Var)
end(Var)

The entire message is headed by begin(Kind, Var) and ended by end(Var). This feature
is used by, e.g., library ansi term to colour entire messages.

⟨Format⟩
Handed to format/3 as format(Stream, Format, []). Deprecated because it is am-
biguous if Format collides with one of the atomic commands.

See also print message/2 and message hook/3.

message hook(+Term, +Kind, +Lines)
Hook predicate that may be defined in the module user to intercept messages from
print message/2. Term and Kind are the same as passed to print message/2. Lines
is a list of format statements as described with print message lines/3. See also
message to string/2.

This predicate must be defined dynamic and multifile to allow other modules defining clauses
for it too.

thread message hook(+Term, +Kind, +Lines)
As message hook/3, but this predicate is local to the calling thread (see
thread local/1). This hook is called before message hook/3. The ‘pre-hook’ is

SWI-Prolog 9.3 Reference Manual

164 CHAPTER 4. BUILT-IN PREDICATES

indented to catch messages they may be produced by calling some goal without affecting other
threads.

message property(+Kind, ?Property)
This hook can be used to define additional message kinds and the way they are displayed. The
following properties are defined:

color(-Attributes)
Print message using ANSI terminal attributes. See ansi format/3 for details. Here is
an example, printing help messages in blue:

:- multifile user:message_property/2.

user:message_property(help, color([fg(blue)])).

prefix(-Prefix)
Prefix printed before each line. This argument is handed to format/3. The default is
’˜N’. For example, messages of kind warning use ’˜NWarning: ’.

tag(-Tag)
Defines the text part for the prefix property for error and warning messages.

location prefix(+Location, -FirstPrefix, -ContinuePrefix)
Used for printing messages that are related to a source location. Currently, Location is a
term File:Line. FirstPrefix is the prefix for the first line and -ContinuePrefix is the prefix
for continuation lines. For example, the default for errors is

location_prefix(File:Line,
’˜NERROR: ˜w:˜d:’-[File,Line], ’˜N\t’)).

stream(-Stream)
Stream to which to print the message. Default is user error.

wait(-Seconds)
Amount of time to wait after printing the message. Default is not to wait.

prolog:message line element(+Stream, +Term)
This hook is called to print the individual elements of a message from
print message lines/3. This hook is used by e.g., library ansi term to colour
messages on ANSI-capable terminals.

prolog:message prefix hook(+ContextTerm, -Prefix)
This hook is called to add context to the message prefix. ContextTerm is a member of the list
provided by the message context. Prefix must be unified with an atomic value that is
added to the message prefix.

message to string(+Term, -String)
Translates a message term into a string object (see section 5.2).

version
Write the SWI-Prolog banner message as well as additional messages registered using
version/1. This is the default initialization goal which can be modified using -g.

SWI-Prolog 9.3 Reference Manual

4.11. PRINTING MESSAGES 165

version(+Message)
Register additional messages to be printed by version/0. Each registered message is handed
to the message translation DCG and can thus be defined using the hook prolog:message//1. If
not defined, it is simply printed.

4.11.1 Printing from libraries

Libraries should not use format/3 or other output predicates directly. Libraries that print informa-
tional output directly to the console are hard to use from code that depend on your textual output,
such as a CGI script. The predicates in section 4.11 define the API for dealing with messages. The
idea behind this is that a library that wants to provide information about its status, progress, events
or problems calls print message/2. The first argument is the level. The supported levels are de-
scribed with print message/2. Libraries typically use informational and warning, while
libraries should use exceptions for errors (see throw/1, type error/2, etc.).

The second argument is an arbitrary Prolog term that carries the information of the message, but
not the precise text. The text is defined by the grammar rule prolog:message//1. This distinction is
made to allow for translations and to allow hooks processing the information in a different way (e.g.,
to translate progress messages into a progress bar).

For example, suppose we have a library that must download data from the Internet (e.g., based on
http open/3). The library wants to print the progress after each downloaded file. The code below
is a good skeleton:

download_urls(List) :-
length(List, Total),
forall(nth1(I, List, URL),

(download_url(URL),
print_message(informational,

download_url(URL, I, Total)))).

The programmer can now specify the default textual output using the rule below. Note that this
rule may be in the same file or anywhere else. Notably, the application may come with several rule
sets for different languages. This, and the user-hook example below are the reason to represent the
message as a compound term rather than a string. This is similar to using message numbers in non-
symbolic languages. The documentation of print message lines/3 describes the elements that
may appear in the output list.

:- multifile
prolog:message//1.

prolog:message(download_url(URL, I, Total)) -->
{ Perc is round(I*100/Total) },
[’Downloaded ˜w; ˜D from ˜D (˜d%)’-[URL, I, Total, Perc]].

A user of the library may define rules for message hook/3. The rule below acts on the message
content. Other applications can act on the message level and, for example, popup a message box for
warnings and errors.

SWI-Prolog 9.3 Reference Manual

166 CHAPTER 4. BUILT-IN PREDICATES

:- multifile user:message_hook/3.

message_hook(download_url(URL, I, Total), _Kind, _Lines) :-
<send this information to a GUI component>

In addition, using the command line option -q, the user can disable all informational messages.

4.12 Handling signals

As of version 3.1.0, SWI-Prolog is able to handle software interrupts (signals) in Prolog as well as in
foreign (C) code (see section 12.4.17).

Signals are used to handle internal errors (execution of a non-existing CPU instruction, arith-
metic domain errors, illegal memory access, resource overflow, etc.), as well as for dealing with
asynchronous interprocess communication.

Signals are defined by the POSIX standard and part of all Unix machines. The MS-Windows
Win32 provides a subset of the signal handling routines, lacking the vital functionality to raise a sig-
nal in another thread for achieving asynchronous interprocess (or interthread) communication (Unix
kill() function).

on signal(+Signal, -Old, :New)
Determines how Signal is processed. Old is unified with the old behaviour, while the behaviour
is switched to New. As with similar environment control predicates, the current value is
retrieved using on signal(Signal, Current, Current).

The action description is an atom denoting the name of the predicate that will be called if
Signal arrives. on signal/3 is a meta-predicate, which implies that ⟨Module⟩:⟨Name⟩ refers
to ⟨Name⟩/1 in module ⟨Module⟩. The handler is called with a single argument: the name of
the signal as an atom. The Prolog names for signals are explained below.

Four names have special meaning. throw implies Prolog will map the signal onto a Prolog
exception as described in section 4.10, ignore causes Prolog to ignore the signal entirely,
debug specifies the debug interrupt prompt that is initially bound to SIGINT (Control-C) and
default resets the handler to the settings active before SWI-Prolog manipulated the handler.

Signals bound to a foreign function through PL signal() are reported using the term
’$foreign function’(Address).

After receiving a signal mapped to throw, the exception raised has the following structure:

error(signal(⟨SigName⟩, ⟨SigNum⟩), ⟨Context⟩)

The signal names are defined by the POSIX standard as symbols of the form SIG⟨SIGNAME⟩.
The Prolog name for a signal is the lowercase version of ⟨SIGNAME⟩. The predicate
current signal/3 may be used to map between names and signals.

Initially, the following signals are handled unless the command line option --no-signals is
specified:

int
Prompts the user, allowing to inspect the current state of the process and start the tracer.

SWI-Prolog 9.3 Reference Manual

4.12. HANDLING SIGNALS 167

usr2
Bound to an empty signal handler used to make blocking system calls return. This al-
lows thread signal/2 to interrupt threads blocked in a system call. See also
prolog alert signal/2.

pipe
Ignored.

hup, term, abrt, quit
Causes normal Prolog cleanup (e.g., at halt/1) before terminating the process with
the same signal.

segv, ill, bus, sys
Dumps the C and Prolog stacks and runs cleanup before terminating the process with the
same signal.

fpe, alrm, xcpu, xfsz, vtalrm
Throw a Prolog exception (see above).

current signal(?Name, ?Id, ?Handler)
Enumerate the currently defined signal handling. Name is the signal name, Id is the numerical
identifier and Handler is the currently defined handler (see on signal/3).

prolog alert signal(?Old, +New)
Query or set the signal used to unblock blocking system calls on Unix(-like) systems and
process pending Prolog signals. The default is SIGUSR2. See also --sigalert. New can
be a signal name or number. See on signal/3 for how the Prolog signal name is defined.
The Old argument is unified to the signal name if known and the number otherwise. Notably
the value 0 (zero) indicates that the system does not use an alarm signal. On POSIX systems,
this implies that system calls are not interrupted by thread signal/2.

This predicate is only defined on systems where the alert signal mechanism is used.

4.12.1 Notes on signal handling

Before deciding to deal with signals in your application, please consider the following:

• Portability
On MS-Windows, the signal interface is severely limited. Different Unix brands support differ-
ent sets of signals, and the relation between signal name and number may vary. Currently, the
system only supports signals numbered 1 to 3234. Installing a signal outside the limited set of
supported signals in MS-Windows crashes the application.

• Safety
Immediately delivered signals (see below) are unsafe. This implies that foreign functions called
from a handler cannot safely use the SWI-Prolog API and cannot use C longjmp(). Handlers
defined as throw are unsafe. Handlers defined to call a predicate are safe. Note that the
predicate can call throw/1, but the delivery is delayed until Prolog is in a safe state.

The C-interface described in section 12.4.17 provides the option PL SIGSYNC to select either
safe synchronous or unsafe asynchronous delivery.

34TBD: the system should support the Unix realtime signals

SWI-Prolog 9.3 Reference Manual

168 CHAPTER 4. BUILT-IN PREDICATES

• Time of delivery
Using throw or a foreign handler, signals are delivered immediately (as defined by the OS).
When using a Prolog predicate, delivery is delayed to a safe moment. Blocking system
calls or foreign loops may cause long delays. Foreign code can improve on that by calling
PL handle signals().

Signals are blocked when the garbage collector is active.

4.13 DCG Grammar rules

Grammar rules form a comfortable interface to difference lists. They are designed both to support
writing parsers that build a parse tree from a list of characters or tokens and for generating a flat list
from a term.

Grammar rules look like ordinary clauses using -->/2 for separating the head and body rather
than :-/2. Expanding grammar rules is done by expand term/2, which adds two additional
arguments to each term for representing the difference list.

The body of a grammar rule can contain three types of terms. A callable term is interpreted as a
reference to a grammar rule. Code between {. . .} is interpreted as plain Prolog code, and finally, a
list is interpreted as a sequence of literals. The Prolog control-constructs (\+/1, ->/2, ;//2, ,/2
and !/0) can be used in grammar rules.

We illustrate the behaviour by defining a rule set for parsing an integer.

integer(I) -->
digit(D0),
digits(D),
{ number_codes(I, [D0|D])
}.

digits([D|T]) -->
digit(D), !,
digits(T).

digits([]) -->
[].

digit(D) -->
[D],
{ code_type(D, digit)
}.

Grammar rule sets are called using the built-in predicates phrase/2 and phrase/3:

phrase(:DCGBody, ?List)
Equivalent to phrase(DCGBody, InputList, []).

phrase(:DCGBody, ?List, ?Rest)
True when DCGBody applies to the difference List/Rest. Although DCGBody is typically a
callable term that denotes a grammar rule, it can be any term that is valid as the body of a DCG
rule.

SWI-Prolog 9.3 Reference Manual

4.13. DCG GRAMMAR RULES 169

The example below calls the rule set integer//1 defined in section 4.13 and available from
library(dcg/basics), binding Rest to the remainder of the input after matching the in-
teger.

?- [library(dcg/basics)].
?- atom_codes(’42 times’, Codes),

phrase(integer(X), Codes, Rest).
X = 42
Rest = [32, 116, 105, 109, 101, 115]

The next example exploits a complete body. Given the following definition of
digit weight//1, we can pose the query below.

digit_weight(W) -->
[D],
{ code_type(D, digit(W)) }.

?- atom_codes(’Version 3.4’, Codes),
phrase(("Version ",

digit_weight(Major),".",digit_weight(Minor)),
Codes).

Major = 3,
Minor = 4.

The SWI-Prolog implementation of phrase/3 verifies that the List and Rest arguments are
unbound, bound to the empty list or a list cons cell. Other values raise a type error.35 The
predicate call dcg/3 is provided to use grammar rules with terms that are not lists.

Note that the syntax for lists of codes changed in SWI-Prolog version 7 (see section 5.2). If a
DCG body is translated, both "text" and ‘text‘ is a valid code-list literal in version 7. A
version 7 string ("text") is not acceptable for the second and third arguments of phrase/3.
This is typically not a problem for applications as the input of a DCG rarely appears in the
source code. For testing in the toplevel, one must use double quoted text in versions prior to 7
and back quoted text in version 7 or later.

See also portray text/1, which can be used to print lists of character codes as a string to the
top level and debugger to facilitate debugging DCGs that process character codes. The library
apply macros compiles phrase/3 if the argument is sufficiently instantiated, eliminating
the runtime overhead of translating DCGBody and meta-calling.

call dcg(:DCGBody, ?State0, ?State)
As phrase/3, but without type checking State0 and State. This allows for using DCG rules
for threading an arbitrary state variable. This predicate was introduced after type checking was
added to phrase/3.36

35The ISO standard allows for both raising a type error and accepting any term as input and output. Note the tail of the
list is not checked for performance reasons.

36After discussion with Samer Abdallah.

SWI-Prolog 9.3 Reference Manual

170 CHAPTER 4. BUILT-IN PREDICATES

A portable solution for threading state through a DCG can be implemented by wrapping the
state in a list and use the DCG semicontext facility. Subsequently, the following predicates may
be used to access and modify the state:37

state(S), [S] --> [S].
state(S0, S), [S] --> [S0].

As stated above, grammar rules are a general interface to difference lists. To illustrate, we show a
DCG-based implementation of reverse/2:

reverse(List, Reversed) :-
phrase(reverse(List), Reversed).

reverse([]) --> [].
reverse([H|T]) --> reverse(T), [H].

4.14 Database

SWI-Prolog offers several ways to store data in globally accessible memory, i.e., outside the Prolog
stacks. Data stored this way notably does not change on backtracking. Typically it is a bad idea to use
any of the predicates in this section for realising global variables that can be assigned to. Typically,
first consider representing data processed by your program as terms passed around as predicate argu-
ments. If you need to reason over multiple solutions to a goal, consider findall/3, aggregate/3
and related predicates.

Nevertheless, there are scenarios where storing data outside the Prolog stacks is a good option.
Below are the main options for storing data:

Using dynamic predicates Dynamic predicates are predicates for which the list of clauses is mod-
ified at runtime using asserta/1, assertz/1, retract/1 or retractall/1. Fol-
lowing the ISO standard, predicates that are modified this way need to be declared using
the dynamic/1 directive. These facilities are defined by the ISO standard and widely sup-
ported. The mechanism is often considered slow in the literature. Performance depends
on the Prolog implementation. In SWI-Prolog, querying dynamic predicates has the same
performance as static ones. The manipulation predicates are fast. Using retract/1 or
retractall/1 on a predicate registers the predicate as ‘dirty’. Dirty predicates are cleaned
by garbage collect clauses/0, which is normally automatically invoked. Some work-
loads may result in significant performance reduction due to skipping retracted clauses and/or
clause garbage collection.

Dynamic predicates can be wrapped using library persistency to maintain a backup of the
data on disk. Dynamic predicates come in two flavours, shared between threads and local to
each thread. The latter version is created using the directive thread local/1.

37This solution was proposed by Markus Triska.

SWI-Prolog 9.3 Reference Manual

4.14. DATABASE 171

The recorded database The ‘recorded database’ registers a list of terms with a key, an atom or com-
pound term. The list is managed using recorda/3, recordz/3 and erase/1. It is queried
using recorded/3. The recorded database is not part of the ISO standard but fairly widely
supported, notably in implementations building on the ‘Edinburgh tradition’. There are few
reasons to use this database in SWI-Prolog due to the good performance of dynamic predicates.
Advantages are (1) the handle provides a direct reference to a term, (2) cyclic terms can be
stored and (3) attributes (section 8.1) are preserved. Disadvantages are (1) the terms in a list
associated with a key are not indexed, (2) the poorly specified immediate update semantics (see
section 4.14.1 applies to the recorded database and (3) reduced portability.

The flag/3 predicate The predicate flag/3 associates one simple value (number or atom) with
a key (atom, integer or compound). It is an old SWI-Prolog specific predicate that should be
considered deprecated, although there is no plan to remove it.

Using global variables The predicates b setval/2 and nb setval/2 associate a term living
on the Prolog stack with a name, either backtrackable or non-backtrackable. Backtrack-
able and non-backtrackable assignment without using a global name can be realised with
setarg/3 and nb setarg/3. Notably the latter are used to realise aggregation as e.g.,
aggregate all/3 performs.

Tries As of version 7.3.21, SWI-Prolog provides tries (prefix trees) to associate a term variant with
a value. Tries have been introduced to support tabling and are described in section 4.14.4.

4.14.1 Managing (dynamic) predicates

abolish(:PredicateIndicator) [ISO]

Removes all clauses of a predicate with functor Functor and arity Arity from the database. All
predicate attributes (dynamic, multifile, index, etc.) are reset to their defaults. Abolishing an
imported predicate only removes the import link; the predicate will keep its old definition in its
definition module.

According to the ISO standard, abolish/1 can only be applied to dynamic procedures.
This is odd, as for dealing with dynamic procedures there is already retract/1 and
retractall/1. The abolish/1 predicate was introduced in DEC-10 Prolog precisely
for dealing with static procedures. In SWI-Prolog, abolish/1 works on static procedures,
unless the Prolog flag iso is set to true.

It is advised to use retractall/1 for erasing all clauses of a dynamic predicate.

abolish(+Name, +Arity)
Same as abolish(Name/Arity). The predicate abolish/2 conforms to the Edinburgh
standard, while abolish/1 is ISO compliant.

copy predicate clauses(:From, :To)
Copy all clauses of predicate From to To. The predicate To must be dynamic or undefined. If
To is undefined, it is created as a dynamic predicate holding a copy of the clauses of From. If
To is a dynamic predicate, the clauses of From are added (as in assertz/1) to the clauses of
To. To and From must have the same arity. Acts as if defined by the program below, but at a
much better performance by avoiding decompilation and compilation.

SWI-Prolog 9.3 Reference Manual

172 CHAPTER 4. BUILT-IN PREDICATES

copy_predicate_clauses(From, To) :-
head(From, MF:FromHead),
head(To, MT:ToHead),
FromHead =.. [_|Args],
ToHead =.. [_|Args],
forall(clause(MF:FromHead, Body),

assertz(MT:ToHead, Body)).

head(From, M:Head) :-
strip_module(From, M, Name/Arity),
functor(Head, Name, Arity).

redefine system predicate(+Head)
This directive may be used both in module user and in normal modules to redefine any
system predicate. If the system definition is redefined in module user, the new definition is
the default definition for all sub-modules. Otherwise the redefinition is local to the module.
The system definition remains in the module system.

Redefining system predicate facilitates the definition of compatibility packages. Use in other
contexts is discouraged.

retract(+Term) [ISO,nondet]

When Term is an atom or a term it is unified with the first unifying fact or clause in the database.
The fact or clause is removed from the database. The retract/1 predicate respects the
logical update view. This implies that retract/1 succeeds for all clauses that match Term
when the predicate was called. The example below illustrates that the first call to retract/1
succeeds on bee on backtracking despite the fact that bee is already retracted.38

:- dynamic insect/1.
insect(ant).
insect(bee).

?- (retract(insect(I)),
writeln(I),
retract(insect(bee)),
fail

; true
).

ant ;
bee.

If multiple threads start a retract on the same predicate at the same time their notion of the entry
generation is adjusted such that they do not retract the same first clause. This implies that, if
multiple threads use once(retract(Term)), no two threads will retract the same clause.

38Example by Jan Burse

SWI-Prolog 9.3 Reference Manual

4.14. DATABASE 173

Note that on backtracking over retract/1, multiple threads may retract the same clause as
both threads respect the logical update view.

retractall(+Head) [ISO,det]

All facts or clauses in the database for which the head unifies with Head are removed. If all
arguments of Head are non-sharing variables (see is most general term/1), all clauses
are removed without inspecting the clauses. Cleaning all clauses of a dynamic predicate must
use retractall/1 rather than abolish/1 as the latter completely wipes the predicate,
including its properties. If Head refers to a predicate that is not defined, it is implicitly created
as a dynamic predicate. See also dynamic/1.39

asserta(+Term) [ISO]

assertz(+Term) [ISO]

assert(+Term) [deprecated]

Assert a clause (fact or rule) into the database. The predicate asserta/1 asserts the clause as
first clause of the predicate while assertz/1 assert the clause as last clause. The deprecated
assert/1 is equivalent to assertz/1. If the program space for the target module is
limited (see set module/1), asserta/1 can raise a resource error(program space)
exception. The example below adds two facts and a rule. Note the double parentheses around
the rule.

?- assertz(parent(’Bob’, ’Jane’)).
?- assertz(female(’Jane’)).
?- assertz((mother(Child, Mother) :-

parent(Child, Mother),
female(Mother))).

asserta(+Term, -Reference)
assertz(+Term, -Reference)
assert(+Term, -Reference) [deprecated]

Equivalent to asserta/1, assertz/1, assert/1, but in addition unifies Reference with
a handle to the asserted clauses. The handle can be used to access this clause with clause/3
and erase/1.

Update view

SWI-Prolog adheres to the logical update view, where backtrackable predicates that enter the def-
inition of a predicate will not see any changes (either caused by assert/1 or retract/1) to
the predicate. This view is the ISO standard. Logical updates are realised by keeping generation
information on clauses. Each change to the database causes an increment of the generation of the
database. Each goal is tagged with the generation in which it was started. Each clause is flagged
with the generation it was created in as well as the generation it was erased. Only clauses with a
‘created’ . . . ‘erased’ interval that encloses the generation of the current goal are considered visible.
The generation mechanism is also used to implement transactions See section 4.14.1.

Erased clauses are (eventually) reclaimed by the clause garbage collector implemented by
garbage collect clauses/0. By default, the clause garbage collector runs in a thread named

39The ISO standard only allows using dynamic/1 as a directive.

SWI-Prolog 9.3 Reference Manual

174 CHAPTER 4. BUILT-IN PREDICATES

gc, together with the atom garbage collector (garbage collect atoms/0). See also the Prolog
flag gc thread.

Indexing databases

The indexing capabilities of SWI-Prolog are described in section 2.17. Summarizing, SWI-Prolog
creates indexes for any applicable argument, pairs of arguments and indexes on the arguments of
compound terms when applicable. Extended JIT indexing is not widely supported among Pro-
log implementations. Programs that aim at portability should consider using term hash/2 and
term hash/4 to design their database such that indexing on constant or functor (name/arity ref-
erence) on the first argument is sufficient. In some cases, using the predicates below to add one or
more additional columns (arguments) to a database predicate may improve performance. The overall
design of code using these predicates is given below. Note that as term hash/2 leaves the hash
unbound if Term is not ground. This causes the lookup to be fast if Term is ground and correct (but
slow) otherwise.

:- dynamic
x/2.

assert_x(Term) :-
term_hash(Term, Hash),
assertz(x(Hash, Term)).

x(Term) :-
term_hash(Term, Hash),
x(Hash, Term).

term hash(+Term, -HashKey) [det]

If Term is a ground term (see ground/1), HashKey is unified with a positive integer value that
may be used as a hash key to the value. If Term is not ground, the predicate leaves HashKey an
unbound variable. Hash keys are in the range 0 . . . 16, 777, 215, the maximal integer that can
be stored efficiently on both 32 and 64 bit platforms.

This predicate may be used to build hash tables as well as to exploit argument indexing to find
complex terms more quickly.

The hash key does not rely on temporary information like addresses of atoms and may be as-
sumed constant over different invocations and versions of SWI-Prolog.40 Hashes differ between
big and little endian machines. The term hash/2 predicate is cycle-safe.41

term hash(+Term, +Depth, +Range, -HashKey) [det]

As term hash/2, but only considers Term to the specified Depth. The top-level term has
depth 1, its arguments have depth 2, etc. That is, Depth = 0 hashes nothing; Depth = 1 hashes
atomic values or the functor and arity of a compound term, not its arguments; Depth = 2 also
indexes the immediate arguments, etc.

HashKey is in the range [0 . . .Range − 1]. Range must be in the range [1 . . . 2147483647].
40Last change: version 5.10.4
41BUG: All arguments that (indirectly) lead to a cycle have the same hash key.

SWI-Prolog 9.3 Reference Manual

4.14. DATABASE 175

variant sha1(+Term, -SHA1) [det]

Compute a SHA1-hash from Term. The hash is represented as a 40-byte hexadecimal atom.
Unlike term hash/2 and friends, this predicate produces a hash key for non-ground terms.
The hash is invariant over variable-renaming (see =@=/2) and constants over different
invocations of Prolog.42

This predicate raises an exception when trying to compute the hash on a cyclic term or at-
tributed term. Attributed terms are not handled because subsumes chk/2 is not considered
well defined for attributed terms. Cyclic terms are not supported because this would require es-
tablishing a canonical cycle. That is, given A=[a—A] and B=[a,a—B], A and B should produce
the same hash. This is not (yet) implemented.

This hash was developed for lookup of solutions to a goal stored in a table. By using a cryp-
tographic hash, heuristic algorithms can often ignore the possibility of hash collisions and thus
avoid storing the goal term itself as well as testing using =@=/2.

variant hash(+Term, -HashKey) [det]

Similar to variant sha1/2, but using a non-cryptographic hash and produces an integer
result like term hash/2. This version does deal with attributed variables, processing them
as normal variables. This hash is primarily intended to speedup finding variant terms in a set of
terms. 43

Transactions

Traditionally, Prolog database updates add or remove individual clauses. The Logical Update View
ensures that a goal that is started on a dynamic predicate does not see modifications due to assert/1
or retract/1 during its life time. See section 4.14.1. In a multi-threaded context this assumption
still holds for individual predicates: concurrent modifications to a dynamic predicate are invisible.

Transactions allow running a goal in isolation. The goals running inside the transaction ‘see’
the database as it was when the transaction was started together with database changes done by the
transaction goal. Other threads see no changes until the transaction is committed. The commit, also
if it involved multiple clauses spread over multiple predicates, becomes atomically visible to other
threads. Transactions have several benefits [Wielemaker, 2013]

• If a database update requires multiple assert/1 and/or retract/1 operations, a transac-
tion ensure either all are executed or the database remains unchanged. Notably unexpected
exceptions or failures cannot leave the database in an inconsistent state.

• Other threads do not see the intermediate inconsistent states when a database update that con-
sists of multiple assert and/or retract is performed in a transaction. This notably avoids the need
to use locks (see with mutex/2) in threads that read the data. A reading thread may still
need to use snapshot/1 if a goal depends on multiple calls to dynamic predicates. Unlike
locks, transaction and snapshot based synchronization allows both readers and writers to make
progress simultaneously.44

42BUG: The hash depends on word order (big/little-endian) and the wordsize (32/64 bits).
43BUG: As variant sha1/2, cyclic terms result in an exception.
44Read-write locks also provide readers and writers to make progress simultaneously, but readers see all intermediate

states rather than a consistent state.

SWI-Prolog 9.3 Reference Manual

176 CHAPTER 4. BUILT-IN PREDICATES

Transactions on their own do not guarantee consistency. For example, when running the code
below to update the temperature concurrently from multiple threads it is possible for the global
state to have multiple temperature/1 clauses.

update_temperature(Temp) :-
transaction((retractall(temperature(_)),

asserta(temperature(Temp)))).

Global consistency can be achieved by wrapping the above transaction using with mutex/2
or by using transaction/3 with a constraint that demands a single clause for
temperature/1

• Transactions allow for “what if” reasoning over the dynamic database. This is particularly
useful when combined with the deductive database facilities provided by tabling (see section 7).

SWI-Prolog transactions only affect the dynamic database. Static predicates are globally visible
and shared at all times. In particular, transactions do not affect loading source files and thus, source
files loaded inside a transaction (e.g., due to autoloading) are immediately globally visible. This may
pose problems if loading source files provide clauses for dynamic predicates.

transaction(:Goal)
transaction(:Goal, +Options)

Run Goal as once/1 in a transaction. This implies that access to dynamic predicates ‘sees’
the dynamic predicates at the moment the transaction is started, together with the modifications
issued by Goal. Thus, Goal does not see changes to dynamic predicates from other threads and
other threads do not see modifications by Goal (isolation). If Goal succeeds, all modifications
become atomically visible to the other threads. If Goal fails or raises an exception all local
modifications are discarded and transaction/1 fails or passes the exception.

Currently the number of database changes inside a transaction (or snap-
shot, see snapshot/1) is limited to 232 − 1. If this limit is exceeded a
representation_error(transaction_generations) exception is raised.

Transactions may be nested. The above mentioned limitation for the number of database
changes applies to the combined number in nested transactions.

If Goal succeeds, the transaction is committed. This implies that (1) any clause that is asserted
in the transaction and not retracted in the same transaction is made globally visible and (2) and
clause the existed before the transaction and is retracted in the transaction becomes globally
invisible. Multiple transactions may retract the same clause and be committed, i.e., committing
a retract that was already performed is a no-op. All modifications become atomically visible to
other threads. The transaction/3 variation allows for verifying constraints just before the
commit takes place.

Clause ordering Inside a transaction clauses can be added using asserta/1 and
assertz/1. If only a single transaction is active at any point in time transactions preserve the
usual ordering of clauses. However, if multiple transactions manipulate the same predicate(s)
concurrently (typically using transaction/3), the final order of the clauses is the order

SWI-Prolog 9.3 Reference Manual

4.14. DATABASE 177

in which the transactions asserted the clauses and not the order in which the transactions are
committed.

The transaction/1 variant is equivalent to transaction(Goal,[]). The
transaction/2 variant processed the following options:

bulk(+Boolean)
When true, accumulate events from changes to dynamic predicates (see
prolog listen/2) and trigger these events as part of the commit phase. This
implies that if the transaction is not committed the events are never triggered. Failure to
trigger the events causes the transaction to be discarded. Experimental.

transaction(:Goal, :Constraint, +Mutex)
Similar to transaction/1, but allows verifying Constraint during the commit phase. This
predicate follows the steps below. Any failure or exception during this process discards the
transaction and releases Mutex when applicable. Constraint may modify the database. Such
modifications follow the semantics that apply for Goal.

• Call once(Goal)

• Lock Mutex

• Change the visibility to the current global state combined with the changes made by Goal

• Call once(Constraint)

• Commit the changes

• Unlock Mutex.

This predicate is intended to execute multiple transactions with a time consuming Goal in part
concurrently. For example, it can be used for a Compare And Swap (CAS) like design. We
illustrate this using a simple counter in the code below. Note that the transaction fails if some
other thread concurrently updated the counter. This is why we need the repeat/0 and a final
!/0. The CAS-style update is in general useful if Goal is expensive and conflicts are rare.

:- dynamic counter/1.

increment_counter(Delta) :-
repeat,
transaction((counter(Value),

Value2 is Value+Delta,
),
(retract(counter(Value)),
asserta(counter(Value2))

),
counter_lock),

!.

SWI-Prolog 9.3 Reference Manual

178 CHAPTER 4. BUILT-IN PREDICATES

snapshot(:Goal)
Similar to transaction/1, but always discards the local modifications. In other words,
snapshot/1 allows a thread to examine a frozen state of the dynamic predicates and/or make
isolated modifications without affecting other threads and without making permanent changes
to the database. Where transactions allow the global state to be updated atomically from one
consistent state to the next, a snapshot allows reasoning about a consistent state.

current transaction(-Goal) [nondet]

True when called inside a transaction running Goal. This predicate generates candidates from
the current (nested) transaction outward. Goal is a plain goal if the calling context module
is the same as matching transaction/1 or snapshot/1 and a qualified callable term
otherwise. Note that this only enumerates transactions in the current thread.

transaction updates(-Updates)
Unify Updates with a list of database updates that would be effectuated if the transaction is
going to be committed at this stage. Updates is a list of terms defined below. The elements are
sorted on the change generation, i.e., the order in which the operations were performed.

asserta(+ClauseRef)
assertz(+ClauseRef)

The given clause will be asserted at the start or end. Note that due to competing
transactions the clause may no longer be the first/last clause of the predicate.

erased(+ClauseRef)
The given clause will be removed. This may be due to erase/1, retract/1 or
retractall/1.

Impact of transactions

Transactions interact with other facilities that depend on changing dynamic predicates. This section
discusses these interactions.

Last modified generation Using the predicate property/2 property
last modified generation(Generation) we can determine whether a predicate
was modified. When a predicate is changed inside a transaction this generation is not updated.
The generation for dynamic predicates that are modified in the transaction is updated to the
commit generation when the transaction is committed. Asking for the last modified generation
inside the transaction examines the log of modified clauses and reports the generation as one of

• The global modified generation if the predicate was not modified in the transaction and
not modified outside the transaction to beyond the start generation of the transaction. If
the modified generation is higher than the transaction start generation, this generation is
reported. 45

• The transaction start generation plus the local generation of the last change if the predicate
is modified inside the transaction.

45BUG: Note that the above implies that inside a transaction we observe a changing last modified generation for predicates
that have only been modified outside the transaction while these changes are not visible.

SWI-Prolog 9.3 Reference Manual

4.14. DATABASE 179

Wait for database changes The predicate thread wait/2 does not wakeup threads for changes
inside a transaction. The wakeup is delayed until the transaction is committed. Note that
thread wait/2 cannot be meaningfully called from inside a transaction because no external
entities can cause changes to the dynamic database inside the transaction.

Incremental tabling Consistency of tables must be restored if the transaction is rolled back. For
local tables this is realised as follows:

• Tables are either marked to be invalidated on rollback or, for monotonic tabling individual
answers are marked to be removed on rollback.

• A table is marked to be invalidated if, while it is created or reevaluated, at least one
dependent dynamic predicate has been modified inside the transaction.

• Answers are marked to be retracted when they result from monotonic reevaluation based
on changes inside the transaction.

In other words: tables being reevaluated inside a transaction that do not depend on predicates
modified inside the transaction remain valid. Monotonic tables that get new answers due to
asserts inside the transaction have these answers removed during the rollback while the table
remains valid. Monotonic tables that are for some reason invalidated inside the transaction are
invalidated during the rollback.

Correct interaction between tabling and transaction currently only deals with local tables.
Shared tables should not be combined with transactions. Future versions may improve on that.
A possible route is to make a local copy from a shared table when (re)evaluation is performed
inside a transaction.

Status SWI-Prolog transaction basics and API are stable. Interaction with other parts of the system
that depend on dynamic predicates is still unsettled. Future versions may support non-determinism
through transactions and snapshots.

4.14.2 The recorded database

recorda(+Key, +Term, -Reference)
Assert Term in the recorded database under key Key. Key is a small integer (range
min tagged integer . . .max tagged integer, atom or compound term. If the key is
a compound term, only the name and arity define the key. Reference is unified with an opaque
handle to the record (see erase/1).

recorda(+Key, +Term)
Equivalent to recorda(Key, Term,).

recordz(+Key, +Term, -Reference)
Equivalent to recorda/3, but puts the Term at the tail of the terms recorded under Key.

recordz(+Key, +Term)
Equivalent to recordz(Key, Term,).

recorded(?Key, ?Value, ?Reference)
True if Value is recorded under Key and has the given database Reference. If Reference is given,

SWI-Prolog 9.3 Reference Manual

180 CHAPTER 4. BUILT-IN PREDICATES

this predicate is semi-deterministic. Otherwise, it must be considered non-deterministic. If
neither Reference nor Key is given, the triples are generated as in the code snippet below.46 See
also current key/1.

current_key(Key),
recorded(Key, Value, Reference)

recorded(+Key, -Value)
Equivalent to recorded(Key, Value,).

erase(+Reference)
Erase a record or clause from the database. Reference is a db-reference returned by
recorda/3, recordz/3 or recorded/3, clause/3, assert/2, asserta/2 or
assertz/2. Fail silently if the referenced object no longer exists. Notably, if multiple
threads attempt to erase the same clause one will succeed and the others will fail.

instance(+Reference, -Term)
Unify Term with the referenced clause or database record. Unit clauses are represented as Head
:- true.

4.14.3 Flags

The predicate flag/3 is the oldest way to store global non-backtrackable data in SWI-Prolog. Flags
are global and shared by all threads. Their value is limited to atoms, small (64-bit) integers and floating
point numbers. Flags are thread-safe. The flags described in this section must not be confused with
Prolog flags described in section 2.12.

get flag(+Key, -Value)
True when Value is the value currently associated with Key. If Key does not exist, a new flag
with value ‘0’ (zero) is created.

set flag(+Key, Value)
Set flag Key to Value. Value must be an atom, small (64-bit) integer or float.

flag(+Key, -Old, +New)
True when Old is the current value of the flag Key and the flag has been set to New. New can be
an arithmetic expression. The update is atomic. This predicate can be used to create a shared
global counter as illustrated in the example below.

next_id(Id) :-
flag(my_id, Id, Id+1).

46Note that, without a given Key, some implementations return triples in the order defined by recorda/2 and
recordz/2.

SWI-Prolog 9.3 Reference Manual

4.14. DATABASE 181

4.14.4 Tries

Tries (also called digital tree, radix tree or prefix tree maintain a mapping between a variant of a
term (see =@=/2) and a value. They have been introduced in SWI-Prolog 7.3.21 as part of the
implementation of tabling. The current implementation is rather immature. In particular, the following
limitations currently apply:

• Tries only offer partial thread-safety. Multiple threads may concurrently insert values in a trie.
Concurrent deletion and concurrent non-deterministic access is not supported.

• Tries should not be modified while non-deterministic predicates such as trie gen/3 are run-
ning on the trie.

• Terms cannot be cyclic. Possibly this will not change because cyclic terms can only be sup-
ported after creating a canonical form of the term.

• Starting with SWI-Prolog 9.3.23, tries support attributed variables both in for keys and values.
Tries holding attributed variables can also be compiled using trie gen compiled/2 or
trie gen compiled/3.

We give the definition of these predicates for reference and debugging tabled predicates.
Future versions are likely to get a more stable and safer implementation. The API to tries
should not be considered stable.

trie new(-Trie)
Create a new trie and unify Trie with a handle to the trie. The trie handle is a blob. Tries are
subject to atom garbage collection.

trie destroy(+Trie)
Destroy Trie. This removes all nodes from the trie and causes further access to Trie to raise an
existence error exception. The handle itself is reclaimed by atom garbage collection.

is trie(@Trie) [semidet]

True when Trie is a trie object. See also current trie/1.

current trie(-Trie) [nondet]

True if Trie is a currently existing trie. As this enumerates and then filters all known atoms this
predicate is slow and should only be used for debugging purposes. See also is trie/1.

trie insert(+Trie, +Key)
Insert the term Key into Trie. If Key is already part of Trie the predicates fails silently. This is
the same as trie insert/3, but using a fixed reserved Value.

trie insert(+Trie, +Key, +Value)
Insert the term Key into Trie and associate it with Value. Value can be any term. If Key-Value
is already part of Trie, the predicates fails silently. If Key is in Trie associated with a different
value, a permission error is raised.

trie update(+Trie, +Key, +Value)
As trie insert/3, but if Key is in Trie, its associated value is updated.

SWI-Prolog 9.3 Reference Manual

182 CHAPTER 4. BUILT-IN PREDICATES

trie insert(+Trie, +Term, +Value, -Handle)
As trie insert/3, returning a handle to the trie node. This predicate is currently unsafe as
Handle is an integer used to encode a pointer. It was used to implement a pure Prolog version
of the tabling library.

trie delete(+Trie, +Key, ?Value)
Delete Key from Trie if the value associated with Key unifies with Value.

trie lookup(+Trie, +Key, -Value)
True if the term Key is in Trie and associated with Value.

trie term(+Handle, -Term)
True when Term is a copy of the term associated with Handle. The result is undefined (including
crashes) if Handle is not a handle returned by trie insert new/3 or the node has been
removed afterwards.

trie gen(+Trie, ?Key) [nondet]

True when Key is a member of Trie. See also trie gen compiled/2.

trie gen(+Trie, ?Key, -Value) [nondet]

True when Key is associated with Value in Trie. Backtracking retrieves all pairs. Currently
scans the entire trie, even if Key is partly known. Currently unsafe if Trie is modified while the
values are being enumerated. See also trie gen compiled/3.

trie gen compiled(+Trie, ?Key) [nondet]

trie gen compiled(+Trie, ?Key, -Value) [nondet]

Similar to trie gen/3, but uses a compiled representation of Trie. The compiled repre-
sentation is created lazily and manipulations of the trie (insert, delete) invalidate the current
compiled representation. The compiled representation generates answers faster and, as it runs
on a snapshot of the trie, is immune to concurrent modifications of the trie. This predicate is
used to generate answers from answer tries as used for tabled execution. See section 7.

trie property(?Trie, ?Property) [nondet]

True if Trie exists with Property. Intended for debugging and statistical purposes. Retrieving
some of these properties visit all nodes of the trie. Defined properties are

value count(-Count)
Number of key-value pairs in the trie.

node count(-Count)
Number of nodes in the trie.

size(-Bytes)
Required storage space of the trie.

compiled size(-Bytes)
Required storage space for the compiled representation as used by
trie gen compiled/2,3.

hashed(-Count)
Number of nodes that use a hashed index to its children.

lookup count(-Count)
Number of trie lookup/3 calls (only when compiled with O TRIE STATS).

SWI-Prolog 9.3 Reference Manual

4.15. DECLARING PREDICATE PROPERTIES 183

gen call count(-Count)
Number of trie gen/3 calls (only when compiled with O TRIE STATS).

wait(-Count)
Number of times a thread waited on this trie for another thread to complete it (shared
tabling, only when compiled with O TRIE STATS).

deadlock(-Count)
Number of times this trie was part of a deadlock and its completion was abandoned
(shared tabling, only when compiled with O TRIE STATS).

In addition, a number of additional properties are defined on answer tries.

invalidated(-Count)
Number of times the trie was invalidated (incremental tabling).

reevaluated(-Count)
Number of times the trie was re-evaluated (incremental tabling).

idg affected count(-Count)
Number of answer tries affected by this one (incremental tabling).

idg dependent count(-Count)
Number of answer tries this one depends on (incremental tabling).

idg size(-Bytes)
Number of bytes in the IDG node representation.

4.15 Declaring predicate properties

This section describes directives which manipulate attributes of predicate definitions. The functors
dynamic/1, multifile/1, discontiguous/1 and public/1 are operators of priority 1150
(see op/3), which implies that the list of predicates they involve can just be a comma-separated list:

:- dynamic
foo/0,
baz/2.

In SWI-Prolog all these directives are just predicates. This implies they can also be called by a pro-
gram. Do not rely on this feature if you want to maintain portability to other Prolog implementations.

Notably with the introduction of tabling (see section 7) it is common that a set of predicates
require multiple options to be set. SWI-Prolog offers two mechanisms to cope with this. The predicate
dynamic/2 can be used to make a list of predicates dynamic and set additional options. In addition
and for compatibility with XSB,47 all the predicates below accept a term as((:PredicateIndicator,
. . .), (+Options)), where Options is a comma-list of one of more of the following options:

incremental
Include a dynamic predicate into the incremental tabling dependency graph. See section 7.7.

47Note that as is in XSB a high-priority operator and in SWI a low-priority and therefore both the sets of predicate
indicators as multiple options require parenthesis.

SWI-Prolog 9.3 Reference Manual

184 CHAPTER 4. BUILT-IN PREDICATES

opaque
Opposite of incremental. For XSB compatibility.48

abstract(Level)
Used together with incremental to reduce the dependency graph. See section 7.7.

volatile
Do not save this predicate. See volatile/1.

multifile
Predicate may have clauses in multiple clauses. See multifile/1.

discontiguous
Predicate clauses may not be contiguous in the file. See discontiguous/1.

shared
Dynamic predicate is shared between all threads. This is currently the default.

local
private

Dynamic predicate has distinct set of clauses in each thread. See thread local/1.

Below are some examples, where the last two are semantically identical.

:- dynamic person/2 as incremental.
:- dynamic (person/2,organization/2) as (incremental, abstract(0)).
:- dynamic([person/2,

organization/2
],
[incremental(true),

abstract(0)
]).

dynamic :PredicateIndicator, . . . [ISO]

Informs the interpreter that the definition of the predicate(s) may change during execution
(using assert/1 and/or retract/1). In the multithreaded version, the clauses of dynamic
predicates are shared between the threads. The directive thread local/1 provides an
alternative where each thread has its own clause list for the predicate. Dynamic predicates can
be turned into static ones using compile predicates/1.

dynamic(:ListOfPredicateIndicators, +Options)
As dynamic/1, but allows for setting additional properties. This predicate allows for setting
multiple properties on multiple predicates in a single call. SWI-Prolog also offers the XSB
compatible :- dynamic (p/1) as (incremental,abstract(0)). syntax. See
the introduction of section 4.15. Defined Options are:

48In XSB, opaque is distinct from the default in the sense that dynamic switching between opaque and incremental
is allowed.

SWI-Prolog 9.3 Reference Manual

4.15. DECLARING PREDICATE PROPERTIES 185

incremental(+Boolean)
Make the dynamic predicate signal depending tables. See section 7.7.

abstract(0)
This option must be used together with incremental. The only supported value is
0. With this option a call to the incremental dynamic predicate is recorded as the most
generic term for the predicate rather than the specific variant.

thread(+Local)
Local is one of shared (default) or local. See also thread local/1.

multifile(+Boolean)
discontiguous(+Boolean)
volatile(+Boolean)

Set the corresponding property. See multifile/1, discontiguous/1 and
volatile/1.

mode +Head, . . .
Define the modes for the predicates referenced by the comma-separated list Head. Each argu-
ment of each head is a mode specifier. Defined specifiers are +, - and ?. Mode declarations
have a long history in Prolog. This predicate uses the definitions derived from e.g., Quintus
Prolog and used for documentation in the ISO standard. The specifiers declare whether or not
an argument is unbound at call time. The + declares that the argument is nonvar/1, the -
declares the argument is var/1 and ? makes no claim.

Several Prolog systems define mode as an operator using the declaration below. Currently we
do not define the operator.

:- op(1150, fx, mode).

SWI-Prolog uses the mode information for its just-in-time clause indexing as described in sec-
tion 2.17. JIT only uses the - specifier to avoid examining that argument as a candidate for
indexing.

compile predicates(:ListOfPredicateIndicators)
Compile a list of specified dynamic predicates (see dynamic/1 and assert/1) into normal
static predicates. This call tells the Prolog environment the definition will not change anymore
and further calls to assert/1 or retract/1 on the named predicates raise a permission
error. This predicate is designed to deal with parts of the program that are generated at runtime
but do not change during the remainder of the program execution.49

multifile :PredicateIndicator, . . . [ISO]

Informs the system that the specified predicate(s) may be defined over more than one file. This
stops consult/1 from redefining a predicate when a new definition is found.

discontiguous :PredicateIndicator, . . . [ISO]

Informs the system that the clauses of the specified predicate(s) might not be together in the
source file. See also style check/1.

49The specification of this predicate is from Richard O’Keefe. The implementation is allowed to optimise the predicate.
This is not yet implemented. In multithreaded Prolog, however, static code runs faster as it does not require synchronisation.
This is particularly true on SMP hardware.

SWI-Prolog 9.3 Reference Manual

186 CHAPTER 4. BUILT-IN PREDICATES

public :PredicateIndicator, . . .
Instructs the cross-referencer that the predicate can be called. It has no semantics.50 The public
declaration can be queried using predicate property/2. The public/1 directive does
not export the predicate (see module/1 and export/1). The public directive is used for
(1) direct calls into the module from, e.g., foreign code, (2) direct calls into the module from
other modules, or (3) flag a predicate as being called if the call is generated by meta-calling
constructs that are not analysed by the cross-referencer.

non terminal :PredicateIndicator, . . .
Sets the non terminal property on the predicate. This indicates that the predicate imple-
ments a grammar rule. See predicate property/2. The non terminal property is
set for predicates exported as Name//Arity as well as predicates that have at least one clause
written using the -->/2 notation.

4.16 Examining the program

current atom(-Atom)
Successively unifies Atom with all atoms known to the system. Note that current atom/1
always succeeds if Atom is instantiated to an atom.

current blob(?Blob, ?Type)
Examine the type or enumerate blobs of the given Type. Typed blobs are supported through
the foreign language interface for storing arbitrary BLOBs (Binary Large Object) or handles to
external entities. See section 12.4.10 for details.

current functor(?Name, ?Arity)
True when Name/Arity is a known functor. This means that at some point in time a term
with name Name and Arity arguments was created. Functor objects are currently not subject
to garbage collection. Due to timing, t/2 below with instantiated Name and Arity can
theoretically fail, i.e., a functor may be visible in instantiated mode while it is not yet visible in
unbound mode. Considering that the only practical value of current functor/2 we are
aware of is to analyse resource usage we accept this impure behaviour.

t(Name, Arity) :-
(current_functor(Name, Arity)
-> current_functor(N, A), N == Name, A == Arity
; true
).

current flag(-FlagKey)
Successively unifies FlagKey with all keys used for flags (see flag/3).

current key(-Key)
Successively unifies Key with all keys used for records (see recorda/3, etc.).

50This declaration is compatible with SICStus. In YAP, public/1 instructs the compiler to keep the source. As the
source is always available in SWI-Prolog, our current interpretation also enhances the compatibility with YAP.

SWI-Prolog 9.3 Reference Manual

4.16. EXAMINING THE PROGRAM 187

current predicate(:PredicateIndicator) [ISO]

True if PredicateIndicator is a currently defined predicate. A predicate is considered defined
if it exists in the specified module, is imported into the module or is defined in one of the
modules from which the predicate will be imported if it is called (see section 6.10). Note
that current predicate/1 does not succeed for predicates that can be autoloaded
unless they are imported using autoload/2. See also current predicate/2 and
predicate property/2.

If PredicateIndicator is not fully specified, the predicate only generates values that are defined
in or already imported into the target module. Generating all callable predicates therefore re-
quires enumerating modules using current module/1. Generating predicates callable in
a given module requires enumerating the import modules using import module/2 and the
autoloadable predicates using the predicate property/2 autoload.

current predicate(?Name, :Head)
Classical pre-ISO implementation of current predicate/1, where the predicate is repre-
sented by the head term. The advantage is that this can be used for checking the existence of a
predicate before calling it without the need for functor/3:

call_if_exists(G) :-
current_predicate(_, G),
call(G).

Because of this intended usage, current predicate/2 also succeeds if the predicate can
be autoloaded. Unfortunately, checking the autoloader makes this predicate relatively slow, in
particular because a failed lookup of the autoloader will cause the autoloader to verify that its
index is up-to-date.

predicate property(:Head, ?Property)
True when Head refers to a predicate that has property Property. With sufficiently instan-
tiated Head, predicate property/2 tries to resolve the predicate the same way
as calling it would do: if the predicate is not defined it scans the default modules (see
default module/2) and finally tries the autoloader. Unlike calling, failure to find the
target predicate causes predicate property/2 to fail silently. If Head is not sufficiently
bound, only currently locally defined and already imported predicates are enumerated.
See current predicate/1 for enumerating all predicates. A common issue concerns
generating all built-in predicates. This can be achieved using the code below:

generate_built_in(Name/Arity) :-
predicate_property(system:Head, built_in),
functor(Head, Name, Arity),
\+ sub_atom(Name, 0, _, _, $). % discard reserved names

The predicate predicate property/2 is covered by part-II of the ISO standard (mod-
ules). Although we are not aware of any Prolog system that implements part-II of the ISO
standard, predicate property/2 is available in most systems. There is little consensus
on the implemented properties though. SWI-Prolog’s auto loading feature further complicate
this predicate.

SWI-Prolog 9.3 Reference Manual

188 CHAPTER 4. BUILT-IN PREDICATES

Property is one of:

autoload(File)
True if the predicate can be autoloaded from the file File. Like undefined, this property
is not generated.

built in
True if the predicate is locked as a built-in predicate. This implies it cannot be redefined
in its definition module and it can normally not be seen in the tracer.

defined
True if the predicate is defined. This property is aware of sources being reloaded, in
which case it claims the predicate defined only if it is defined in another source or it has
seen a definition in the current source. See compile aux clauses/1.

det
The predicate is defined to be deterministic using det/1.

discontiguous
True after discontiguous/1 was used to flag that the clauses of the predicates may
not be contiguous.

dynamic
True if assert/1 and retract/1 may be used to modify the predicate. This property
is set using dynamic/1.

exported
True if the predicate is in the public list of the context module.

imported from(Module)
Is true if the predicate is imported into the context module from module Module.

file(FileName)
Unify FileName with the name of the source file in which the predicate is defined. See
also source file/2 and the property line count. Note that this reports the
file of the first clause of a predicate. A more robust interface can be achieved using
nth clause/3 and clause property/2.

foreign
True if the predicate is defined in the C language.

implementation module(-Module)
True when Module is the module in which Head is or will be defined. Resolving this
property goes through the same search mechanism as when an undefined predicate is
encountered, but does not perform any loading. It searches (1) the module inheritance
hierarchy (see default module/2) and (2) the autoload index if the unknown flag is
not set to fail in the target module.

indexed(Indexes)
Indexes is a list of additional (hash) indexes on the predicate. Each element of the list is a
dict holding the following keys:

arguments: arguments
1-based argument numbers of the predicate or compound used for the index.

SWI-Prolog 9.3 Reference Manual

4.16. EXAMINING THE PROGRAM 189

position: position
1-based argument numbers to find the compound for a deep index. Empty list ([])
for predicate arguments. A list [1,2] implies we index on the 2nd argument of the
1st argument of the predicate, i.e., on the I in the head p(f(,I))

buckets: buckets
Number of buckets of the hash

list: list
The hash is a deep index, i.e., it points at compounds and there may be sub-indexes
on these compounds.

realised: realised
If false, the index is associated with the predicate but not filled. It will be filled if
the predicate is called such that this index is at least ci min speedup times better
than the best already realised index.

size: size
Memory usage in bytes of the index.

speedup: speedup
Estimated speedup. The basic value is the number of unique values in the argument
of the clauses to which this index applies. The value is reduced when there are
clauses with a variable in this position and when the standard deviation for the sets
of clauses with the same value is high, i.e., we prefer indexes where the number of
candidate clauses is similar, regardless of the value used in the call.

Note: This predicate property should be used for analysis and statistics only. The exact
representation of Indexes may change between versions. The utilities jiti list/0
jiti list/1 list the jit indexes of matching predicates in a user friendly way.

interpreted
True if the predicate is defined in Prolog. We return true on this because, although the
code is actually compiled, it is completely transparent, just like interpreted code.

iso
True if the predicate is covered by the ISO standard (ISO/IEC 13211-1).

line count(LineNumber)
Unify LineNumber with the line number of the first clause of the predicate. Fails if the
predicate is not associated with a file. See also source file/2. See also the file
property above, notably the reference to clause property/2.

multifile
True if there may be multiple (or no) files providing clauses for the predicate. This
property is set using multifile/1.

meta predicate(Head)
If the predicate is declared as a meta-predicate using meta predicate/1, unify Head
with the head-pattern. The head-pattern is a compound term with the same name and
arity as the predicate where each argument of the term is a meta-predicate specifier. See
meta predicate/1 for details.

mode(Head)
If the mode for the predicate is defined using mode/1. Head is a term as in the property
meta predicate(Head), but the specifiers are limited to +, - and ?.

SWI-Prolog 9.3 Reference Manual

190 CHAPTER 4. BUILT-IN PREDICATES

monotonic
True if the predicate is tabled or dynamic using monotonic propagation. See section 7.8.

nodebug
Details of the predicate are not shown by the debugger. This is the default for built-
in predicates. User predicates can be compiled this way using the Prolog flag
generate debug info.

non terminal
True if the predicate implements a grammar rule. See non terminal/1.

notrace
Do not show ports of this predicate in the debugger.

number of clauses(ClauseCount)
Unify ClauseCount to the number of clauses associated with the predicate. Fails for
foreign predicates. This property respects the logical update view and counts visible
clauses at the moment the predicate was started.

number of rules(RuleCount)
Similar to number of clauses(ClauseCount), but only counts rules. A rule is defined
as a clauses that has a body that is not just true (i.e., a fact).

last modified generation(Generation)
Database generation at which the predicate was modified for the last time. Intended to
quickly assesses the validity of caches.

opaque
This property applies to dynamic and tabled predicates. For dynamic predicates it (tem-
porary) stops propagating updates to dependent incrementally or monotonic tabled
predicates. For tabled predicates it is not an error for an opaque predicate to depend on
incremental or monotonic dynamic or tabled predicates.

public
Predicate is declared public using public/1. Note that without further definition,
public predicates are considered undefined and this property is not reported.

quasi quotation syntax
The predicate (with arity 4) is declared to provide quasi quotation syntax with
quasi quotation syntax/1.

size(Bytes)
Memory used for this predicate. This includes the memory of the predicate header, the
combined memory of all clauses including erased but not yet garbage collected clauses
(see garbage collect clauses/0 and clause property/2) and the memory
used by clause indexes (see the indexed(Indexes) property. Excluded are lingering data
structures. These are garbage data structures that have been detached from the predicate
but cannot yet be reclaimed because they may be in use by some thread.

ssu
The predicate has been defined using single sided unification rules. See section 5.6.

static
The definition can not be modified using assertz/1 and friends. This property is the
opposite from dynamic, i.e., for each defined predicate, either static or dynamic is
true but never both.

SWI-Prolog 9.3 Reference Manual

4.16. EXAMINING THE PROGRAM 191

tabled
True of the predicate is tabled. The tabled(?Flag) property can be used to obtain
details about how the predicate is tabled.

tabled(?Flag)
True of the predicate is tabled and Flag applies. Any tabled predicate has one of the
mutually exclusive flags variant or subsumptive. In addition, tabled predicates
may have one or more of the following flags

shared
The table is shared between threads. See section 7.9.

incremental
The table is subject to incremental tabling. See section 7.7

Use the tabled property to enumerate all tabled predicates. See table/1 for details.

thread local
If true (only possible on the multithreaded version) each thread has its own clauses for
the predicate. This property is set using thread local/1.

transparent
True if the predicate is declared transparent using the module transparent/1
or meta predicate/1 declaration. In the latter case the property
meta predicate(Head) is also provided. See chapter 6 for details.

undefined
True if a procedure definition block for the predicate exists, but there are no clauses for
it and it is not declared dynamic or multifile. This is true if the predicate occurs in the
body of a loaded predicate, an attempt to call it has been made via one of the meta-call
predicates, the predicate has been declared as e.g., a meta-predicate or the predicate had
a definition in the past. Originally used to find missing predicate definitions. The current
implementation of list undefined/0 used cross-referencing. Deprecated.

visible
True when predicate can be called without raising a predicate existence error. This means
that the predicate is (1) defined, (2) can be inherited from one of the default modules (see
default module/2) or (3) can be autoloaded. The behaviour is logically consistent
iff the property visible is provided explicitly. If the property is left unbound, only
defined predicates are enumerated.

volatile
If true, the clauses are not saved into a saved state by qsave program/[1,2]. This
property is set using volatile/1.

dwim predicate(+Term, -Dwim)
‘Do What I Mean’ (‘dwim’) support predicate. Term is a term, whose name and arity are used
as a predicate specification. Dwim is instantiated with the most general term built from Name
and the arity of a defined predicate that matches the predicate specified by Term in the ‘Do
What I Mean’ sense. See dwim match/2 for ‘Do What I Mean’ string matching. Internal
system predicates are not generated, unless the access level is system (see access level).
Backtracking provides all alternative matches.

SWI-Prolog 9.3 Reference Manual

192 CHAPTER 4. BUILT-IN PREDICATES

clause(:Head, ?Body) [ISO]

True if Head can be unified with a clause head and Body with the corresponding clause body.
Gives alternative clauses on backtracking. For facts, Body is unified with the atom true. Note
that SWI-Prolog allows clause/2 to work on both dynamic and static code.51 Note that
clause/2 decompiles the actual clause and may return a clause that is different from the
source or asserted clause, i.e., clause/2 only promises semantic equivalence.

clause(:Head, ?Body, ?Reference)
Equivalent to clause/2, but unifies Reference with a unique reference to the clause (see
also assert/2, erase/1). If Reference is instantiated to a reference the clause’s head and
body will be unified with Head and Body. The Reference is a blob (see section 12.4.10), which
implies it is subject to atom garbage collection. The Reference provides safe access to the
clause while it exists and generates a reliable existence error exception after the clause has
been erased.

nth clause(?Pred, ?Index, ?Reference)
Provides access to the clauses of a predicate using their index number. Counting starts at 1.
If Reference is specified it unifies Pred with the most general term with the same name/arity
as the predicate and Index with the index number of the clause. Otherwise the name and arity
of Pred are used to determine the predicate. If Index is provided, Reference will be unified
with the clause reference. If Index is unbound, backtracking will yield both the indexes and
the references of all clauses of the predicate. The following example finds the 2nd clause of
append/3:

?- use_module(library(lists)).
...
?- nth_clause(append(_,_,_), 2, Ref), clause(Head, Body, Ref).
Ref = <clause>(0x994290),
Head = lists:append([_G23|_G24], _G21, [_G23|_G27]),
Body = append(_G24, _G21, _G27).

clause property(+ClauseRef, -Property)
Queries properties of a clause. ClauseRef is a reference to a clause as produced by clause/3,
nth clause/3 or prolog frame attribute/3. Unlike most other predicates that
access clause references, clause property/2 may be used to get information about erased
clauses that have not yet been reclaimed. Property is one of the following:

file(FileName)
Unify FileName with the name of the file from which the clause is loaded. Fails if the
clause was not created by loading a file (e.g., clauses added using assertz/1). See
also source.

line count(LineNumber)
Unify LineNumber with the line number of the clause. Fails if the clause is not associated
to a file.

51Using clause/2 is disallowed if either the flag iso or protect static code is true.

SWI-Prolog 9.3 Reference Manual

4.17. INPUT AND OUTPUT 193

size(SizeInBytes)
True when SizeInBytes is the size that the clause uses in memory in bytes. The size
required by a predicate also includes the predicate data record, a linked list of clauses,
clause selection instructions and optionally one or more clause indexes.

source(FileName)
Unify FileName with the name of the source file that created the clause. This is the same
as the file property, unless the file is loaded from a file that is textually included into
source using include/1. In this scenario, file is the included file, while the source
property refers to the main file.

fact
True if the clause has no body.

erased
True if the clause has been erased, but not yet reclaimed because it is referenced.

predicate(PredicateIndicator)
PredicateIndicator denotes the predicate to which this clause belongs. This is needed to
obtain information on erased clauses because the usual way to obtain this information
using clause/3 fails for erased clauses.

module(Module)
Module is the context module used to execute the body of the clause. For normal clauses,
this is the same as the module in which the predicate is defined. However, if a clause
is compiled with a module qualified head, the clause belongs to the predicate with the
qualified head, while the body is executed in the context of the module in which the
clause was defined.

4.17 Input and output

SWI-Prolog provides two different packages for input and output. The native I/O system is based
on the ISO standard predicates open/3, close/1 and friends.52 Being more widely portable and
equipped with a clearer and more robust specification, new code is encouraged to use these predicates
for manipulation of I/O streams.

Section 4.17.3 describes tell/1, see/1 and friends, providing I/O in the spirit of the traditional
Edinburgh standard. These predicates are layered on top of the ISO predicates. Both packages are
fully integrated; the user may switch freely between them.

4.17.1 Predefined stream aliases

Each thread has five stream aliases: user input, user output, user error,
current input, and current output. Newly created threads inherit these stream aliases
from their parent. The user input, user output and user error aliases of the main
thread are initially bound to the standard operating system I/O streams (stdin, stdout and stderr,
normally bound to the POSIX file handles 0, 1 and 2). These aliases may be re-bound, for ex-
ample if standard I/O refers to a window such as in the swipl-win.exe GUI executable for
Windows. They can be re-bound by the user using set prolog IO/3 and set stream/2 by
setting the alias of a stream (e.g, set stream(S, alias(user output))). An example of

52Actually based on Quintus Prolog, providing this interface before the ISO standard existed.

SWI-Prolog 9.3 Reference Manual

194 CHAPTER 4. BUILT-IN PREDICATES

rebinding can be found in library prolog server, providing a telnet service. The aliases
current input and current output define the source and destination for predicates that do
not take a stream argument (e.g., read/1, write/1, get code/1, . . .). Initially, these are bound
to the same stream as user input and user error. They are re-bound by see/1, tell/1,
set input/1 and set output/1. The current output stream is also temporary re-bound
by with output to/2 or format/3 using e.g., format(atom(A), Note that code
which explicitly writes to the streams user output and user error will not be redirected by
with output to/2.

Compatibility Note that the ISO standard only defines the user * streams. The ‘current’ streams
can be accessed using current input/1 and current output/1. For example, an ISO com-
patible implementation of write/1 is

write(Term) :- current_output(Out), write_term(Out, Term).

while SWI-Prolog additionally allows for

write(Term) :- write(current_output, Term).

4.17.2 ISO Input and Output Streams

The predicates described in this section provide ISO compliant I/O, where streams are explicitly cre-
ated using the predicate open/3. The resulting stream identifier is then passed as a parameter to the
reading and writing predicates to specify the source or destination of the data.

This schema is not vulnerable to filename and stream ambiguities as well as changes to the work-
ing directory. On the other hand, using the notion of current-I/O simplifies reusability of code without
the need to pass arguments around. E.g., see with output to/2.

SWI-Prolog streams are, compatible with the ISO standard, either input or output streams. To
accommodate portability to other systems, a pair of streams can be packed into a stream-pair. See
stream pair/3 for details.

SWI-Prolog stream handles are unique symbols that have no syntactical representation. They are
written as <stream>(hex-number), which is not valid input for read/1. They are realised
using a blob of type stream (see blob/2 and section 12.4.10).

open(+SrcDest, +Mode, –Stream, +Options) [ISO]

True when SrcDest can be opened in Mode and Stream is an I/O stream to/from the object.
SrcDest is normally the name of a file, represented as an atom or string. Mode is one of read,
write, append or update. Mode append opens the file for writing, positioning the file
pointer at the end. Mode update opens the file for writing, positioning the file pointer at the
beginning of the file without truncating the file. Stream is either a variable, in which case it
is bound to an integer identifying the stream, or an atom, in which case this atom will be the
stream identifier.53

SWI-Prolog also allows SrcDest to be a term pipe(Command). In this form, Command is
started as a child process and if Mode is write, output written to Stream is sent to the standard

53New code should use the alias(Alias) option for compatibility with the ISO standard.

SWI-Prolog 9.3 Reference Manual

4.17. INPUT AND OUTPUT 195

input of Command. Vice versa, if Mode is read, data written by Command to the standard
output can be read from Stream. On Unix systems, Command is handed to popen() which
hands it to the Unix shell. On Windows, Command is executed directly and therefore shell
syntax such as redirecting (using e.g., > file) does not work. Use of the pipe(Command) feature
is deprecated. The predicate process create/3 from process provides a richer and more
portable alternative for interacting with processes including handling all three standard streams.

If SrcDest is an IRI, i.e., starts with ⟨scheme⟩://, where ⟨scheme⟩ is a non-empty sequence
of lowercase ASCII letters open/3,4 calls hooks registered by register iri scheme/3.
Currently the only predefined IRI scheme is res, providing access to the resource database.
See section 14.4.

The following Options are recognised by open/4:

alias(Atom)
Gives the stream a name and unifies Stream with Atom. Below is an example. Be careful
with this option as stream names are global. See also set stream/2.

?- open(data, read, Fd, [alias(input)]).

...,
read(input, Term),
...

bom(Bool)
Check for a BOM (Byte Order Marker) or write one. If omitted, the default is true
for mode read and false for mode write. See also stream property/2 and
especially section 2.18.1 for a discussion of this feature.

buffer(Buffering)
Defines output buffering. The atom full (default) defines full buffering, line buffering
by line, and false implies the stream is fully unbuffered. Smaller buffering is useful
if another process or the user is waiting for the output as it is being produced. See also
flush output/[0,1]. This option is not an ISO option.

close on abort(Bool)
If true (default), the stream is closed on an abort (see abort/0). If false, the stream
is not closed. If it is an output stream, however, it will be flushed. Useful for logfiles and
if the stream is associated to a process (using the pipe/1 construct).

create(+List)
Specifies how a new file is created when opening in write, append or update mode.
Currently, List is a list of atoms that describe the permissions of the created file.54 Defined
values are below. Not recognised values are silently ignored, allowing for adding platform
specific extensions to this set.

read
Allow read access to the file.

write
Allow write access to the file.

54Added after feedback from Joachim Shimpf and Per Mildner.

SWI-Prolog 9.3 Reference Manual

196 CHAPTER 4. BUILT-IN PREDICATES

execute
Allow execution access to the file.

default
Allow read and write access to the file.

all
Allow any access provided by the OS.

Note that if List is empty, the created file has no associated access permissions. The create
options map to the POSIX mode option of open(), where read map to 0444, write
to 0222 and execute to 0111. On POSIX systems, the final permission is defined as
(mode & ˜umask).

encoding(Encoding)
Define the encoding used for reading and writing text to this stream. The default encoding
for type text is derived from the Prolog flag encoding. For binary streams the
default encoding is octet. For details on encoding issues, see section 2.18.1.

eof action(Action)
Defines what happens if the end of the input stream is reached. The default value for
Action is eof code, which makes get0/1 and friends return -1, and read/1 and
friends return the atom end of file. Repetitive reading keeps yielding the same result.
Action error is like eof code, but repetitive reading will raise an error. With action
reset, Prolog will examine the file again and return more data if the file has grown.

locale(+Locale)
Set the locale that is used by notably format/2 for output on this stream. See sec-
tion 4.23.

lock(LockingMode)
Try to obtain a lock on the open file. Default is none, which does not lock the file. The
value read or shared means other processes may read the file, but not write it. The
value write or exclusive means no other process may read or write the file.
Locks are acquired through the POSIX function fcntl() using the command
F SETLKW, which makes a blocked call wait for the lock to be released. Please note
that fcntl() locks are advisory and therefore only other applications using the same
advisory locks honour your lock. As there are many issues around locking in Unix, es-
pecially related to NFS (network file system), please study the fcntl() manual page
before trusting your locks!
The lock option is a SWI-Prolog extension.

newline(Mode)
Set end-of-line processing for the stream. Mode is one of posix, dos or detect.
This option is ignored for binary streams. Using detect on an output stream raises an
exception. See also set stream/2.

reposition(+Bool)
If false (default true), drop the position tracking logic from the stream. This disables
the use of stream position/3 on this stream.

type(Type)
Using type text (default), Prolog will write a text file in an operating system compatible
way. Using type binary the bytes will be read or written without any translation. See
also the option encoding.

SWI-Prolog 9.3 Reference Manual

4.17. INPUT AND OUTPUT 197

wait(Bool)
This option can be combined with the lock option. If false (default true), the open
call returns immediately with an exception if the file is locked. The exception has the
format permission error(lock, source sink, SrcDest).

open(+SrcDest, +Mode, –Stream) [ISO]

Equivalent to open/4 with an empty option list.

open null stream(–Stream)
Open an output stream that produces no output. All counting functions are enabled on such
a stream. It can be used to discard output (like Unix /dev/null) or exploit the counting
properties. The initial encoding of Stream is utf8, enabling arbitrary Unicode output. The
encoding can be changed to determine byte counts of the output in a particular encoding or
validate if output is possible in a particular encoding. For example, the code below determines
the number of characters emitted when writing Term.

write_length(Term, Len) :-
open_null_stream(Out),
write(Out, Term),
character_count(Out, Len0),
close(Out),
Len = Len0.

close(+Stream) [ISO]

Close the specified stream. If Stream is not open, an existence error is raised. See
stream pair/3 for the implications of closing a stream pair.

If the closed stream is the current input, output or error stream, the stream alias is bound to the
initial standard I/O streams of the process. Calling close/1 on the initial standard I/O streams
of the process is a no-op for an input stream and flushes an output stream without closing it.55

close(+Stream, +Options) [ISO]

Provides close(Stream, [force(true)]) as the only option. Called this way, any resource errors
(such as write errors while flushing the output buffer) are ignored.

stream property(?Stream, ?StreamProperty) [ISO]

True when StreamProperty is a property of Stream. If enumeration of streams or properties
is demanded because either Stream or StreamProperty are unbound, the implementation
enumerates all candidate streams and properties while locking the stream database. Properties
are fetched without locking the stream and may be outdated before this predicate returns due to
asynchronous activity.

alias(Atom)
If Atom is bound, test if the stream has the specified alias. Otherwise unify Atom with the
first alias of the stream.56

55This behaviour was defined with purely interactive usage of Prolog in mind. Applications should not count on this
behaviour. Future versions may allow for closing the initial standard I/O streams.

56BUG: Backtracking does not give other aliases.

SWI-Prolog 9.3 Reference Manual

198 CHAPTER 4. BUILT-IN PREDICATES

buffer(Buffering)
SWI-Prolog extension to query the buffering mode of this stream. Buffering is one of
full, line or false. See also open/4.

buffer size(Integer)
SWI-Prolog extension to query the size of the I/O buffer associated to a stream in bytes.
Fails if the stream is not buffered.

bom(Bool)
If present and true, a BOM (Byte Order Mark) was detected while opening the file for
reading, or a BOM was written while opening the stream. See section 2.18.1 for details.

close on abort(Bool)
Determine whether or not abort/0 closes the stream. By default streams are closed.

close on exec(Bool)
Determine whether or not the stream is closed when executing a new process (exec()
in Unix, CreateProcess() in Windows). Default is to close streams. This
maps to fcntl() F SETFD using the flag FD CLOEXEC on Unix and (negated)
HANDLE FLAG INHERIT on Windows.

encoding(Encoding)
Query the encoding used for text. See section 2.18.1 for an overview of wide character
and encoding issues in SWI-Prolog.

end of stream(E)
If Stream is an input stream, unify E with one of the atoms not, at or past. See also
at end of stream/[0,1].

eof action(A)
Unify A with one of eof code, reset or error. See open/4 for details.

error(Bool)
When true, the stream is in an error state. Applies to both input and output streams.

file name(Atom)
If Stream is associated to a file, unify Atom to the name of this file.

file no(Integer)
If the stream is associated with a POSIX file descriptor, unify Integer with the descriptor
number. SWI-Prolog extension used primarily for integration with foreign code. See also
Sfileno() from SWI-Stream.h.

input
True if Stream has mode read.

locale(Locale)
True when Locale is the current locale associated with the stream. See section 4.23.

mode(IOMode)
Unify IOMode to the mode given to open/4 for opening the stream. Values are: read,
write, append and the SWI-Prolog extension update.

newline(NewlineMode)
One of posix or dos. If dos, text streams will emit \r\n for \n and discard \r from
input streams. Default depends on the operating system.

SWI-Prolog 9.3 Reference Manual

4.17. INPUT AND OUTPUT 199

nlink(-Count)
Number of hard links to the file. This expresses the number of ‘names’ the file has. Not
supported on all operating systems and the value might be bogus. See the documentation
of fstat() for your OS and the value st nlink.

output
True if Stream has mode write, append or update.

position(Pos)
Unify Pos with the current stream position. A stream position is an opaque
term whose fields can be extracted using stream position data/3. See also
set stream position/2.

reposition(Bool)
Unify Bool with true if the position of the stream can be set (see seek/4). It is assumed
the position can be set if the stream has a seek-function and is not based on a POSIX file
descriptor that is not associated to a regular file.

representation errors(Mode)
Determines behaviour of character output if the stream cannot represent a character. For
example, an ISO Latin-1 stream cannot represent Cyrillic characters. The behaviour is
one of error (throw an I/O error exception), prolog (write \x<hex>\), unicode
(write \uXXXX or \UXXXXXXXX escape sequences) or xml (write &#...; XML
character entity). The initial mode is unicode for the user streams and error for all
other streams. See also section 2.18.1 and set stream/2.

timeout(-Time)
Time is the timeout currently associated with the stream. See set stream/2 with the
same option. If no timeout is specified, Time is unified to the atom infinite.

type(Type)
Unify Type with text or binary.

tty(Bool)
This property is reported with Bool equal to true if the stream is associated with a
terminal. See also set stream/2.

write errors(Atom)
Atom is one of error (default) or ignore. The latter is intended to deal with service
processes for which the standard output handles are not connected to valid streams. In
these cases write errors may be ignored on user error.

current stream(?Object, ?Mode, ?Stream) [deprecated]

The predicate current stream/3 is used to access the status of a stream as well as to
generate all open streams. Object is the name of the file opened if the stream refers to an open
file, an integer file descriptor if the stream encapsulates an operating system stream, or the
atom [] if the stream refers to some other object. Mode is one of read or write.

This predicate is deprecated. New code should use the ISO predicate stream property/2.

is stream(+Term)
True if Term is a stream name or valid stream handle. This predicate realises a safe test for the
existence of a stream alias or handle.

SWI-Prolog 9.3 Reference Manual

200 CHAPTER 4. BUILT-IN PREDICATES

stream pair(?StreamPair, ?Read, ?Write)
This predicate can be used in mode (-,+,+) to create a stream-pair from an input stream and an
output stream. Mode (+,-,-) can be used to get access to the underlying streams. If a stream has
already been closed, the corresponding argument is left unbound. If mode (+,-,-) is used on a
single stream, either Read or Write is unified with the stream while the other argument is left
unbound. This behaviour simplifies writing code that must operate both on streams and stream
pairs.

Stream-pairs can be used by all I/O operations on streams, where the operation selects the
appropriate member of the pair. The predicate close/1 closes the still open streams of the
pair.57 The output stream is closed before the input stream. If closing the output stream results
in an error, the input stream is still closed. Success is only returned if both streams were closed
successfully.

set stream position(+Stream, +Pos) [ISO]

Set the current position of Stream to Pos. Pos is a term as returned by stream property/2
using the position(Pos) property. See also seek/4.

stream position data(?Field, +Pos, -Data)
Extracts information from the opaque stream position term as returned by
stream property/2 requesting the position(Pos) property. Field is one
of line count, line position, char count or byte count. See also
line count/2, line position/2, character count/2 and byte count/2.58

seek(+Stream, +Offset, +Method, -NewLocation)
Reposition the current point of the given Stream. Method is one of bof, current or eof,
indicating positioning relative to the start, current point or end of the underlying object.
NewLocation is unified with the new offset, relative to the start of the stream.

Positions are counted in ‘units’. A unit is 1 byte, except for text files using 2-byte Uni-
code encoding (2 bytes) or wchar encoding (sizeof(wchar t)). The latter guarantees com-
fortable interaction with wide-character text objects. Otherwise, the use of seek/4 on
non-binary files (see open/4) is of limited use, especially when using multi-byte text
encodings (e.g. UTF-8) or multi-byte newline files (e.g. DOS/Windows). On text files,
SWI-Prolog offers reliable backup to an old position using stream property/2 and
set stream position/2. Skipping N character codes is achieved calling get code/2
N times or using copy stream data/3, directing the output to a null stream (see
open null stream/1). If the seek modifies the current location, the line number and char-
acter position in the line are set to 0.

If the stream cannot be repositioned, a permission error is raised. If applying the offset
would result in a file position less than zero, a domain error is raised. Behaviour when
seeking to positions beyond the size of the underlying object depend on the object and possi-
bly the operating system. The predicate seek/4 is compatible with Quintus Prolog, though
the error conditions and signalling is ISO compliant. See also stream property/2 and
set stream position/2.

57As of version 7.1.19, it is allowed to close one of the members of the stream directly and close the pair later.
58Introduced in version 5.6.4 after extending the position term with a byte count. Compatible with SICStus Prolog.

SWI-Prolog 9.3 Reference Manual

4.17. INPUT AND OUTPUT 201

set stream(+Stream, +Attribute)
Modify an attribute of an existing stream. Attribute specifies the stream property to set. If
stream is a pair (see stream pair/3) both streams are modified, unless the property is only
meaningful on one of the streams or setting both is not meaningful. In particular, eof action
only applies to the read stream, representation errors only applies to the write stream
and trying to set alias or line position on a pair results in a permission error
exception. See also stream property/2 and open/4.

alias(AliasName)
Set the alias of an already created stream. If AliasName is the name of one of the standard
streams, this stream is rebound. Thus, set stream(S, current input) is the
same as set input/1, and by setting the alias of a stream to user input, etc., all
user terminal input is read from this stream. See also interactor/0.

buffer(Buffering)
Set the buffering mode of an already created stream. Buffering is one of full, line or
false.

buffer size(+Size)
Set the size of the I/O buffer of the underlying stream to Size bytes.

close on abort(Bool)
Determine whether or not the stream is closed by abort/0. By default, streams are
closed.

close on exec(Bool)
Set the close on exec property. See stream property/2.

encoding(Atom)
Defines the mapping between bytes and character codes used for the stream. See sec-
tion 2.18.1 for supported encodings. The value bom causes the stream to check whether
the current character is a Unicode BOM marker. If a BOM marker is found, the encoding
is set accordingly and the call succeeds. Otherwise the call fails.

eof action(Action)
Set end-of-file handling to one of eof code, reset or error.

file name(FileName)
Set the filename associated to this stream. This call can be used to set the file for error
locations if Stream corresponds to FileName and is not obtained by opening the file
directly but, for example, through a network service.

line position(LinePos)
Set the line position attribute of the stream. This feature is intended to correct position
management of the stream after sending a terminal escape sequence (e.g., setting ANSI
character attributes). Setting this attribute raises a permission error if the stream does
not record positions. See line position/2 and stream property/2 (property
position).

locale(+Locale)
Change the locale of the stream. See section 4.23.

newline(NewlineMode)
Set input or output translation for newlines. See corresponding stream property/2

SWI-Prolog 9.3 Reference Manual

202 CHAPTER 4. BUILT-IN PREDICATES

for details. In addition to the detected modes, an input stream can be set in mode
detect. It will be set to dos if a \r character was removed.

timeout(Seconds)
This option can be used to make streams generate an exception if it takes longer than
Seconds before any new data arrives at the stream. The value infinite (default) makes the
stream block indefinitely. Like wait for input/3, this call only applies to streams
that support the select() system call. For further information about timeout handling,
see wait for input/3. The exception is of the form

error(timeout error(read, Stream),)

type(Type)
Set the type of the stream to one of text or binary. See also open/4 and the
encoding property of streams. Switching to binary sets the encoding to octet.
Switching to text sets the encoding to the default text encoding.

record position(Bool)
Do/do not record the line count and line position (see line count/2 and
line position/2). Calling set stream(S, record position(true))
resets the position the start of line 1.

representation errors(Mode)
Change the behaviour when writing characters to the stream that cannot be represented
by the encoding. See also stream property/2 and section 2.18.1.

tty(Bool)
Modify whether Prolog thinks there is a terminal (i.e. human interaction) connected
to this stream. On Unix systems the initial value comes from isatty(). On Win-
dows, the initial user streams are supposed to be associated to a terminal. See also
stream property/2.

set prolog IO(+In, +Out, +Error)
Prepare the given streams for interactive behaviour normally associated to the terminal. In
becomes the user input and current input of the calling thread. Out becomes
user output and current output. If Error equals Out an unbuffered stream is
associated to the same destination and linked to user error. Otherwise Error is used
for user error. Output buffering for Out is set to line and buffering on Error is
disabled. See also prolog/0 and set stream/2. The clib package provides the library
prolog server, creating a TCP/IP server for creating an interactive session to Prolog.

set system IO(+In, +Out, +Error)
Bind the given streams to the operating system I/O streams 0-2 using POSIX dup2() API. In
becomes stdin. Out becomes stdout. If Error equals Out an unbuffered stream is asso-
ciated to the same destination and linked to stderr. Otherwise Error is used for stderr.
Output buffering for Out is set to line and buffering on Error is disabled. The operating system
I/O streams are shared across all threads. The three streams must be related to a file descriptor
or a domain error file stream is raised. See also stream property/2, property
file no(Fd).

Where set prolog IO/3 rebinds the Prolog streams user input, user output and
user error for a specific thread providing a private interactive session, set system IO/3

SWI-Prolog 9.3 Reference Manual

4.17. INPUT AND OUTPUT 203

rebinds the shared console I/O and also captures Prolog kernel events (e.g., low-level debug
messages, unexpected events) as well as messages from foreign libraries that are directly written
to stdout or stderr.

This predicate is intended to capture all output in situations where standard I/O is normally lost,
such as when Prolog is running as a service on Windows.

4.17.3 Edinburgh-style I/O

The package for implicit input and output destinations is (almost) compatible with Edinburgh DEC-10
and C-Prolog. The reading and writing predicates refer to, resp., the current input and output streams.
Initially these streams are connected to the terminal. The current output stream is changed using
tell/1 or append/1. The current input stream is changed using see/1. The stream’s current
value can be obtained using telling/1 for output and seeing/1 for input.

Source and destination are either a file, user, or a term ‘pipe(Command)’. The reserved
stream name user refers to the terminal.59 In the predicate descriptions below we will call the
source/destination argument ‘SrcDest’. Below are some examples of source/destination specifica-
tions.

?- see(data). % Start reading from file ‘data’.
?- tell(user). % Start writing to the terminal.
?- tell(pipe(lpr)). % Start writing to the printer.

Another example of using the pipe/1 construct is shown below.60 Note that the pipe/1 con-
struct is not part of Prolog’s standard I/O repertoire.

getwd(Wd) :-
seeing(Old), see(pipe(pwd)),
collect_wd(String),
seen, see(Old),
atom_codes(Wd, String).

collect_wd([C|R]) :-
get0(C), C \== -1, !,
collect_wd(R).

collect_wd([]).

The effect of tell/1 is not undone on backtracking, and since the stream handle is not specified
explicitly in further I/O operations when using Edinburgh-style I/O, you may write to unintended
streams more easily than when using ISO compliant I/O. For example, the following query writes
both ”a” and ”b” into the file ‘out’ :

?- (tell(out), write(a), false ; write(b)), told.

59The ISO I/O layer uses user input, user output and user error.
60As of version 5.3.15, the pipe construct is supported in the MS-Windows version, both for swipl.exe and

swipl-win.exe. The implementation uses code from the LUA programming language (http://www.lua.org).

SWI-Prolog 9.3 Reference Manual

http://www.lua.org

204 CHAPTER 4. BUILT-IN PREDICATES

Compatibility notes

Unlike Edinburgh Prolog systems, telling/1 and seeing/1 do not return the filename of the
current input/output but rather the stream identifier, to ensure the design pattern below works under
all circumstances:61

...,
telling(Old), tell(x),
...,
told, tell(Old),
...,

The predicates tell/1 and see/1 first check for user, the pipe(command) and a stream handle.
Otherwise, if the argument is an atom it is first compared to open streams associated to a file with
exactly the same name. If such a stream exists, created using tell/1 or see/1, output (input) is
switched to the open stream. Otherwise a file with the specified name is opened.

The behaviour is compatible with Edinburgh Prolog. This is not without problems. Changing
directory, non-file streams, and multiple names referring to the same file easily lead to unexpected
behaviour. New code, especially when managing multiple I/O channels, should consider using the
ISO I/O predicates defined in section 4.17.2.

see(+SrcDest)
Open SrcDest for reading and make it the current input (see set input/1). If SrcDest is a
stream handle, just make this stream the current input. See the introduction of section 4.17.3
for details.

tell(+SrcDest)
Open SrcDest for writing and make it the current output (see set output/1). If SrcDest is a
stream handle, just make this stream the current output. See the introduction of section 4.17.3
for details.

append(+File)
Similar to tell/1, but positions the file pointer at the end of File rather than truncating an
existing file. The pipe construct is not accepted by this predicate.

seeing(?SrcDest)
Same as current input/1, except that user is returned if the current input is the stream
user input to improve compatibility with traditional Edinburgh I/O. See the introduction of
section 4.17.3 for details.

telling(?SrcDest)
Same as current output/1, except that user is returned if the current output is the stream
user output to improve compatibility with traditional Edinburgh I/O. See the introduction
of section 4.17.3 for details.

seen
Close the current input stream. The new input stream becomes user input.

told
Close the current output stream. The new output stream becomes user output.

61Filenames can be ambiguous and SWI-Prolog streams can refer to much more than just files.

SWI-Prolog 9.3 Reference Manual

4.17. INPUT AND OUTPUT 205

4.17.4 Switching between Edinburgh and ISO I/O

The predicates below can be used for switching between the implicit and the explicit stream-based
I/O predicates.

set input(+Stream) [ISO]

Set the current input stream to become Stream. Thus,
open(file, read, Stream), set input(Stream) is equivalent to see(file).

set output(+Stream) [ISO]

Set the current output stream to become Stream. See also with output to/2.

current input(-Stream) [ISO]

Get the current input stream. Useful for getting access to the status predicates associated with
streams.

current output(-Stream) [ISO]

Get the current output stream.

4.17.5 Adding IRI schemas

The file handling predicates may be hooked to deal with IRIs. An IRI starts with ⟨scheme⟩://, where
⟨scheme⟩ is a non-empty sequence of lowercase ASCII letters. After detecting the scheme the file
manipulation predicates call a hook that is registered using register iri scheme/3.

Hooking the file operations using extensible IRI schemas allows us to place any resource
that is accessed through Prolog I/O predicates on arbitrary devices such as web servers or the
ZIP archive used to store program resources (see section 14.2). This is typically combined with
file search path/2 declarations to switch between accessing a set of resources from local files,
from the program resource database, from a web-server, etc.

register iri scheme(+Scheme, :Hook, +Options)
Register Hook to be called by all file handling predicates if a name that starts with Scheme://
is encountered. The Hook is called by call/4 using the operation, the IRI and a term that
receives the result of the operation. The following operations are defined:

open(Mode,Options)
Called by open/3,4. The result argument must be unified with a stream.

access(Mode)
Called by access file/2, exists file/1 (Mode is file) and
exists directory/1 (Mode is directory). The result argument must be
unified with a boolean.

time
Called by time file/2. The result must be unified with a time stamp.

size
Called by size file/2. The result must be unified with an integer representing the
size in bytes.

SWI-Prolog 9.3 Reference Manual

206 CHAPTER 4. BUILT-IN PREDICATES

4.17.6 Write onto atoms, code-lists, etc.

with output to(+Output, :Goal)
Run Goal as once/1, while characters written to the current output are sent to Output. The
predicate is SWI-Prolog-specific, inspired by various posts to the mailinglist. It provides a
flexible replacement for predicates such as sformat/3, swritef/3, term to atom/2,
atom number/2 converting numbers to atoms, etc. The predicate format/3 accepts the
same terms as output argument.

For capturing other streams, see with output to/3.

Applications should generally avoid creating atoms by breaking and concatenating other atoms,
as the creation of large numbers of intermediate atoms generally leads to poor performance,
even more so in multithreaded applications. This predicate supports creating difference lists
from character data efficiently. The example below defines the DCG rule term//1 to insert a
term in the output:

term(Term, In, Tail) :-
with_output_to(codes(In, Tail), write(Term)).

?- phrase(term(hello), X).

X = [104, 101, 108, 108, 111]

Output takes one of the shapes below. Except for the first, the system creates a temporary stream
using the wchar t internal encoding that points at a memory buffer. The encoding cannot
be changed and an attempt to call set stream/2 using encoding(Encoding) results in a
permission error exception.

A Stream handle or alias
Temporarily switch current output to the given stream. Redirection using
with output to/2 guarantees the original output is restored, also if Goal fails
or raises an exception. See also call cleanup/2.

atom(-Atom)
Create an atom from the emitted characters. Please note the remark above.

string(-String)
Create a string object as defined in section 5.2.

codes(-Codes)
Create a list of character codes from the emitted characters, similar to atom codes/2.

codes(-Codes, -Tail)
Create a list of character codes as a difference list.

chars(-Chars)
Create a list of one-character atoms from the emitted characters, similar to
atom chars/2.

chars(-Chars, -Tail)
Create a list of one-character atoms as a difference list.

SWI-Prolog 9.3 Reference Manual

4.18. STATUS OF STREAMS 207

4.17.7 Fast binary term I/O

The predicates in this section provide fast binary I/O of arbitrary Prolog terms, including cyclic terms
and terms holding attributed variables. Library fastrw is a SICSTus/Ciao compatible library that
extends the core primitives described below.

The binary representation the same as used by PL record external(). The use of these
primitives instead of using write canonical/2 has advantages and disadvantages. Below are the
main considerations:

• Using write canonical/2 allows or exchange of terms with other Prolog systems. The
format is stable and, as it is text based, it can be inspected and corrected.

• Using the binary format improves the performance roughly 3 times.

• The size of both representations is comparable.

• The binary format can deal with cycles, sharing and attributes. Special precautions are
needed to transfer such terms using write canonical/2. See term factorized/3
and copy term/3.

• In the current version, reading the binary format has only incomplete consistency checks. This
implies a user must be able to trust the source as crafted messages may compromise the reading
Prolog system.

fast term serialized(?Term, ?String)
(De-)serialize Term to/from String.

fast write(+Output, +Term)
Write Term using the fast serialization format to the Output stream. Output must be a binary
stream.

fast read(+Input, -Term)
Read Term using the fast serialization format from the Input stream. Input must be a binary
stream.62

4.18 Status of streams

wait for input(+ListOfStreams, -ReadyList, +TimeOut) [det]

Wait for input on one of the streams in ListOfStreams and return a list of streams on which
input is available in ReadyList. Each element of ListOfStreams is either a stream or an integer.
Integers are consider waitable OS handles. This can be used to (also) wait for handles that are
not associated with Prolog streams such as UDP sockets. See tcp setopt/2.

This predicate waits for at most TimeOut seconds. TimeOut may be specified as a floating point
number to specify fractions of a second. If TimeOut equals infinite, wait for input/3
waits indefinitely. If Timeout is 0 or 0.0 this predicate returns without waiting.63

This predicate can be used to implement timeout while reading and to handle input from multi-
ple sources and is typically used to wait for multiple (network) sockets. On Unix systems it may

62BUG: The predicate fast read/2 may crash on arbitrary input.
63Prior to 7.3.23, the integer value ‘0’ was the same as infinite.

SWI-Prolog 9.3 Reference Manual

208 CHAPTER 4. BUILT-IN PREDICATES

be used on any stream that is associated with a system file descriptor. On Windows it can only
be used on sockets. If ListOfStreams contains a stream that is not associated with a supported
device, a domain error(waitable stream, Stream) is raised.

The example below waits for input from the user and an explicitly opened secondary terminal
stream. On return, Inputs may hold user input or P4 or both.

?- open(’/dev/ttyp4’, read, P4),
wait_for_input([user_input, P4], Inputs, 0).

When available, the implementation is based on the poll() system call. The poll()
puts no additional restriction on the number of open files the process may have. It does
limit the time to 231 − 1 milliseconds (a bit less than 25 days). Specifying a too large
timeout raises a representation error(timeout) exception. If poll() is not sup-
ported by the OS, select() is used. The select() call can only handle file de-
scriptors up to FD SETSIZE. If the set contains a descriptor that exceeds this limit a
representation error(’FD SETSIZE’) is raised.

Note that wait for input/3 returns streams that have data waiting. This does not mean
you can, for example, call read/2 on the stream without blocking as the stream might hold an
incomplete term. The predicate set stream/2 using the option timeout(Seconds) can be
used to make the stream generate an exception if no new data arrives within the timeout period.
Suppose two processes communicate by exchanging Prolog terms. The following code makes
the server immune for clients that write an incomplete term:

...,
tcp_accept(Server, Socket, _Peer),
tcp_open(Socket, In, Out),
set_stream(In, timeout(10)),
catch(read(In, Term), _, (close(Out), close(In), fail)),
...,

byte count(+Stream, -Count)
Byte position in Stream. For binary streams this is the same as character count/2.
For text files the number may be different due to multi-byte encodings or additional record
separators (such as Control-M in Windows).

character count(+Stream, -Count)
Unify Count with the current character index. For input streams this is the number of characters
read since the open; for output streams this is the number of characters written. Counting starts
at 0.

line count(+Stream, -Count)
Unify Count with the number of lines read or written. Counting starts at 1.

line position(+Stream, -Count)
Unify Count with the position on the current line. Note that this assumes the position is 0 after
the open. Tabs are assumed to be defined on each 8-th character, and backspaces are assumed
to reduce the count by one, provided it is positive.

SWI-Prolog 9.3 Reference Manual

4.19. PRIMITIVE CHARACTER I/O 209

4.19 Primitive character I/O

See section 4.2 for an overview of supported character representations.

nl [ISO]

Write a newline character to the current output stream. On Unix systems nl/0 is equivalent to
put(10).

nl(+Stream) [ISO]

Write a newline to Stream.

put(+Char)
Write Char to the current output stream. Char is either an integer expression evaluating to a
character code or an atom of one character. Deprecated. New code should use put char/1
or put code/1.

put(+Stream, +Char)
Write Char to Stream. See put/1 for details.

put byte(+Byte) [ISO]

Write a single byte to the output. Byte must be an integer between 0 and 255.

put byte(+Stream, +Byte) [ISO]

Write a single byte to Stream. Byte must be an integer between 0 and 255.

put char(+Char) [ISO]

Write a character to the current output, obeying the encoding defined for the current output
stream. Note that this may raise an exception if the encoding of the output stream cannot
represent Char.

put char(+Stream, +Char) [ISO]

Write a character to Stream, obeying the encoding defined for Stream. Note that this may raise
an exception if the encoding of Stream cannot represent Char.

put code(+Code) [ISO]

Similar to put char/1, but using a character code. Code is a non-negative integer. Note that
this may raise an exception if the encoding of the output stream cannot represent Code.

put code(+Stream, +Code) [ISO]

Same as put code/1 but directing Code to Stream.

tab(+Amount)
Write Amount spaces on the current output stream. Amount should be an expression that evalu-
ates to a positive integer (see section 4.27).

tab(+Stream, +Amount)
Write Amount spaces to Stream.

flush output [ISO]

Flush pending output on current output stream. flush output/0 is automatically generated
by read/1 and derivatives if the current input stream is user and the cursor is not at the left
margin.

SWI-Prolog 9.3 Reference Manual

210 CHAPTER 4. BUILT-IN PREDICATES

flush output(+Stream) [ISO]

Flush output on the specified stream. The stream must be open for writing.

ttyflush
Flush pending output on stream user. See also flush output/[0,1].

get byte(-Byte) [ISO]

Read the current input stream and unify the next byte with Byte (an integer between 0 and 255).
Byte is unified with -1 on end of file.

get byte(+Stream, -Byte) [ISO]

Read the next byte from Stream and unify Byte with an integer between 0 and 255.

get code(-Code) [ISO]

Read the current input stream and unify Code with the character code of the next character.
Code is unified with -1 on end of file. See also get char/1.

get code(+Stream, -Code) [ISO]

Read the next character code from Stream.

get char(-Char) [ISO]

Read the current input stream and unify Char with the next character as a one-character atom.
See also atom chars/2. On end-of-file, Char is unified to the atom end of file.

get char(+Stream, -Char) [ISO]

Unify Char with the next character from Stream as a one-character atom. See also
get char/2, get byte/2 and get code/2.

get0(-Char) [deprecated]

Edinburgh version of the ISO get code/1 predicate. Note that Edinburgh Prolog didn’t
support wide characters and therefore technically speaking get0/1 should have been mapped
to get byte/1. The intention of get0/1, however, is to read character codes.

get0(+Stream, -Char) [deprecated]

Edinburgh version of the ISO get code/2 predicate. See also get0/1.

get(-Char) [deprecated]

Read the current input stream and unify the next non-blank character with Char. Char is
unified with -1 on end of file. The predicate get/1 operates on character codes. See also
get0/1.

get(+Stream, -Char) [deprecated]

Read the next non-blank character from Stream. See also get/1, get0/1 and get0/2.

peek byte(-Byte) [ISO]

peek byte(+Stream, -Byte) [ISO]

peek code(-Code) [ISO]

peek code(+Stream, -Code) [ISO]

peek char(-Char) [ISO]

peek char(+Stream, -Char) [ISO]

Read the next byte/code/char from the input without removing it. These predicates do not

SWI-Prolog 9.3 Reference Manual

4.19. PRIMITIVE CHARACTER I/O 211

modify the stream’s position or end-of-file status. These predicates require a buffered stream
(see set stream/2) and raise a permission error if the stream is unbuffered or the buffer is
too small to hold the longest multi-byte sequence that might need to be buffered.

peek string(+Stream, +Len, -String)
Read the next Len characters (if the stream is a text stream) or bytes (if the stream is binary)
from Stream without removing the data. If Len is larger that the stream buffer size, the buffer
size is increased to Len. String can be shorter than Len if the stream contains less data. This
predicate is intended to guess the content type of data read from non-repositionable streams.

skip(+Code)
Read the input until Code or the end of the file is encountered. A subsequent call to
get code/1 will read the first character after Code.

skip(+Stream, +Code)
Skip input (as skip/1) on Stream.

get single char(-Code)
Get a single character from input stream ‘user’ (regardless of the current input stream). Unlike
get code/1, this predicate does not wait for a return. The character is not echoed to the
user’s terminal. This predicate is meant for keyboard menu selection, etc. If SWI-Prolog was
started with the --no-tty option this predicate reads an entire line of input and returns the
first non-blank character on this line, or the character code of the newline (10) if the entire line
consisted of blank characters. See also with tty raw/1.

with tty raw(:Goal)
Run goal with the user input and output streams set in raw mode, which implies the terminal
makes the input available immediately instead of line-by-line and input that is read is not
echoed. As a consequence, line editing does not work. See also get single char/1.

at end of stream [ISO]

Succeeds after the last character of the current input stream has been read. Also succeeds if
there is no valid current input stream.

at end of stream(+Stream) [ISO]

Succeeds after the last character of the named stream is read, or Stream is not a valid input
stream. The end-of-stream test is only available on buffered input streams (unbuffered input
streams are rarely used; see open/4).

set end of stream(+Stream)
Set the size of the file opened as Stream to the current file position. This is typically used in
combination with the open-mode update.

copy stream data(+StreamIn, +StreamOut, +Len)
Copy Len codes from StreamIn to StreamOut. Note that the copy is done using the semantics
of get code/2 and put code/2, taking care of possibly recoding that needs to take place
between two text files. See section 2.18.1.

copy stream data(+StreamIn, +StreamOut)
Copy all (remaining) data from StreamIn to StreamOut.

SWI-Prolog 9.3 Reference Manual

212 CHAPTER 4. BUILT-IN PREDICATES

fill buffer(+Stream) [det]

Fill the Stream’s input buffer. Subsequent calls try to read more input until the buffer is com-
pletely filled. This predicate is used together with read pending codes/3 to process input
with minimal buffering.

read pending codes(+StreamIn, -Codes, ?Tail)
Read input pending in the input buffer of StreamIn and return it in the difference list Codes-Tail.
That is, the available characters codes are used to create the list Codes ending in the tail Tail.
On encountering end-of-file, both Codes and Tail are unified with the empty list ([]).

This predicate is intended for efficient unbuffered copying and filtering of input coming from
network connections or devices. It also enables the library pure input, which processes
input from files and streams using a DCG.

The following code fragment realises efficient non-blocking copying of data from an input
to an output stream. The at end of stream/1 call checks for end-of-stream and fills the
input buffer. Note that the use of a get code/2 and put code/2 based loop requires a
flush output/1 call after each put code/2. The copy stream data/2 does not al-
low for inspection of the copied data and suffers from the same buffering issues.

copy(In, Out) :-
repeat,

fill_buffer(In),
read_pending_codes(In, Chars, Tail),
\+ \+ (Tail = [],

format(Out, ’˜s’, [Chars]),
flush_output(Out)

),
(Tail == []
-> !
; fail
).

read pending chars(+StreamIn, -Chars, ?Tail)
As read pending codes/3, but returns a difference list of one-character atoms.

4.20 Term reading and writing

This section describes the basic term reading and writing predicates. The predicates format/[1,2]
and writef/2 provide formatted output. Writing to Prolog data structures such as atoms or code-
lists is supported by with output to/2 and format/3.

Reading is sensitive to the Prolog flag character escapes, which controls the interpretation
of the \ character in quoted atoms and strings.

write term(+Term, +Options) [ISO]

The predicate write term/2 is the generic form of all Prolog term-write predicates. Valid
options are:

SWI-Prolog 9.3 Reference Manual

4.20. TERM READING AND WRITING 213

attributes(Atom)
Define how attributed variables (see section 8.1) are written. The default is determined by
the Prolog flag write attributes. Defined values are ignore (ignore the attribute),
dots (write the attributes as {...}), write (simply hand the attributes recursively to
write term/2) and portray (hand the attributes to attr portray hook/2).

back quotes(Atom)
Fulfills the same role as the back quotes prolog flag. Notably, the value string
causes string objects to be printed between back quotes and symbol char causes the
backquote to be printed unquoted. In all other cases the backquote is printed as a quoted
atom.

brace terms(Bool)
If true (default), write {}(X) as {X}. See also dotlists and ignore ops.

blobs(Atom)
Define how non-text blobs are handled. By default, this is left to the write handler spec-
ified with the blob type. Using portray, portray/1 is called for each blob
encountered. See section 12.4.10.

character escapes(Bool)
If true and quoted(true) is active, special characters in quoted atoms and strings are
emitted as ISO escape sequences. Default is taken from the reference module (see below).

character escapes unicode(Bool)
If true and character escapes(true) and quoted(true) are active escaped char-
acters are written using \uXXXX or \UXXXXXXXX syntax. The default depends on the
Prolog flag character escapes unicode

cycles(Bool)
If true (default), cyclic terms are written as @(Template, Substitutions), where Substi-
tutions is a list Var = Value. If cycles is false, max depth is not given, and Term
is cyclic, write term/2 raises a domain error.64 See also the cycles option in
read term/2.

dotlists(Bool)
If true (default false), write lists using the dotted term notation rather than the list no-
tation.65 Note that as of version 7, the list constructor is ’[|]’. Using dotlists(true),
write term/2 writes a list using ‘.’ as constructor. This is intended for communication
with programs such as other Prolog systems, that rely on this notation. See also the option
no lists(true) to use the actual SWI-Prolog list functor.

fullstop(Bool)
If true (default false), add a fullstop token to the output. The dot is preceded by a
space if needed and followed by a space (default) or newline if the nl(true) option is also
given.66

float format(+Atom)
Print floating point numbers using format/2 as format(Atom, [Float]). The default is

64The cycles option and the cyclic term representation using the @-term are copied from SICStus Prolog. However, the
default in SICStus is set to false and SICStus writes an infinite term if not protected by, e.g., the depth limit option.

65Copied from ECLiPSe.
66Compatible with ECLiPSe

SWI-Prolog 9.3 Reference Manual

http://eclipseclp.org/doc/bips/kernel/ioterm/write_term-3.html

214 CHAPTER 4. BUILT-IN PREDICATES

˜h. This option is compatible with SICStus. See format/2 for valid format specifiers
and the integer format option for additional comments.

ignore ops(Bool)
If true, the generic term representation (⟨functor⟩(⟨args⟩ . . .)) will be used for all terms.
Otherwise (default), operators will be used where appropriate.67.

integer format(+Atom)
Print integers using format/2 as format(Atom, [Int]). The default is ˜d. This allows
to print integers using an alternative radix, using e.g. ˜16r or 0x˜16r or to use digit
grouping using e.g. ˜D. Note that the user is responsible to provide a format that produces
valid Prolog syntax if the term must be readable by Prolog. The format must accept
exactly one argument. If that is not satisfied, printing an integer results in an exception.
See format/2 for for valid format specifiers.

max depth(Integer)
If the term is nested deeper than Integer, print the remainder as ellipses (. . .). A 0 (zero)
value (default) imposes no depth limit. This option also delimits the number of printed
items in a list. Example:

?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]),
[max_depth(3)]).

a(s(s(...)), [a, b|...])
true.

Used by the top level and debugger to limit screen output. See also the Prolog flags
answer write options and debugger write options.

module(Module)
Define the reference module (default user). This defines the default value for the
character escapes option as well as the operator definitions to use. If Module
does not exist it is not created and the user module is used. See also op/3 and
read term/2, providing the same option.

nl(Bool)
Add a newline to the output. See also the fullstop option.

no lists(Bool)
Do not use list notation. This is similar to dotlists(true), but uses the SWI-Prolog
list functor, which is by default ’[|]’ instead of the ISO Prolog ’.’. Used by
display/1.

numbervars(Bool)
If true, terms of the format $VAR(N), where N is an integer that fits in 64-bit,68 will
be written as a variable name. For N in 0..25 it emits A..Z. For higher numbers it
emits An..Zn, where n is N//26. For negative numbers it emits S N, which is used for
representing shared sub-terms and cyclic terms.
If N is an atom that is syntactically a valid variable it is written without quotes. This
extension allows for writing variables with user-provided names.

67In traditional systems this flag also stops the syntactic sugar notation for lists and brace terms. In SWI-Prolog, these
are controlled by the separate options dotlists and brace terms

68Larger integers are ignored. As no term that fits into memory can have that many variables, this is not a restriction.

SWI-Prolog 9.3 Reference Manual

4.20. TERM READING AND WRITING 215

The default for this flag is false unless the portrayed option is enabled. See also
numbervars/3 and the option variable names.

partial(Bool)
If true (default false), do not reset the logic that inserts extra spaces that separate
tokens where needed. This is intended to solve the problems with the code below. Calling
write value(.) writes .., which cannot be read. By adding partial(true) to the
option list, it correctly emits . .. Similar problems appear when emitting operators
using multiple calls to write term/3.

write_value(Value) :-
write_term(Value, [partial(true)]),
write(’.’), nl.

In addition, if the priority is not 1200 or 999 this assumes we are printing an operand of
an operator. If Term is an atom that is also an operator it will always be embraced.69

portray(Bool)
Same as portrayed(Bool). Deprecated.

portray goal(:Goal)
Implies portray(true), but calls Goal rather than the predefined hook portray/1.
Goal is called through call/3, where the first argument is Goal, the second is the term
to be printed and the 3rd argument is the current write option list. The write option list is
copied from the write term call, but the list is guaranteed to hold an option priority
that reflects the current priority.

portrayed(Bool)
If true, the hook portray/1 is called before printing a term that is not a variable. If
portray/1 succeeds, the term is considered printed. See also print/1. The default
is false. This option is an extension to the ISO write term options. If this option is set,
the numbervars option defaults to true.

priority(Integer)
An integer between 0 and 1200 representing the ‘context priority’. Default is 1200. Can
be used to write partial terms appearing as the argument to an operator. For example:

format(’˜w = ’, [VarName]),
write_term(Value, [quoted(true), priority(699)])

quoted(Bool)
If true, atoms and strings that need quotes will be quoted. The default is false. If
character escapes is true (default) characters in the quoted atom or string are
escaped using backslash (\) sequences. To the minimum, the quote itself, newlines and
backslash characters are escaped to make the output valid for read/1. All unassigned
unicode characters and characters in the Unicode separator (Z*) and control (C*) classes
except for the ASCII space (\u0020) are escaped. For those characters for which an
ISO Prolog single character escape, e.g., \t is defined, this is used. Otherwise the output
depends on the option character escapes unicode. If this flag applies(default)

69If the priority is 1200 it is assumed to be a toplevel term and if the priority is 999 it is assumed to be a list element or
argument of a compound term.

SWI-Prolog 9.3 Reference Manual

216 CHAPTER 4. BUILT-IN PREDICATES

the widely accepted \uXXXX or \UXXXXXXXX is used. Otherwise the ISO Prolog
\x<hex>\ syntax is used.

quote non ascii(Bool)
Quote an atom that contains non-ASCII, i.e., larger than 127 code points. The Prolog
standard only describes non-quoted atom syntax containing ASCII characters. While
SWI-Prolog extends this to Unicode (see section 2.15.1), transferring atoms holding
non-ASCII text to other Prolog implementations may cause problems. This flag is used
by write canonical/1.

spacing(+Spacing)
Determines whether and where extra white space is added to enhance readability. The
default is standard, adding only space where needed for proper tokenization by
read term/3. Currently, the only other value is next argument, adding a space
after a comma used to separate arguments in a term or list.

variable names(+List)
Assign names to variables in Term. List is a list of terms Name = Var, where Name is
an atom that represents a valid Prolog variable name. Terms where Var is bound or is
a variable that does not appear in Term are ignored. Raises an error if List is not a list,
one of the members is not a term Name = Var, Name is not an atom or Name does not
represent a valid Prolog variable name.
The implementation binds the variables from List to a term ’$VAR’(Name). Like
write canonical/1, terms that where already bound to ’$VAR’(X) before
write term/2 are printed normally, unless the option numbervars(true) is also pro-
vided. If the option numbervars(true) is used, the user is responsible for avoiding col-
lisions between assigned names and numbered names. See also the variable names
option of read term/2.
Possible variable attributes (see section 8.1) are ignored. In most cases one should use
copy term/3 to obtain a copy that is free of attributed variables and handle the associ-
ated constraints as appropriate for the use-case.

write term(+Stream, +Term, +Options) [ISO]

As write term/2, but output is sent to Stream rather than the current output.

write length(+Term, -Length, +Options) [semidet]

True when Length is the number of characters emitted for write term(Term, Options). In
addition to valid options for write term/2, it processes the option:

max length(+MaxLength)
If provided, fail if Length would be larger than MaxLength. The implementation ensures
that the runtime is limited when computing the length of a huge term with a bounded
maximum.

write canonical(+Term) [ISO]

Write Term on the current output stream using standard parenthesised prefix notation (i.e.,
ignoring operator declarations). Atoms that need quotes are quoted. Terms written with
this predicate can always be read back, regardless of current operator declarations. Equiva-
lent to write term/2 using the options ignore ops, quoted, quote non ascii,

SWI-Prolog 9.3 Reference Manual

4.20. TERM READING AND WRITING 217

brace terms(false) and numbervars after numbervars/4 using the singletons
option.

Note that due to the use of numbervars/4, non-ground terms must be written using a single
write canonical/1 call. This used to be the case anyhow, as garbage collection between
multiple calls to one of the write predicates can change the _⟨NNN⟩ identity of the variables.

write canonical(+Stream, +Term) [ISO]

Write Term in canonical form on Stream.

write(+Term) [ISO]

Write Term to the current output, using brackets and operators where appropriate.

write(+Stream, +Term) [ISO]

Write Term to Stream.

writeq(+Term) [ISO]

Write Term to the current output, using brackets and operators where appropriate. Atoms that
need quotes are quoted. Terms written with this predicate can be read back with read/1
provided the currently active operator declarations are identical and Term. Equivalent to
write term(Term, [quoted(true), numbervars(true)]).

writeq(+Stream, +Term) [ISO]

Write Term to Stream, inserting quotes.

writeln(+Term)
Equivalent to write(Term), nl.. The output stream is locked, which implies no output
from other threads can appear between the term and newline.

writeln(+Stream, +Term)
Equivalent to write(Stream, Term), nl(Stream).. The output stream is locked,
which implies no output from other threads can appear between the term and newline.

print(+Term)
Print a term for debugging purposes. The predicate print/1 acts as if defined as below.

print(Term) :-
current_prolog_flag(print_write_options, Options), !,
write_term(Term, Options).

print(Term) :-
write_term(Term, [portray(true),

numbervars(true),
quoted(true)

]).

The print/1 predicate is used primarily through the ˜p escape sequence of format/2,
which is commonly used in the recipes used by print message/2 to emit messages.

The classical definition of this predicate is equivalent to the ISO predicate write term/2
using the options portray(true) and numbervars(true). The portray(true) option al-
lows the user to implement application-specific printing of terms printed during debugging to

SWI-Prolog 9.3 Reference Manual

218 CHAPTER 4. BUILT-IN PREDICATES

facilitate easy understanding of the output. See also portray/1 and portray text. SWI-
Prolog adds quoted(true) to (1) facilitate the copying/pasting of terms that are not affected by
portray/1 and to (2) allow numbers, atoms and strings to be more easily distinguished, e.g.,
42, ’42’ and "42".

print(+Stream, +Term)
Print Term to Stream.

portray(+Term)
A dynamic predicate, which can be defined by the user to change the behaviour of print/1
on (sub)terms. For each subterm encountered that is not a variable print/1 first calls
portray/1 using the term as argument. For lists, only the list as a whole is given to
portray/1. If portray/1 succeeds print/1 assumes the term has been written.

read(-Term) [ISO]

Read the next Prolog term from the current input stream and unify it with Term. On reaching
end-of-file Term is unified with the atom end of file. This is the same as read term/2
using an empty option list.

[NOTE] You might have found this while looking for a predicate to read input from a file or the
user. Quite likely this is not what you need in this case. This predicate is for reading a Prolog
term which may span multiple lines and must end in a full stop (dot character followed by a
layout character). The predicates for reading and writing Prolog terms are particularly useful
for storing Prolog data in a file or transferring them over a network communication channel
(socket) to another Prolog process. The libraries provide a wealth of predicates to read data in
other formats. See e.g., readutil, pure input or libraries from the extension packages to
read XML, JSON, YAML, etc.

read(+Stream, -Term) [ISO]

Read the next Prolog term from Stream. See read/1 and read term/2 for details.

read clause(+Stream, -Term, +Options)
Equivalent to read term/3, but sets options according to the current compilation context
and optionally processes comments. Defined options:

syntax errors(+Atom)
See read term/3, but the default is dec10 (report and restart).

term position(-TermPos)
Same as for read term/3.

subterm positions(-TermPos)
Same as for read term/3.

variable names(-Bindings)
Same as for read term/3.

process comment(+Boolean)
If true (default), call prolog:comment hook(Comments, TermPos, Term) if this
multifile hook is defined (see prolog:comment hook/3). This is used to drive
PlDoc.

SWI-Prolog 9.3 Reference Manual

4.20. TERM READING AND WRITING 219

comments(-Comments)
If provided, unify Comments with the comments encountered while reading Term. This
option implies process comment(false).

The singletons option of read term/3 is initialised from the active style-checking
mode. The module option is initialised to the current compilation module (see
prolog load context/2).

read term(-Term, +Options) [ISO]

Read a term from the current input stream and unify the term with Term. The reading is con-
trolled by options from the list of Options. If this list is empty, the behaviour is the same as
for read/1. The options are upward compatible with Quintus Prolog. The argument order
is according to the ISO standard. Syntax errors are always reported using exception-handling
(see catch/3). Options:

backquoted string(Bool)
If true, read ‘. . .‘ to a string object (see section 5.2). The default depends on the
Prolog flag back quotes.

character escapes(Bool)
Defines how to read \ escape sequences in quoted atoms. See the Prolog flag
character escapes in current prolog flag/2. (SWI-Prolog).

comments(-Comments)
Unify Comments with a list of Position-Comment, where Position is a stream position
object (see stream position data/3) indicating the start of a comment and
Comment is a string object containing the text including delimiters of a comment. It
returns all comments from where the read term/2 call started up to the end of the
term read.

cycles(Bool)
If true (default false), re-instantiate templates as produced by the corresponding
write term/2 option. Note that the default is false to avoid misinterpretation
of @(Template, Substitutions), while the default of write term/2 is true because
emitting cyclic terms without using the template construct produces an infinitely large
term (read: it will generate an error after producing a huge amount of output).

dotlists(Bool)
If true (default false), read .(a,[]) as a list, even if lists are internally constructed
a different functor ([|](Head,Tail)). This is primarily intended to read the output
from write canonical/1 from other Prolog systems. See section 5.1.

double quotes(Atom)
Defines how to read ”. . . ” strings. See the Prolog flag double quotes. (SWI-Prolog).

module(Module)
Specify Module for operators, character escapes flag and double quotes flag.
The value of the latter two is overruled if the corresponding read term/3 option is
provided. If no module is specified, the current ‘source module’ is used. If the options
is provided but the target module does not exist, module user is used because new
modules by default inherit from user

SWI-Prolog 9.3 Reference Manual

220 CHAPTER 4. BUILT-IN PREDICATES

quasi quotations(-List)
If present, unify List with the quasi quotations (see section A.45) instead of evaluating
quasi quotations. Each quasi quotation is a term quasi quotation(+Syntax, +Quo-
tation, +VarDict, -Result), where Syntax is the term in {|Syntax||..|}, Quotation is
a list of character codes that represent the quotation, VarDict is a list of Name=Variable
and Result is a variable that shares with the place where the quotation must be inserted.
This option is intended to support tools that manipulate Prolog source text.

singletons(Vars)
As variable names, but only reports the variables occurring only once in the Term
read (ISO). If Vars is the constant warning, singleton variables are reported using
print message/2. The variables appear in the order they have been read. The latter
option provides backward compatibility and is used to read terms from source files. Not
all singleton variables are reported as a warning. See section 2.15.1 for the rules that
apply for warning about a singleton variable.70

syntax errors(Atom)
If error (default), throw an exception on a syntax error. Other values are fail, which
causes a message to be printed using print message/2, after which the predicate
fails, quiet which causes the predicate to fail silently, and dec10 which causes syntax
errors to be printed, after which read term/[2,3] continues reading the next term.
Using dec10, read term/[2,3] never fails. (Quintus, SICStus).

subterm positions(TermPos)
Describes the detailed layout of the term. The formats for the various types of terms are
given below. All positions are character positions. If the input is related to a normal
stream, these positions are relative to the start of the input; when reading from the
terminal, they are relative to the start of the term.

From-To
Used for primitive types (atoms, numbers, variables).

string position(From, To)
Used to indicate the position of a string enclosed in double quotes (").

brace term position(From, To, Arg)
Term of the form {...}, as used in DCG rules. Arg describes the argument.

list position(From, To, Elms, Tail)
A list. Elms describes the positions of the elements. If the list specifies the tail as
|⟨TailTerm⟩, Tail is unified with the term position of the tail, otherwise with the atom
none.

term position(From, To, FFrom, FTo, SubPos)
Used for a compound term not matching one of the above. FFrom and FTo describe
the position of the functor. SubPos is a list, each element of which describes the term
position of the corresponding subterm.

dict position(From, To, TagFrom, TagTo, KeyValuePosList)
Used for a dict (see section 5.4). The position of the key-value pairs is described
by KeyValuePosList, which is a list of key value position/7 terms. The

70As of version 7.7.17, all variables starting with an underscore except for the truly anonymous variable are returned in
Vars. Older versions only reported those that would have been reported if warning is used.

SWI-Prolog 9.3 Reference Manual

4.20. TERM READING AND WRITING 221

key value position/7 terms appear in the order of the input. Because maps
do not preserve ordering, the key is provided in the position description.

key value position(From, To, SepFrom, SepTo, Key, KeyPos, ValuePos)
Used for key-value pairs in a map (see section 5.4). It is similar to the
term position/5 that would be created, except that the key and value po-
sitions do not need an intermediate list and the key is provided in Key to enable
synchronisation of the file position data with the data structure.

parentheses term position(From, To, ContentPos)
Used for terms between parentheses. This is an extension compared to the original
Quintus specification that was considered necessary for secure refactoring of terms.

quasi quotation position(From, To, SyntaxTerm, SyntaxPos, ContentPos)
Used for quasi quotations. Given the input {|Syntax||Content|},
SyntaxTerm is the parsed term representation from Syntax, e.g.,
{|string(X)||Hello {{X}}|} produces Syntax string(X) and Syn-
taxPos describes the layout of this term. ContentPos is always a term From-To
describing the character range of Content.71

term position(Pos)
Unifies Pos with the starting position of the term read. Pos is of the same format as used
by stream property/2.

var prefix(Bool)
If true, demand variables to start with an underscore. See section 2.15.1.

variables(Vars)
Unify Vars with a list of variables in the term. The variables appear in the order they have
been read. See also term variables/2. (ISO).

variable names(Vars)
Unify Vars with a list of ‘Name = Var’, where Name is an atom describing the variable
name and Var is a variable that shares with the corresponding variable in Term. (ISO).
The variables appear in the order they have been read.

read term(+Stream, -Term, +Options) [ISO]

Read term with options from Stream. See read term/2.

read term from atom(+Atom, -Term, +Options)
Use read term/3 to read the next term from Atom. Atom is either an atom or a string object
(see section 5.2). It is not required for Atom to end with a full-stop. If Atom only contains white
space and/or comments, an syntax error(end of string) exception is raised. This predicate
supersedes atom to term/3.

read term with history(-Term, +Options)
Read a term while providing history substitutions. read term with history/2 is used by
the top level to read the user’s actions. In addition to the options recognised by read term/2,
the following options are recognised:

71The layout of the term produced by the quasi quotation parser is not available. Future versions may provide an interface
that allows contributing a layout term.

SWI-Prolog 9.3 Reference Manual

222 CHAPTER 4. BUILT-IN PREDICATES

prompt(+Prompt)
Define the prompt to use. The default is ˜! ?-. A sequence ˜! is replaced by the
current history event number.

show(+Command)
Using Command lists the saved history events. Default is !history.

help(+Command)
Using Command shows help on the history system. Default is !help.

no save(+Commands)
Do not save the command into the history if it appears in the list Commands.

module(+Module)
Defines the module from which to extract module-specific syntax such as operators and
handling of the various quotes. Default is the typein module which is set using
module/1 and is initially set to user.

input(+Stream)
Stream from which to read Term. Default is user input.

Most applications will use the read term/2 option variable names to get access to the
names of the variables in Term. SWI-Prolog calls read term with history/2 as follows:

read_term_with_history(
Goal,
[show(h),
help(’!h’),
no_save([trace, end_of_file]),
prompt(’˜! ?-’),
variable_names(Bindings)

]).

prompt(-Old, +New)
Set prompt associated with reading from the user input stream. Old is first unified with the
current prompt. On success the prompt will be set to New (an atom). A prompt is printed if data
is read from user input, the cursor is at the left margin and the user input is considered
to be connected to a terminal. See the tty(Bool) property of stream property/2 and
set stream/2.

The default prompt is ’|: ’. Note that the toplevel loop (see prolog/0) sets the prompt for
the first prompt (see prompt1/1) to ’?- ’, possibly decorated by the history event number,
break level and debug mode. If the first line does not complete the term, subsequent lines are
prompted for using the prompt as defined by prompt/2.

prompt1(?Prompt)
Sets the prompt for the next line to be read. Continuation lines will be read using the prompt
defined by prompt/2. If Prompt is unbound it is unified with the current first-line prompt.

SWI-Prolog 9.3 Reference Manual

4.21. ANALYSING AND CONSTRUCTING TERMS 223

4.21 Analysing and Constructing Terms

functor(?Term, ?Name, ?Arity) [ISO]

True when Term is a term with functor Name/Arity. If Term is a variable it is unified with a new
term whose arguments are all different variables (such a term is called a skeleton). If Term is
atomic, Arity will be unified with the integer 0, and Name will be unified with Term. Raises
instantiation error if Term is unbound and Name/Arity is insufficiently instantiated.

SWI-Prolog also supports terms with arity 0, as in a() (see section 5). Such terms must be
processed using functor/4 or compound name arity/3. The predicate functor/3
and =../2 raise a domain error when faced with these terms. Without this precaution a
round trip of a term with arity 0 over functor/3 would create an atom.

functor(?Term, ?Name, ?Arity, ?Type)
As functor/3, but designed to work with zero-arity terms (e.g., a(), see section 5). Type
is one of atom, compound, callable or atomic. Type must be instantiated if Name is
an atom and Arity is 0 (zero). In other cases Type may be a variable. This predicate is true if
Term (either initially or after having been created from Name and Type) and Type are related as
below

• If Term is compound (including zero-arity compounds), Type must be compound or
callable. If Type is unbound is is unified with compound.

• If Term is an atom, Type must be atom or callable. If Type is unbound is is unified
with atom.

• Else Type is unified with atomic.

This predicate provides a safe round trip for zero-arity compounds and atoms. It can also be
used as a variant of functor/3 that only processes compound or callable terms. See also
compound/1, callable/1 and compound name arity/3.

arg(?Arg, +Term, ?Value) [ISO]

Term should be instantiated to a term, Arg to an integer between 1 and the arity of Term.
Value is unified with the Arg-th argument of Term. Arg may also be unbound. In this case
Value will be unified with the successive arguments of the term. On successful unifica-
tion, Arg is unified with the argument number. Backtracking yields alternative solutions.72

The predicate arg/3 fails silently if Arg = 0 or Arg > arity and raises the exception
domain error(not less than zero, Arg) if Arg < 0.

?Term =.. ?List [ISO]

List is a list whose head is the functor of Term and the remaining arguments are the arguments
of the term. Either side of the predicate may be a variable, but not both. This predicate is called
‘Univ’.

?- foo(hello, X) =.. List.
List = [foo, hello, X]

72The instantiation pattern (-, +, ?) is an extension to ‘standard’ Prolog. Some systems provide genarg/3 that covers
this pattern.

SWI-Prolog 9.3 Reference Manual

224 CHAPTER 4. BUILT-IN PREDICATES

?- Term =.. [baz, foo(1)].
Term = baz(foo(1))

SWI-Prolog also supports terms with arity 0, as in a() (see section 5). Such terms must be
processed using compound name arguments/3. This predicate raises a domain error as
shown below. See also functor/3.

?- a() =.. L.
ERROR: Domain error: ‘compound_non_zero_arity’ expected, found ‘a()’

compound name arity(?Compound, ?Name, ?Arity)
Version of functor/3 that only works for compound terms and can exam-
ine and create compound terms with zero arguments (e.g, name()). See also
compound name arguments/3. See also functor/4.

compound name arguments(?Compound, ?Name, ?Arguments)
Rationalized version of =../2 that can compose and decompose compound terms with zero
arguments. See also compound name arity/3.

numbervars(+Term, +Start, -End)
Unify the free variables in Term with a term $VAR(N), where N is the number of the variable.
Counting starts at Start. End is unified with the number that should be given to the next
variable.73 The example below illustrates this. Note that the toplevel prints ’$VAR’(0) as A
due to the numbervars(true) option used to print answers.

?- Term = f(X,Y,X),
numbervars(Term, 0, End, [singleton(true)]),
write_canonical(Term), nl.

f(’$VAR’(0),’$VAR’(’_’),’$VAR’(0))
Term = f(A, _, A),
X = A,
Y = B,
End = 2.

See also the numbervars option to write term/3 and numbervars/4.

numbervars(+Term, +Start, -End, +Options)
As numbervars/3, providing the following options:

functor name(+Atom)
Name of the functor to use instead of $VAR.

73BUG: Only tagged integers are supported (see the Prolog flag max tagged integer). This suffices to count all
variables that can appear in the largest term that can be represented, but does not support arbitrary large integer values for
Start. On overflow, a representation error(tagged integer) exception is raised.

SWI-Prolog 9.3 Reference Manual

4.21. ANALYSING AND CONSTRUCTING TERMS 225

attvar(+Action)
What to do if an attributed variable is encountered. Options are skip, which causes
numbervars/3 to ignore the attributed variable, bind which causes it to treat it as a
normal variable and assign the next ’$VAR’(N) term to it, or (default) error which
raises a type error exception.74

singletons(+Bool)
If true (default false), numbervars/4 does singleton detection. Singleton variables
are unified with ’$VAR’(’_’), causing them to be printed as _ by write term/2
using the numbervars option. This option is exploited by portray clause/2 and
write canonical/2.75

var number(@Term, -VarNumber)
True if Term is numbered by numbervars/3 and VarNumber is the number given to this
variable. This predicate avoids the need for unification with ’$VAR’(X) and opens the path
for replacing this valid Prolog term by an internal representation that has no textual equivalent.

term variables(+Term, -List) [ISO]

Unify List with a list of variables, each sharing with a unique variable of Term.76 The variables
in List are ordered in order of appearance traversing Term depth-first and left-to-right. See also
term variables/3 and nonground/2. For example:

?- term_variables(a(X, b(Y, X), Z), L).
L = [X, Y, Z].

nonground(+Term, -Var) [semidet]

True when Var is a variable in Term. Fails if Term is ground (see ground/1). This predicate is
intended for coroutining to trigger a wakeup if Term becomes ground, e.g., using when/2. The
current implementation always returns the first variable in depth-first left-right search. Ideally
it should return a random member of the set of variables (see term variables/2) to realise
logarithmic complexity for the ground trigger. Compatible with ECLiPSe and hProlog.

term variables(+Term, -List, ?Tail)
Difference list version of term variables/2. That is, Tail is the tail of the variable list
List.

term singletons(+Term, -List)
Unify List with a list of variables, each sharing with a variable that appears only once in Term.77

Note that, if a variable appears in a shared subterm, it is not considered singleton. Thus, A is
not a singleton in the example below. See also the singleton option of numbervars/4.

74This behaviour was decided after a long discussion between David Reitter, Richard O’Keefe, Bart Demoen and Tom
Schrijvers.

75BUG: Currently this option is ignored for cyclic terms.
76This predicate used to be called free variables/2. The name term variables/2 is more widely used. The

old predicate is still available from the library backcomp.
77BUG: In the current implementation Term must be acyclic. If not, a representation error is raised.

SWI-Prolog 9.3 Reference Manual

226 CHAPTER 4. BUILT-IN PREDICATES

?- S = a(A), term_singletons(t(S,S), L).
L = [].

is most general term(@Term)
True if Term is a callable term where all arguments are non-sharing variables or Term is a
list whose members are all non-sharing variables. This predicate is used to reason about
call subsumption for tabling and is compatible with XSB. See also subsumes term/2.
Examples:

1 is most general term(1) false
2 is most general term(p) true
3 is most general term(p()) true
4 is most general term(p(,a)) false
5 is most general term(p(X,X)) false
6 is most general term([]) true
7 is most general term([|]) false
8 is most general term([,]) true
9 is most general term([X,X]) false

copy term(+In, -Out) [ISO]

Create a version of In with renamed (fresh) variables and unify it to Out. Attributed variables
(see section 8.1) have their attributes copied. The implementation of copy term/2 can deal
with infinite trees (cyclic terms). As pure Prolog cannot distinguish a ground term from another
ground term with exactly the same structure, ground sub-terms are shared between In and Out.
Sharing ground terms does affect setarg/3. SWI-Prolog provides duplicate term/2 to
create a true copy of a term.

copy term(+VarsIn, +In, -VarsOut, -Out)
Similar to copy term/2, but only rename the variables in VarsIn that appear in In.78 Vari-
ables in In that do not appear in VarsIn are shared between In and Out. Sub terms that only
contain such shared variables are shared as a whole between In and Out. VarsIn is often a list,
but can be an arbitrary term. For example:

?- copy_term([X], q(X,Y), Vars, Term).
Vars = [_A],
Term = q(_A, Y).

Note that if VarsIn and In do not share any variables, Out is equivalent to In and VarsOut is a
copy (as copy term/2) of VarsIn. If In does not contain any variables not in VarsIn the result
is the same as copy term(VarsIn-In, VarsOut-Out).

copy term nat(+VarsIn, +In, -VarsOut, -Out)
As copy term/4, using the attributed variable semantics of copy term nat/2. This

78This predicate is based on a similar predicate in s(CASP) by Joaquin Arias.

SWI-Prolog 9.3 Reference Manual

4.21. ANALYSING AND CONSTRUCTING TERMS 227

implies that attributed variables that appear in VarsIn appear as renamed plain variables in
VarsOut and Out. Attributed variables in In that do not appear in VarsIn are shared between In
and Out.

4.21.1 Non-logical operations on terms

Prolog is not able to modify instantiated parts of a term. Lacking that capability makes the language
much safer, but unfortunately there are problems that suffer severely in terms of time and/or memory
usage. Always try hard to avoid the use of these primitives, but they can be a good alternative to using
dynamic predicates. See also section 4.33, discussing the use of global variables.

setarg(+Arg, +Term, +Value)
Extra-logical predicate. Assigns the Arg-th argument of the compound term Term with the
given Value. The assignment is undone if backtracking brings the state back into a position
before the setarg/3 call. If the designated argument of Term is a variable, this variable
is unified with Value using normal unification, i.e., setarg/3 behaves as arg/3 in this
case. Note that this may produce a cyclic term if Value contains this variable. See also
nb setarg/3.

This predicate may be used for destructive assignment to terms, using them as an extra-logical
storage bin. Always try hard to avoid the use of setarg/3 as it is not supported by many
Prolog systems and one has to be very careful about unexpected copying as well as unexpected
noncopying of terms. A good practice to improve somewhat on this situation is to make sure that
terms whose arguments are subject to setarg/3 have one unused and unshared variable in
addition to the used arguments. This variable avoids unwanted sharing in, e.g., copy term/2,
and causes the term to be considered as non-ground. An alternative is to use put attr/3 to
attach information to attributed variables (see section 8.1).

nb setarg(+Arg, +Term, +Value)
Assigns the Arg-th argument of the compound term Term with the given Value as setarg/3,
but on backtracking the assignment is not reversed. If Value is not atomic, it is duplicated
using duplicate term/2. This predicate uses the same technique as nb setval/2.
We therefore refer to the description of nb setval/2 for details on non-backtrackable
assignment of terms. This predicate is compatible with GNU-Prolog setarg(A,T,V,false),
removing the type restriction on Value. Below is an example for counting the number of
solutions of a goal. Note that this implementation is thread-safe, reentrant and capable of
handling exceptions. Realising these features with a traditional implementation based on
assert/retract or flag/3 is much more complicated.

:- meta_predicate
succeeds_n_times(0, -).

succeeds_n_times(Goal, Times) :-
Counter = counter(0),
(Goal,

arg(1, Counter, N0),
N is N0 + 1,
nb_setarg(1, Counter, N),

SWI-Prolog 9.3 Reference Manual

228 CHAPTER 4. BUILT-IN PREDICATES

fail
; arg(1, Counter, Times)
).

See also nb linkarg/3 and foldall/4.

nb linkarg(+Arg, +Term, +Value)
As nb setarg/3, but like nb linkval/2 it does not duplicate Value. Use with extreme
care and consult the documentation of nb linkval/2 before use.

duplicate term(+In, -Out)
Version of copy term/2 that also copies ground terms and therefore ensures that destruc-
tive modification using setarg/3 does not affect the copy. See also nb setval/2,
nb linkval/2, nb setarg/3 and nb linkarg/3.

same term(@T1, @T2) [semidet]

True if T1 and T2 are equivalent and will remain equivalent, even if setarg/3 is used on
either of them. This means T1 and T2 are the same variable, equivalent atomic data or a
compound term allocated at the same address.

4.22 Analysing and Constructing Atoms

These predicates convert between certain Prolog atomic values on one hand and lists of character
codes (or, for atom chars/2, characters) on the other. The Prolog atomic values can be atoms,
characters (which are atoms of length 1), SWI-Prolog strings, as well as numbers (integers, floats and
non-integer rationals).

The character codes, also known as code values, are integers. In SWI-Prolog, these integers are
Unicode code points.79

To ease the pain of all text representation variations in the Prolog community, all SWI-Prolog
predicates behave as flexible as possible. This implies the ‘list-side’ accepts both a character-code-list
and a character-list and the ‘atom-side’ accepts all atomic types (atom, number and string). For ex-
ample, the predicates atom codes/2, number codes/2 and name/2 behave the same in mode
(+,-), i.e., ‘listwards’, from a constant to a list of character codes. When converting the other way
around:

• atom codes/2 will generate an atom;

• number codes/2 will generate a number or throw an exception;

• name/2 will generate a number if possible and an atom otherwise.

atom codes(?Atom, ?CodeList) [ISO]

Convert between an atom and a list of character codes (integers denoting characters).

• If Atom is instantiated, it will be translated into a list of character codes, which are unified
with CodeList.

79BUG: On Windows the range is limited to UCS-2, 0..65535.

SWI-Prolog 9.3 Reference Manual

4.22. ANALYSING AND CONSTRUCTING ATOMS 229

• If Atom is uninstantiated and CodeList is a list of character codes, then Atom will be unified
with an atom constructed from this list.

?- atom_codes(hello, X).
X = [104, 101, 108, 108, 111].

The ‘listwards’ call to atom codes/2 can also be written (functionally) using backquotes
instead:

?- Cs = ‘hello‘.
Cs = [104, 101, 108, 108, 111].

Backquoted strings can be mostly found in the body of DCG rules that process lists of character
codes.

Note that this is the default interpretation for backquotes. It can be changed on a per-module
basis by setting the value of the Prolog flag back quotes.

atom chars(?Atom, ?CharList) [ISO]

Similar to atom codes/2, but CharList is a list of characters (atoms of length 1) rather than
a list of character codes (integers denoting characters).

?- atom_chars(hello, X).
X = [h, e, l, l, o]

char code(?Atom, ?Code) [ISO]

Convert between a single character (an atom of length 1), and its character code (an integer
denoting the corresponding character). The predicate alternatively accepts an SWI-Prolog
string of length 1 at Atom place.

number chars(?Number, ?CharList) [ISO]

Similar to atom chars/2, but converts between a number and its representation as a list of
characters (atoms of length 1).

• If CharList is a proper list, i.e., not unbound or a partial list, CharList is parsed according
to the Prolog syntax for numbers and the resulting number is unified with Number. A
syntax error exception is raised if CharList is instantiated to a ground, proper list but
does not represent a valid Prolog number.

• Otherwise, if Number is indeed a number, Number is serialized and the result is unified
with CharList.

Following the ISO standard, the Prolog syntax for number allows for leading white space (in-
cluding newlines) and does not allow for trailing white space.80

Prolog syntax-based conversion can also be achieved using format/3 and
read from chars/2.

80ISO also allows for Prolog comments in leading white space. We–and most other implementations–believe this is
incorrect. We also believe it would have been better not to allow for white space, or to allow for both leading and trailing
white space.

SWI-Prolog 9.3 Reference Manual

230 CHAPTER 4. BUILT-IN PREDICATES

number codes(?Number, ?CodeList) [ISO]

As number chars/2, but converts to a list of character codes rather than characters. In the
mode (-,+), both predicates behave identically to improve handling of non-ISO source.

atom number(?Atom, ?Number)
Realises the popular combination of atom codes/2 and number codes/2 to convert
between atom and number (integer, float or non-integer rational) in one predicate, avoiding the
intermediate list. Unlike the ISO standard number codes/2 predicates, atom number/2
fails silently in mode (+,-) if Atom does not represent a number.

name(?Atomic, ?CodeList)
CodeList is a list of character codes representing the same text as Atomic. Each of the arguments
may be a variable, but not both.

• When CodeList describes an integer or floating point number and Atomic is a vari-
able, Atomic will be unified with the numeric value described by CodeList (e.g.,
name(N, "300"), 400 is N + 100 succeeds).

• If CodeList is not a representation of a number, Atomic will be unified with the atom with
the name given by the character code list.

• If Atomic is an atom or number, the unquoted print representation of it as a character code
list is unified with CodeList.

This predicate is part of the Edinburgh tradition. It should be considered deprecated although,
given its long tradition, it is unlikely to be removed from the system. It still has some value
for converting input to a number or an atom (depending on the syntax). New code should
consider the ISO predicates atom codes/2, number codes/2 or the SWI-Prolog predicate
atom number/2.

term to atom(?Term, ?Atom)
True if Atom describes a term that unifies with Term. When Atom is instantiated, Atom is
parsed and the result unified with Term. If Atom has no valid syntax, a syntax error
exception is raised. Otherwise Term is “written” on Atom using write term/2 with the
option quoted(true). See also format/3, with output to/2 and term string/2.

atom to term(+Atom, -Term, -Bindings) [deprecated]

Use Atom as input to read term/2 using the option variable names and return the read
term in Term and the variable bindings in Bindings. Bindings is a list of Name = Var couples,
thus providing access to the actual variable names. See also read term/2. If Atom has
no valid syntax, a syntax error exception is raised. If Atom only contains white space
and/or comments, an syntax error(end of string) exception is raised. New code should
use read term from atom/3.

atom concat(?Atom1, ?Atom2, ?Atom3) [ISO]

Atom3 forms the concatenation of Atom1 and Atom2. At least two of the arguments must be
instantiated to atoms. This predicate also allows for the mode (-,-,+), non-deterministically
splitting the 3rd argument into two parts (as append/3 does for lists). SWI-Prolog allows for
atomic arguments. Portable code must use atomic concat/3 if non-atom arguments are
involved.

SWI-Prolog 9.3 Reference Manual

4.22. ANALYSING AND CONSTRUCTING ATOMS 231

atomic concat(+Atomic1, +Atomic2, -Atom)
Atom represents the text after converting Atomic1 and Atomic2 to text and concatenating the
result:

?- atomic_concat(name, 42, X).
X = name42.

atomic list concat(+List, -Atom) [commons]

List is a list of strings, atoms, integers, floating point numbers or non-integer rationals. Suc-
ceeds if Atom can be unified with the concatenated elements of List. Equivalent to
atomic list concat(List, ”, Atom).

atomic list concat(+List, +Separator, -Atom) [commons]

Creates an atom just like atomic list concat/2, but inserts Separator between each pair
of inputs. For example:

?- atomic_list_concat([gnu, gnat], ’, ’, A).

A = ’gnu, gnat’

The ‘atomwards‘ transformation is usually called a string join operation in other programming
languages.

The SWI-Prolog version of this predicate can also be used to split atoms by instantiating Sepa-
rator and Atom as shown below. We kept this functionality to simplify porting old SWI-Prolog
code where this predicate was called concat atom/3. When used in mode (-,+,+), Separator
must be a non-empty atom. See also split string/4.

?- atomic_list_concat(L, -, ’gnu-gnat’).

L = [gnu, gnat]

atom length(+Atom, -Length) [ISO]

True if Atom is an atom of Length characters. The SWI-Prolog version accepts all atomic
types, as well as code-lists and character-lists. New code should avoid this feature and use
write length/3 to get the number of characters that would be written if the argument was
handed to write term/3.

atom prefix(+Atom, +Prefix) [deprecated]

True if Atom starts with the characters from Prefix. Its behaviour is equivalent to
?- sub atom(Atom, 0, , , Prefix). Deprecated.

sub atom(+Atom, ?Before, ?Length, ?After, ?SubAtom) [ISO]

ISO predicate for breaking atoms. It maintains the following relation: SubAtom is a sub-atom
of Atom that starts at (0-based index) Before, has Length characters, and Atom contains After
characters after the match. The implementation minimises non-determinism and creation
of atoms. This is a flexible predicate that can do search, prefix- and suffix-matching, etc.

SWI-Prolog 9.3 Reference Manual

232 CHAPTER 4. BUILT-IN PREDICATES

Scenarios that use this predicate often generate atoms that with a short lifetime; in such cases
sub string/5 may be a better alternative. Examples:

Pick out a sub-atom of length 3 starting a 0-based index 2:

?- sub_atom(aaxyzbbb, 2, 3, After, SubAtom).
After = 3,
SubAtom = xyz.

The following example splits a string of the form ⟨name⟩=⟨value⟩ into the name part (an atom)
and the value (a string).

name_value(String, Name, Value) :-
sub_atom(String, Before, _, After, "="),
!,
sub_atom(String, 0, Before, _, Name),
sub_atom(String, _, After, 0, Value).

This example defines a predicate that inserts a value at a position. Note that sub string/5 is
used here instead of sub atom/5 to avoid the overhead of creating atoms for the intermediate
results.

atom_insert(Str, Val, At, NewStr) :-
sub_string(Str, 0, At, A1, S1),
sub_string(Str, At, A1, _, S2),
atomic_list_concat([S1,Val,S2], NewStr).

On backtracking, matches are delivered in order left-to-right (i.e. Before increases monotoni-
cally):

?- sub_atom(’xATGATGAxATGAxATGAx’, Before, Length, After, ’ATGA’).
Before = 1, Length = 4, After = 14 ;
Before = Length, Length = 4, After = 11 ;
Before = 9, Length = 4, After = 6 ;
Before = 14, Length = 4, After = 1 ;
false.

See also sub string/5, the corresponding predicate for SWI-Prolog strings.

sub atom icasechk(+Haystack, ?Start, +Needle) [semidet]

True when Needle is a sub atom of Haystack starting at Start. The match is ‘half case in-
sensitive’, i.e., uppercase letters in Needle only match themselves, while lowercase letters in
Needle match case insensitively. Start is the first 0-based offset inside Haystack where Needle
matches.81

81This predicate replaces $apropos match/2, used by the help system, while extending it with locating the (first)
match and performing case insensitive prefix matching. We are still not happy with the name and interface.

SWI-Prolog 9.3 Reference Manual

4.23. LOCALIZATION (LOCALE) SUPPORT 233

4.23 Localization (locale) support

SWI-Prolog provides (currently limited) support for localized applications.

• The predicates char type/2 and code type/2 query character classes depending on the
locale.

• The predicates collation key/2 and locale sort/2 can be used for locale dependent
sorting of atoms.

• The predicate format time/3 can be used to format time and date representations, where
some of the specifiers are locale dependent.

• The predicate format/2 provides locale-specific formatting of numbers. This functionality is
based on a more fine-grained localization model that is the subject of this section.

A locale is a (optionally named) read-only object that provides information to locale specific
functions.82 The system creates a default locale object named default from the system locale. This
locale is used as the initial locale for the three standard streams as well as the main thread. Locale
sensitive output predicates such as format/3 get their locale from the stream to which they deliver
their output. New streams get their locale from the thread that created the stream. Threads get their
locale from the thread that created them.

locale create(-Locale, +Default, +Options)
Create a new locale object. Default is either an existing locale or a string that denotes the name
of a locale provided by the system, such as "en_EN.UTF-8". The values read from the
default locale can be modified using Options. Options provided are:

alias(+Atom)
Give the locale a name.

decimal point(+Atom)
Specify the decimal point to use.

thousands sep(+Atom)
Specify the string that delimits digit groups. Only effective is grouping is also specified.

grouping(+List)
Specify the grouping of digits. Groups are created from the right (least significant) digits,
left of the decimal point. List is a list of integers, specifying the number of digits in each
group, counting from the right. If the last element is repeat(Count), the remaining
digits are grouped in groups of size Count. If the last element is a normal integer, digits
further to the left are not grouped.

For example, the English locale uses

[decimal_point(’.’), thousands_sep(’,’), grouping([repeat(3)])]

82The locale interface described in this section and its effect on format/2 and reading integers from digit groups was
discussed on the SWI-Prolog mailinglist. Most input in this discussion is from Ulrich Neumerkel and Richard O’Keefe.
The predicates in this section were designed by Jan Wielemaker.

SWI-Prolog 9.3 Reference Manual

234 CHAPTER 4. BUILT-IN PREDICATES

Named locales exists until they are destroyed using locale destroy/1 and they are no
longer referenced. Unnamed locales are subject to (atom) garbage collection.

locale destroy(+Locale)
Destroy a locale. If the locale is named, this removes the name association from the locale,
after which the locale is left to be reclaimed by garbage collection.

locale property(?Locale, ?Property)
True when Locale has Property. Properties are the same as the Options described with
locale create/3.

set locale(+Locale)
Set the default locale for the current thread, as well as the locale for the standard streams
(user input, user output, user error, current output and current input.
This locale is used for new streams, unless overruled using the locale(Locale) option of
open/4 or set stream/2.

current locale(-Locale)
True when Locale is the locale of the calling thread.

4.24 Character properties

SWI-Prolog offers two comprehensive predicates for classifying characters and character codes.
These predicates are defined as built-in predicates to exploit the C-character classification’s handling
of locale (handling of local character sets). These predicates are fast, logical and deterministic if
applicable.

In addition, there is the library ctypes providing compatibility with some other Prolog systems.
The predicates of this library are defined in terms of code type/2.

char type(?Char, ?Type)
Tests or generates alternative Types or Chars. The character types are inspired by the standard
C <ctype.h> primitives. The types are sensitive to the active locale, see setlocale/3.
Most of the Types are mapped to the Unicode classification functions from <wctype.h>,
e.g., alnum uses iswalnum(). The types prolog var start, prolog atom start,
prolog identifier continue and prolog symbol are based on the locale-
independent built-in classification routines that are also used by read/1 and friends.

Note that the mode (-,+) is only efficient if the Type has a parameter, e.g., char type(C,
digit(8)). If Type is a atomic, the whole unicode range (0..0x1ffff) is generated and tested
against the character classification function.

alnum
Char is a letter (upper- or lowercase) or digit.

alpha
Char is a letter (upper- or lowercase).

csym
Char is a letter (upper- or lowercase), digit or the underscore (_). These are valid C and
Prolog symbol characters.

SWI-Prolog 9.3 Reference Manual

4.24. CHARACTER PROPERTIES 235

csymf
Char is a letter (upper- or lowercase) or the underscore (_). These are valid first characters
for C and Prolog symbols.

ascii
Char is a 7-bit ASCII character (0..127).

white
Char is a space or tab, i.e. white space inside a line.

cntrl
Char is an ASCII control character (0..31), ASCII DEL character (127), or non-ASCII
character in the range 128..159 or 8232..8233.

digit
Char is a digit, i.e., Char is in 0 . . . 9. See also decimal.

digit(Weight)
Char is a digit with value Weight. I.e. char type(X, digit(6)) yields X = ’6’.
Useful for parsing numbers.

xdigit(Weight)
Char is a hexadecimal digit with value Weight. I.e. char type(a, xdigit(X))
yields X = ’10’. Useful for parsing numbers.

decimal
Char is a decimal digit in any script. This implies it has the Unicode general category
Nd).

decimal(Weight)
Char is a decimal digit in any script with Weight 0 . . . 9.

print
Char is printable character.

graph
Char produces a visible mark on a page when printed. Note that the space is not included!

lower
Char is a lowercase letter.

lower(Upper)
Char is a lowercase version of Upper. Only true if Char is lowercase and Upper upper-
case.

to lower(Upper)
Char is a lowercase version of Upper. For non-letters, or letter without case, Char and
Lower are the same. See also upcase atom/2 and downcase atom/2.

upper
Char is an uppercase letter.

upper(Lower)
Char is an uppercase version of Lower. Only true if Char is uppercase and Lower lower-
case.

to upper(Lower)
Char is an uppercase version of Lower. For non-letters, or letter without case, Char and
Lower are the same. See also upcase atom/2 and downcase atom/2.

SWI-Prolog 9.3 Reference Manual

236 CHAPTER 4. BUILT-IN PREDICATES

punct
Char is a punctuation character. This is a graph character that is not a letter or digit.

space
Char is some form of layout character (tab, vertical tab, newline, etc.).

end of file
Char is -1.

end of line
Char ends a line (ASCII: 10..13).

newline
Char is a newline character (10).

period
Char counts as the end of a sentence (.,!,?).

quote
Char is a quote character (", ’, ‘).

paren(Close)
Char is an open parenthesis and Close is the corresponding close parenthesis.

prolog var start
Char can start a Prolog variable name.

prolog atom start
Char can start a unquoted Prolog atom that is not a symbol.

prolog identifier continue
Char can continue a Prolog variable name or atom.

prolog symbol
Char is a Prolog symbol character. Sequences of Prolog symbol characters glue together
to form an unquoted atom. Examples are =.., \=, etc.

code type(?Code, ?Type)
As char type/2, but uses character codes rather than one-character atoms. Please note
that both predicates are as flexible as possible. They handle either representation if the
argument is instantiated and will instantiate only with an integer code or a one-character atom,
depending of the version used. See also the Prolog flag double quotes, atom chars/2
and atom codes/2.

4.24.1 Case conversion

There is nothing in the Prolog standard for converting case in textual data. The SWI-Prolog predicates
code type/2 and char type/2 can be used to test and convert individual characters. We have
started some additional support:

downcase atom(+AnyCase, -LowerCase)
Converts the characters of AnyCase into lowercase as char type/2 does (i.e. based on
the defined locale if Prolog provides locale support on the hosting platform) and unifies the
lowercase atom with LowerCase.

upcase atom(+AnyCase, -UpperCase)
Converts, similar to downcase atom/2, an atom to uppercase.

SWI-Prolog 9.3 Reference Manual

4.25. OPERATORS 237

4.24.2 White space normalization

normalize space(-Out, +In)
Normalize white space in In. All leading and trailing white space is removed. All non-empty
sequences for Unicode white space characters are replaced by a single space (\u0020)
character. Out uses the same conventions as with output to/2 and format/3.

4.24.3 Language-specific comparison

This section deals with predicates for language-specific string comparison operations.

collation key(+Atom, -Key)
Create a Key from Atom for locale-specific comparison. The key is defined such that if the
key of atom A precedes the key of atom B in the standard order of terms, A is alphabetically
smaller than B using the sort order of the current locale.

The predicate collation key/2 is used by locale sort/2 from library(sort). Please
examine the implementation of locale sort/2 as an example of using this call.

The Key is an implementation-defined and generally unreadable string. On systems that do not
support locale handling, Key is simply unified with Atom.

locale sort(+List, -Sorted)
Sort a list of atoms using the current locale. List is a list of atoms or string objects (see sec-
tion 5.2). Sorted is unified with a list containing all atoms of List, sorted to the rules of the
current locale. See also collation key/2 and setlocale/3.

4.25 Operators

Operators are defined to improve the readability of source code. For example, without operators, to
write 2*3+4*5 one would have to write +(*(2,3),*(4,5)). In Prolog, a number of operators
have been predefined. All operators, except for the comma (,) can be redefined by the user.

Some care has to be taken before defining new operators. Defining too many operators might
make your source ‘natural’ looking, but at the same time using many operators can make it hard to
understand the limits of your syntax.

In SWI-Prolog, operators are local to the module in which they are defined. Operators can be
exported from modules using a term op(Precedence, Type, Name) in the export list as specified by
module/2. Many modern Prolog systems have module specific operators. Unfortunately, there is
no established interface for exporting and importing operators. SWI-Prolog’s convention has been
adopted by YAP.

The module table of the module user acts as default table for all modules and can be modified
explicitly from inside a module to achieve compatibility with other Prolog that do not have module-
local operators:

:- module(prove,
[prove/1
]).

:- op(900, xfx, user:(=>)).

SWI-Prolog 9.3 Reference Manual

238 CHAPTER 4. BUILT-IN PREDICATES

Although operators are module-specific and the predicates that define them (op/3) or rely on them
such as current op/3, read/1 and write/1 are module sensitive, they are not proper meta-
predicates. If they were proper meta predicates read/1 and write/1 would use the module from
which they are called, breaking compatibility with other Prolog systems. The following rules apply:

1. If the module is explicitly specified by qualifying the third argument (op/3, current op/3)
or specifying a module(Module) option (read term/3, write term/3), this module is
used.

2. While compiling, the module into which the compiled code is loaded applies.

3. Otherwise, the typein module applies. This is normally user and may be changed using
module/1.

In SWI-Prolog, a quoted atom never acts as an operator. Note that the portable way to stop an
atom acting as an operator is to enclose it in parentheses like this: (myop). See also section 5.3.1.

op(+Precedence, +Type, :Name) [ISO]

Declare Name to be an operator of type Type with precedence Precedence. Name can also be
a list of names, in which case all elements of the list are declared to be identical operators.
Precedence is an integer between 0 and 1200. Precedence 0 removes the declaration. Type is
one of: xf, yf, xfx, xfy, yfx, fy or fx. The ‘f’ indicates the position of the functor, while
x and y indicate the position of the arguments. ‘y’ should be interpreted as “on this position a
term with precedence lower or equal to the precedence of the functor should occur”. For ‘x’
the precedence of the argument must be strictly lower. The precedence of a term is 0, unless its
principal functor is an operator, in which case the precedence is the precedence of this operator.
A term enclosed in parentheses (...) has precedence 0.

The predefined operators are shown in table 4.2. Operators can be redefined, unless prohibited
by one of the limitations below. Applications must be careful with (re-)defining operators be-
cause changing operators may cause (other) files to be interpreted differently. Often this will
lead to a syntax error. In other cases, text is read silently into a different term which may lead
to subtle and difficult to track errors.

• It is not allowed to redefine the comma (’,’).
• The bar (|) can only be (re-)defined as infix operator with priority not less than 1001.

In SWI-Prolog, operators are local to a module (see also section 6.9). Keeping operators in
modules and using controlled import/export of operators as described with the module/2 di-
rective keep the issues manageable. The module system provides the operators from table 4.2
and these operators cannot be modified. Files that are loaded from the SWI-Prolog directories
resolve operators and predicates from this system module rather than user, which makes
the semantics of the library and development system modules independent of operator changes
to the user module. See section 4.25 for details about the relation between operators and
modules.

current op(?Precedence, ?Type, ?:Name) [ISO]

True if Name is currently defined as an operator of type Type with precedence Precedence.
See also op/3. Note that an unqualified Name does not resolve to the calling context but,
when compiling, to the compiler’s target module and otherwise to the typein module. See
section 4.25 for details.

SWI-Prolog 9.3 Reference Manual

4.25. OPERATORS 239

1200 xfx -->, :-, =>, ==>
1200 fx :-, ?-
1150 fx dynamic, discontiguous, initialization,

meta predicate, module transparent, multifile,
public, thread local, thread initialization,
volatile

1105 xfy |
1100 xfy ;
1050 xfy ->, *->
1000 xfy ,

990 xfx :=
900 fy \+
700 xfx <, =, =.., =@=, \=@=, =:=, =<, ==, =\=, >, >=, @<, @=<, @>,

@>=, \=, \==, as, is, >:<, :<
600 xfy :
500 yfx +, -, /\, \/, xor
500 fx ?
400 yfx *, /, //, div, rdiv, <<, >>, mod, rem
200 xfx **
200 xfy ˆ
200 fy +, -, \
100 yfx .

1 fx $

Table 4.2: System operators

SWI-Prolog 9.3 Reference Manual

240 CHAPTER 4. BUILT-IN PREDICATES

4.26 Character Conversion

Although I wouldn’t really know why you would like to use these features, they are provided for ISO
compliance.

char conversion(+CharIn, +CharOut) [ISO]

Define that term input (see read term/3) maps each character read as CharIn to the charac-
ter CharOut. Character conversion is only executed if the Prolog flag char conversion is
set to true and not inside quoted atoms or strings. The initial table maps each character onto
itself. See also current char conversion/2.

current char conversion(?CharIn, ?CharOut) [ISO]

Queries the current character conversion table. See char conversion/2 for details.

4.27 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general pred-
icates for integer, floating point and rational arithmetic as appropriate. The general arithmetic predi-
cates all handle expressions. An expression is either a simple number or a function. The arguments of
a function are expressions. The functions are described in section 4.27.2.

4.27.1 Special purpose integer arithmetic

The predicates in this section provide more logical operations between integers. They are not covered
by the ISO standard, although they are ‘part of the community’ and found as either library or built-in
in many other Prolog systems.

between(+Low, +High, ?Value)
Low and High are integers, High ≥ Low. If Value is an integer, Low ≤ Value ≤ High. When
Value is a variable it is successively bound to all integers between Low and High. If High
is inf or infinite83 between/3 is true iff Value ≥ Low, a feature that is particularly
interesting for generating integers from a certain value.

succ(?Int1, ?Int2)
True if Int2 = Int1 + 1 and Int1 ≥ 0. At least one of the arguments must be instantiated to a
natural number. This predicate raises the domain error not less than zero if called with
a negative integer. E.g. succ(X, 0) fails silently and succ(X, -1) raises a domain error.84

plus(?Int1, ?Int2, ?Int3)
True if Int3 = Int1 + Int2. At least two of the three arguments must be instantiated to integers.

divmod(+Dividend, +Divisor, -Quotient, -Remainder)
This predicate is a shorthand for computing both the Quotient and Remainder of two integers
in a single operation. This allows for exploiting the fact that the low level implementation
for computing the quotient also produces the remainder. Timing confirms that this predicate

83We prefer infinite, but some other Prolog systems already use inf for infinity; we accept both for the time being.
84The behaviour to deal with natural numbers only was defined by Richard O’Keefe to support the common count-down-

to-zero in a natural way. Up to 5.1.8, succ/2 also accepted negative integers.

SWI-Prolog 9.3 Reference Manual

4.27. ARITHMETIC 241

is almost twice as fast as performing the steps independently. Semantically, divmod/4 is
defined as below.

divmod(Dividend, Divisor, Quotient, Remainder) :-
Quotient is Dividend div Divisor,
Remainder is Dividend mod Divisor.

Note that this predicate is only available if SWI-Prolog is compiled with unbounded integer
support. This is the case for all packaged versions.

nth integer root and remainder(+N, +I, -Root, -Remainder)
True when RootN +Remainder = I . N and I must be integers.85 N must be one or more. If I
is negative and N is odd, Root and Remainder are negative, i.e., the following holds for I < 0:

% I < 0,
% N mod 2 =\= 0,

nth_integer_root_and_remainder(
N, I, Root, Remainder),

IPos is -I,
nth_integer_root_and_remainder(

N, IPos, RootPos, RemainderPos),
Root =:= -RootPos,
Remainder =:= -RemainderPos.

4.27.2 General purpose arithmetic

The general arithmetic predicates are optionally compiled (see set prolog flag/2 and the -O
command line option). Compiled arithmetic reduces global stack requirements and improves perfor-
mance. Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

+Expr1 > +Expr2 [ISO]

True if expression Expr1 evaluates to a larger number than Expr2.

+Expr1 < +Expr2 [ISO]

True if expression Expr1 evaluates to a smaller number than Expr2.

+Expr1 =< +Expr2 [ISO]

True if expression Expr1 evaluates to a smaller or equal number to Expr2.

+Expr1 >= +Expr2 [ISO]

True if expression Expr1 evaluates to a larger or equal number to Expr2.

+Expr1 =\= +Expr2 [ISO]

True if expression Expr1 evaluates to a number non-equal to Expr2.

85This predicate was suggested by Markus Triska. The final name and argument order is by Richard O’Keefe. The
decision to include the remainder is by Jan Wielemaker. Including the remainder makes this predicate about twice as slow
if Root is not exact.

SWI-Prolog 9.3 Reference Manual

242 CHAPTER 4. BUILT-IN PREDICATES

+Expr1 =:= +Expr2 [ISO]

True if expression Expr1 evaluates to a number equal to Expr2.

-Number is +Expr [ISO]

True when Number is the value to which Expr evaluates. Typically, is/2 should be used with
unbound left operand. If equality is to be tested, =:=/2 should be used. For example:

?- 1 is sin(pi/2). Fails! sin(pi/2) evaluates to the float 1.0,
which does not unify with the integer 1.

?- 1 =:= sin(pi/2). Succeeds as expected.

Arithmetic types

SWI-Prolog defines the following numeric types:

• integer
If SWI-Prolog is built using the GNU multiple precision arithmetic library (GMP), integer
arithmetic is unbounded, which means that the size of integers is limited by available memory
only. Without GMP, SWI-Prolog integers are 64-bits, regardless of the native integer size of
the platform. The type of integer support can be detected using the Prolog flags bounded,
min integer and max integer. As the use of GMP is default, most of the following
descriptions assume unbounded integer arithmetic.

Internally, SWI-Prolog has three integer representations. Small integers (defined by the Prolog
flag max tagged integer) are encoded directly. Larger integers are represented as 64-bit
values on the global stack. Integers that do not fit in 64 bits are represented as serialised GNU
MPZ structures on the global stack.

• rational number
Rational numbers (Q) are quotients of two integers (N/M). Rational arithmetic is only provided
if GMP is used (see above). Rational numbers satisfy the type tests rational/1, number/1
and atomic/1 and may satisfy the type test integer/1, i.e., integers are considered rational
numbers. Rational numbers are always kept in canonical representation, which means M is
positive and N and M have no common divisors. Rational numbers are introduced into the
computation using the functions rational/1, rationalize/1 or the rdiv/2 (rational
division) function. If the Prolog flag prefer rationals is true (default), division (//2)
and integer power (ˆ/2) also produce a rational number.

• float
Floating point numbers are represented using the C type double. On most of today’s platforms
these are 64-bit IEEE floating point numbers.

Arithmetic functions that require integer arguments accept, in addition to integers, rational num-
bers with (canonical) denominator ‘1’. If the required argument is a float the argument is converted to
float. Note that conversion of integers to floating point numbers may raise an overflow exception. In
all other cases, arguments are converted to the same type using the order below.

integer → rational number → floating point number

SWI-Prolog 9.3 Reference Manual

4.27. ARITHMETIC 243

Rational number examples

The use of rational numbers with unbounded integers allows for exact integer or fixed point arithmetic
under addition, subtraction, multiplication, division and exponentiation (ˆ/2). Support for rational
numbers depends on the Prolog flag prefer rationals. If this is true, the number division
function (//2) and exponentiation function (ˆ/2) generate a rational number on integer and rational
arguments and read/1 and friends read [-+][0-9_]+/[0-9_]+ into a rational number. See
also section 2.15.1. Here are some examples.

A is 2/6 A = 1/3
A is 4/3 + 1 A = 7/3
A is 4/3 + 1.5 A = 2.83333
A is 4/3 + rationalize(1.5) A = 17/6

Note that floats cannot represent all decimal numbers exactly. The function rational/1 creates
an exact equivalent of the float, while rationalize/1 creates a rational number that is within the
float rounding error from the original float. Please check the documentation of these functions for
details and examples.

Rational numbers can be printed as decimal numbers with arbitrary precision using the
format/3 floating point conversion:

?- A is 4/3 + rational(1.5),
format(’˜50f˜n’, [A]).

2.8333

A = 17/6

Rational numbers or floats

SWI-Prolog uses rational number arithmetic if the Prolog flag prefer rationals is true and
if this is defined for a function on the given operands. This results in perfectly precise answers.
Unfortunately rational numbers can get really large and, if a precise answer is not needed, a big waste
of memory and CPU time. In such cases one should use floating point arithmetic. The Prolog flag
max rational size provides a tripwire to detect cases where rational numbers get big and react
on these events.

Floating point arithmetic can be forced by forcing a float into an argument at any point, i.e., the
result of a function with at least one float is always float except for the float-to-integer rounding and
truncating functions such as round/1, rational/1 or float integer part/1.

Float arithmetic is typically forced by using a floating point constant as initial value or operand.
Alternatively, the float/1 function forces conversion of the argument.

IEEE 754 floating point arithmetic

The Prolog ISO standard defines that floating point arithmetic returns a valid floating point number
or raises an exception. IEEE floating point arithmetic defines two modes: raising exceptions and
propagating the special float values NaN, Inf, -Inf and -0.0. SWI-Prolog implements a part of
the ECLiPSe proposal to support non-exception based processing of floating point numbers. There

SWI-Prolog 9.3 Reference Manual

http://eclipseclp.org/Specs/core_update_float.html

244 CHAPTER 4. BUILT-IN PREDICATES

are four flags that define handling the four exceptional events in floating point arithmetic, providing
the choice between error and returning the IEEE special value. Note that these flags only apply for
floating point arithmetic. For example rational division by zero always raises an exception.

Flag Default Alternative
float overflow error infinity
float zero div error infinity
float undefined error nan
float underflow ignore error

The Prolog flag float rounding and the function roundtoward/2 control the rounding
mode for floating point arithmetic. The default rounding is to nearest and the following alterna-
tives are provided: to positive, to negative and to zero.

float class(+Float, -Class) [det]

Wraps C99 fpclassify() to access the class of a floating point number. Raises a type error
if Float is not a float. Defined classes are below.

nan
Float is “Not a number”. See nan/0. May be produced if the Prolog flag
float undefined is set to nan. Although IEEE 754 allows NaN to carry a
payload and have a sign, SWI-Prolog has only a single NaN values. Note that two NaN
terms compare equal in the standard order of terms (==/2, etc.), they compare non-equal
for arithmetic (=:=/2, etc.).

infinite
Float is positive or negative infinity. See inf/0. May be produced if the Prolog flag
float overflow or the flag float zero div is set to infinity.

zero
Float is zero (0.0 or -0.0)

subnormal
Float is too small to be represented in normalized format. May not be produced if the
Prolog flag float underflow is set to error.

normal
Float is a normal floating point number.

float parts(+Float, -Mantissa, -Base, -Exponent) [det]

True when Mantissa is the normalized fraction of Float, Base is the radix and Exponent is the
exponent. This uses the C function frexp(). If Float is NaN or ±Inf Mantissa has the same
value and Exponent is 0 (zero). In the current implementation Base is always 2. The following
relation is always true:

Float =:= Mantissa×BaseExponent

bounded number(?Low, ?High, +Num) [det]

True if Low ¡ Num ¡ High. Raises a type error if Num is not a number. This predicate can be
used both to check and generate bounds across the various numeric types. Note that a number
cannot be bounded by itself and NaN, Inf, and -Inf are not bounded numbers.

SWI-Prolog 9.3 Reference Manual

4.27. ARITHMETIC 245

If Low and/or High are variables they will be unified with tightest values that still meet the
bounds criteria. The generated bounds will be integers if Num is an integer; otherwise they will
be floats (also see nexttoward/2 for generating float bounds). Some examples:

?- bounded_number(0,10,1).
true.

?- bounded_number(0.0,1.0,1r2).
true.

?- bounded_number(L,H,1.0).
L = 0.9999999999999999,
H = 1.0000000000000002.

?- bounded_number(L,H,-1).
L = -2,
H = 0.

?- bounded_number(0,1r2,1).
false.

?- bounded_number(L,H,1.0Inf).
false.

Floating point arithmetic precision

SWI-Prolog represents floats using the C double type. On virtually all modern hardware this implies
it uses 64-bit IEEE 754 floating point numbers. See also section 4.27.2. All floating point arithmetic
is performed using C. Different C compilers, different C math libraries and different hardware floating
point support may yield different results for the same expression on different instances of SWI-Prolog.

Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described in sec-
tion 4.27.2. There are four types of arguments to functions:

Expr Arbitrary expression, returning either a floating point value or an
integer.

IntExpr Arbitrary expression that must evaluate to an integer.
RatExpr Arbitrary expression that must evaluate to a rational number.
FloatExpr Arbitrary expression that must evaluate to a floating point.

For systems using bounded integer arithmetic (default is unbounded, see section 4.27.2 for de-
tails), integer operations that would cause overflow automatically convert to floating point arithmetic.

SWI-Prolog provides many extensions to the set of floating point functions defined by the ISO
standard. The current policy is to provide such functions on ‘as-needed’ basis if the function is widely
supported elsewhere and notably if it is part of the C99 mathematical library. In addition, we try to
maintain compatibility with other Prolog implementations.

SWI-Prolog 9.3 Reference Manual

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

246 CHAPTER 4. BUILT-IN PREDICATES

- +Expr [ISO]

Result = −Expr

+ +Expr [ISO]

Result = Expr. Note that if + is followed by a number, the parser discards the +. I.e.
?- integer(+1) succeeds.

+Expr1 + +Expr2 [ISO]

Result = Expr1 + Expr2

+Expr1 - +Expr2 [ISO]

Result = Expr1 − Expr2

+Expr1 * +Expr2 [ISO]

Result = Expr1 × Expr2

+Expr1 / +Expr2 [ISO]

Result = Expr1
Expr2 . If the flag iso is true or one of the arguments is a float, both arguments

are converted to float and the return value is a float. Otherwise the result type depends on the
Prolog flag prefer rationals. If true, the result is always a rational number. If false
the result is rational if at least one of the arguments is rational. Otherwise (both arguments are
integer) the result is integer if the division is exact and float otherwise. See also section 4.27.2,
///2, and rdiv/2.

The current default for the Prolog flag prefer rationals is false. Future version may
switch this to true, providing precise results when possible. The pitfall is that in general
rational arithmetic is slower and can become very slow and produce huge numbers that require
a lot of (global stack) memory. Code for which the exact results provided by rational numbers
is not needed should force float results by making one of the operands float, for example by
dividing by 10.0 rather than 10 or by using float/1. Note that when one of the arguments
is forced to a float the division is a float operation while if the result is forced to the float the
division is done using rational arithmetic.

+IntExpr1 mod +IntExpr2 [ISO]

Modulo, defined as Result = IntExpr1 - (IntExpr1 div IntExpr2) × IntExpr2, where div is
floored division.

+IntExpr1 rem +IntExpr2 [ISO]

Remainder of integer division. Behaves as if defined by
Result is IntExpr1 - (IntExpr1 // IntExpr2) × IntExpr2

+IntExpr1 // +IntExpr2 [ISO]

Integer division, defined as Result is rndI (Expr1/Expr2). The function rndI is the
default rounding used by the C compiler and available through the Prolog flag
integer rounding function. In the C99 standard, C-rounding is defined as
towards zero.86

div(+IntExpr1, +IntExpr2) [ISO]

Integer division, defined as Result is (IntExpr1 - IntExpr1 mod IntExpr2) // IntExpr2. In other
86Future versions might guarantee rounding towards zero.

SWI-Prolog 9.3 Reference Manual

4.27. ARITHMETIC 247

words, this is integer division that rounds towards -infinity. This function guarantees behaviour
that is consistent with mod/2, i.e., the following holds for every pair of integers X,Y where
Y =\= 0.

Q is div(X, Y),
M is mod(X, Y),
X =:= Y*Q+M.

+RatExpr rdiv +RatExpr
Rational number division. This function is only available if SWI-Prolog has been compiled
with rational number support. See section 4.27.2 for details.

gcd(+IntExpr1, +IntExpr2)
Result is the greatest common divisor of IntExpr1 and IntExpr2. The GCD is always a positive
integer. If either expression evaluates to zero the GCD is the result of the other expression.

lcm(+IntExpr1, +IntExpr2)
Result is the least common multiple of IntExpr1, IntExpr2.87 If either expression evaluates to
zero the LCM is zero.

abs(+Expr) [ISO]

Evaluate Expr and return the absolute value of it.

sign(+Expr) [ISO]

Evaluate to -1 if Expr < 0, 1 if Expr > 0 and 0 if Expr = 0. If Expr evaluates to a float, the
return value is a float (e.g., -1.0, 0.0 or 1.0). In particular, note that sign(-0.0) evaluates to 0.0.
See also copysign/2.

cmpr(+Expr1, +Expr2)
Exactly compares the values Expr1 and Expr2 and returns -1 if Expr1 ¡ Expr2, 0 if they are
equal, and 1 if Expr1 ¿ Expr2. Evaluates to NaN if either or both Expr1 and Expr2 are NaN
and the Prolog flag float undefined is set to nan. See also minr/2 and maxr/2.

This function relates to the Prolog numerical comparison predicates >/2, =:=/2, etc. The
Prolog numerical comparison converts the rational in a mixed rational/float comparison to a
float, possibly rounding the value. This function converts the float to a rational, comparing the
exact values.

copysign(+Expr1, +Expr2) [ISO]

Evaluate to X, where the absolute value of X equals the absolute value of Expr1 and the sign
of X matches the sign of Expr2. This function is based on copysign() from C99, which
works on double precision floats and deals with handling the sign of special floating point
values such as -0.0. Our implementation follows C99 if both arguments are floats. Otherwise,
copysign/2 evaluates to Expr1 if the sign of both expressions matches or -Expr1 if the signs
do not match. Here, we use the extended notion of signs for floating point numbers, where the
sign of -0.0 and other special floats is negative.

87BUG: If the system is compiled for bounded integers only lcm/2 produces an integer overflow if the product of the
two expressions does not fit in a 64 bit signed integer. The default build with unbounded integer support has no such limit.

SWI-Prolog 9.3 Reference Manual

248 CHAPTER 4. BUILT-IN PREDICATES

nexttoward(+Expr1, +Expr2)
Evaluates to floating point number following Expr1 in the direction of Expr2. This relates to
epsilon/0 in the following way:

?- epsilon =:= nexttoward(1,2)-1.
true.

roundtoward(+Expr1, +RoundMode)
Evaluate Expr1 using the floating point rounding mode RoundMode. This provides a local
alternative to the Prolog flag float rounding. This function can be nested. The supported
values for RoundMode are the same as the flag values: to nearest, to positive,
to negative or to zero.

Note that floating point arithmetic is provided by the C compiler and C runtime library. Un-
fortunately most C libraries do not correctly implement the rounding modes for notably the
trigonometry and exponential functions. There exist correct libraries such as crlibm, but these
libraries are large, most of them are poorly maintained or have an incompatible license. C run-
time libraries do a better job using the default to nearest rounding mode. SWI-Prolog now
assumes this mode is correct and translates upward rounding to be the nexttoward/2 in-
finity and downward rounding nexttoward/2 -infinity. If the “to nearest” rounding mode is
correct, this ensures that the true value is between the downward and upward rounded values, al-
though the generated interval is larger than needed. Unfortunately this is not the case as shown
in Accuracy of Mathematical Functions in Single, Double, Extended Double and Quadruple
Precision by Vincenzo Innocente and Paul Zimmermann.

max(+Expr1, +Expr2) [ISO]

Evaluate to the larger of Expr1 and Expr2. Both arguments are compared after converting to
the same type, but the return value is in the original type. For example, max(2.5, 3) compares
the two values after converting to float, but returns the integer 3. If both values are numerical
equal the returned max is of the type used for the comparison. For example, the max of 1 and
1.0 is 1.0 because both numbers are converted to float for the comparison. However, the special
float -0.0 is smaller than 0.0 as well as the integer 0. If the Prolog flag float undefined is
set to nan and one of the arguments evaluates to NaN, the result is NaN.

The function maxr/2 is similar, but uses exact (rational) comparison if Expr1 and Expr2 have
a different type, propagate the rational (integer) rather and the float if the two compare equal
and propagate the non-NaN value in case one is NaN.

maxr(+Expr1, +Expr2)
Evaluate to the larger of Expr1 and Expr2 using exact comparison (see cmpr/2). If the two
values are exactly equal, and one of the values is rational, the result will be that value; the
objective being to avoid ”pollution” of any precise calculation with a potentially imprecise
float. So max(1,1.0) evaluates to 1.0 while maxr(1,1.0) evaluates to 1. This also means
that 0 is preferred over 0.0 or -0.0; -0.0 is still considered smaller than 0.0.

maxr/2 also treats NaN’s as missing values so maxr(1,nan) evaluates to 1.

min(+Expr1, +Expr2) [ISO]

Evaluate to the smaller of Expr1 and Expr2. See max/2 for a description of type handling.

SWI-Prolog 9.3 Reference Manual

https://github.com/taschini/crlibm
https://hal.inria.fr/hal-03141101
https://hal.inria.fr/hal-03141101

4.27. ARITHMETIC 249

minr(+Expr1, +Expr2)
Evaluate to the smaller of Expr1 and Expr2 using exact comparison (see cmpr/2). See
maxr/2 for a description of type handling.

.(+Char, []) [deprecated]

A list of one element evaluates to the character code of this element.88 This implies "a"
evaluates to the character code of the letter ‘a’ (97) using the traditional mapping of double
quoted string to a list of character codes. Char is either a valid code point (non-negative integer
up to the Prolog flag max char code) or a one-character atom. Arithmetic evaluation also
translates a string object (see section 5.2) of one character length into the character code for
that character. This implies that expression "a" works if the Prolog flag double quotes is
set to one of codes, chars or string.

Getting access to character codes this way originates from DEC10 Prolog. ISO has the 0’a
syntax and the predicate char code/2. Future versions may drop support for X is "a".

random(+IntExpr)
Evaluate to a random integer i for which 0 ≤ i < IntExpr. The system has two implemen-
tations. If it is compiled with support for unbounded arithmetic (default) it uses the GMP
library random functions. In this case, each thread keeps its own random state. The default
algorithm is the Mersenne Twister algorithm. The seed is set when the first random number in
a thread is generated. If available, it is set from /dev/random.89 Otherwise it is set from the
system clock. If unbounded arithmetic is not supported, random numbers are shared between
threads and the seed is initialised from the clock when SWI-Prolog was started. The predicate
set random/1 can be used to control the random number generator.

Warning! Although properly seeded (if supported on the OS), the Mersenne Twister algorithm
does not produce cryptographically secure random numbers. To generate cryptographically
secure random numbers, use crypto n random bytes/2 from library crypto provided
by the ssl package.

random float
Evaluate to a random float I for which 0.0 < i < 1.0. This function shares the random state with
random/1. All remarks with the function random/1 also apply for random float/0.
Note that both sides of the domain are open. This avoids evaluation errors on, e.g., log/1 or
//2 while no practical application can expect 0.0.90

round(+Expr) [ISO]

Evaluate Expr and round the result to the nearest integer. According to ISO, round/1 is
defined as floor(Expr+1/2), i.e., rounding down. This is an unconventional choice under
which the relation round(Expr) == -round(-Expr) does not hold. SWI-Prolog
rounds outward, e.g., round(1.5) =:= 2 and round(-1.5) =:= -2.

integer(+Expr)
Same as round/1 (backward compatibility).

88The function is documented as ./2. Using SWI-Prolog v7 and later the actual functor is [|]/2.
89On Windows the state is initialised from CryptGenRandom().
90Richard O’Keefe said: “If you are generating IEEE doubles with the claimed uniformity, then 0 has a 1 in 253 =

1in9, 007, 199, 254, 740, 992 chance of turning up. No program that expects [0.0,1.0) is going to be surprised when 0.0
fails to turn up in a few millions of millions of trials, now is it? But a program that expects (0.0,1.0) could be devastated if
0.0 did turn up.”

SWI-Prolog 9.3 Reference Manual

250 CHAPTER 4. BUILT-IN PREDICATES

float(+Expr) [ISO]

Translate the result to a floating point number. Normally, Prolog will use integers whenever
possible. When used around the 2nd argument of is/2, the result will be returned as a floating
point number. In other contexts, the operation has no effect.

rational(+Expr)
Convert the Expr to a rational number or integer. The function returns the input on integers
and rational numbers. For floating point numbers, the returned rational number exactly
represents the float. As floats cannot exactly represent all decimal numbers the results may be
surprising. In the examples below, doubles can represent 0.25 and the result is as expected, in
contrast to the result of rational(0.1). The function rationalize/1 remedies this. See
section 4.27.2 for more information on rational number support.

?- A is rational(0.25).

A is 1r4
?- A is rational(0.1).
A = 3602879701896397r36028797018963968

For every normal float X the relation X =:= rational(X) holds.

This function raises an evaluation error(undefined) if Expr is NaN and
evaluation error(rational overflow) if Expr is Inf.

rationalize(+Expr)
Convert the Expr to a rational number or integer. The function is similar to rational/1,
but the result is only accurate within the rounding error of floating point numbers, generally
producing a much smaller denominator.9192

?- A is rationalize(0.25).

A = 1r4
?- A is rationalize(0.1).

A = 1r10

For every normal float X the relation X =:= rationalize(X) holds.

This function raises the same exceptions as rational/1 on non-normal floating point num-
bers.

numerator(+RationalExpr)
If RationalExpr evaluates to a rational number or integer, evaluate to the top/left value. Eval-
uates to itself if RationalExpr evaluates to an integer. See also denominator/1. The
following is true for any rational X.

91The names rational/1 and rationalize/1 as well as their semantics are inspired by Common Lisp.
92The implementation of rationalize as well as converting a rational number into a float is copied from ECLiPSe and

covered by the Cisco-style Mozilla Public License Version 1.1.

SWI-Prolog 9.3 Reference Manual

4.27. ARITHMETIC 251

X =:= numerator(X)/denominator(X).

denominator(+RationalExpr)
If RationalExpr evaluates to a rational number or integer, evaluate to the bottom/right value.
Evaluates to 1 (one) if RationalExpr evaluates to an integer. See also numerator/1. The
following is true for any rational X.

X =:= numerator(X)/denominator(X).

float fractional part(+Expr) [ISO]

Fractional part of a floating point number. Negative if Expr is negative, rational
if Expr is rational and 0 if Expr is integer. The following relation is always true:
Xisfloatfractionalpart(X) + floatintegerpart(X).

float integer part(+Expr) [ISO]

Integer part of floating point number. Negative if Expr is negative, Expr if Expr is integer.

truncate(+Expr) [ISO]

Truncate Expr to an integer. If Expr ≥ 0 this is the same as floor(Expr). For Expr < 0 this is
the same as ceil(Expr). That is, truncate/1 rounds towards zero.

floor(+Expr) [ISO]

Evaluate Expr and return the largest integer smaller or equal to the result of the evaluation.

ceiling(+Expr) [ISO]

Evaluate Expr and return the smallest integer larger or equal to the result of the evaluation.

ceil(+Expr)
Same as ceiling/1 (backward compatibility).

+IntExpr1 >> +IntExpr2 [ISO]

Bitwise shift IntExpr1 by IntExpr2 bits to the right. The ISO standard dictates shifting a neg-
ative value is implementation defined. SWI-Prolog defines shifting negative integers to
be defined as −(−Int >> Shift). Shifting positive integers by more than their size
results in 0 (zero). Shifting negative integers by more then their size results in -1. I.e.,
A is -3464 >> 100 binds A to -1. If IntExpr2 is negative, a right shift (see >>/2) is
performed with the negated value of IntExpr2.

+IntExpr1 << +IntExpr2 [ISO]

Bitwise shift IntExpr1 by IntExpr2 bits to the left. The ISO standard dictates shifting a negative
value is implementation defined. SWI-Prolog defines shifting negative integers to be defined
as −(−Int << Shift). If IntExpr2 is negative, a left shift (see <</2) is performed with the
negated value of IntExpr2.

+IntExpr1 \/ +IntExpr2 [ISO]

Bitwise ‘or’ IntExpr1 and IntExpr2.

SWI-Prolog 9.3 Reference Manual

252 CHAPTER 4. BUILT-IN PREDICATES

+IntExpr1 /\ +IntExpr2 [ISO]

Bitwise ‘and’ IntExpr1 and IntExpr2.

+IntExpr1 xor +IntExpr2 [ISO]

Bitwise ‘exclusive or’ IntExpr1 and IntExpr2.

\ +IntExpr [ISO]

Bitwise negation. The returned value is the one’s complement of IntExpr.

sqrt(+Expr) [ISO]

Result =
√

Expr.

sin(+Expr) [ISO]

Result = sinExpr. Expr is the angle in radians.

cos(+Expr) [ISO]

Result = cosExpr. Expr is the angle in radians.

tan(+Expr) [ISO]

Result = tanExpr. Expr is the angle in radians.

asin(+Expr) [ISO]

Result = arcsinExpr. Result is the angle in radians.

acos(+Expr) [ISO]

Result = arccosExpr. Result is the angle in radians.

atan(+Expr) [ISO]

Result = arctanExpr. Result is the angle in radians.

atan2(+YExpr, +XExpr) [ISO]

Result = arctan
YExpr
XExpr . Result is the angle in radians. The return value is in the range

[−π . . . π]. Used to convert between rectangular and polar coordinate system.

Note that the ISO Prolog standard demands atan2(0.0,0.0) to raise an evaluation error,
whereas the C99 and POSIX standards demand this to evaluate to 0.0. SWI-Prolog follows
C99 and POSIX.

atan(+YExpr, +XExpr)
Same as atan2/2 (backward compatibility).

sinh(+Expr)
Result = sinhExpr. The hyperbolic sine of X is defined as eX−e−X

2 .

cosh(+Expr)
Result = coshExpr. The hyperbolic cosine of X is defined as eX+e−X

2 .

tanh(+Expr)
Result = tanhExpr. The hyperbolic tangent of X is defined as sinhX

coshX .

asinh(+Expr)
Result = arcsinh(Expr) (inverse hyperbolic sine).

SWI-Prolog 9.3 Reference Manual

4.27. ARITHMETIC 253

acosh(+Expr)
Result = arccosh(Expr) (inverse hyperbolic cosine).

atanh(+Expr)
Result = arctanh(Expr). (inverse hyperbolic tangent).

log(+Expr) [ISO]

Natural logarithm. Result = lnExpr

log10(+Expr)
Base-10 logarithm. Result = lgExpr

exp(+Expr) [ISO]

Result = eExpr

+Expr1 ** +Expr2 [ISO]

Result = Expr1Expr2. The result is a float, unless SWI-Prolog is compiled with unbounded in-
teger support and the inputs are integers and produce an integer result. The integer expressions
0I , 1I and −1I are guaranteed to work for any integer I . Other integer base values generate a
resource error if the result does not fit in memory.

The ISO standard demands a float result for all inputs and introduces ˆ/2 for integer expo-
nentiation. The function float/1 can be used on one or both arguments to force a floating
point result. Note that casting the input result in a floating point computation, while casting the
output performs integer exponentiation followed by a conversion to float.

+Expr1 ˆ +Expr2 [ISO]

In SWI-Prolog, ˆ/2 is equivalent to **/2. The ISO version is similar, except that it produces
a evaluation error if both Expr1 and Expr2 are integers and the result is not an integer. The
table below illustrates the behaviour of the exponentiation functions in ISO and SWI. Note that
if the exponent is negative the behavior of IntˆInt depends on the flag prefer rationals,
producing either a rational number or a floating point number.

Expr1 Expr2 Function SWI ISO
Int Int **/2 Int or Rational Float
Int Float **/2 Float Float
Rational Int **/2 Rational -
Float Int **/2 Float Float
Float Float **/2 Float Float
Int Int ˆ/2 Int or Rational Int or error
Int Float ˆ/2 Float Float
Rational Int ˆ/2 Rational -
Float Int ˆ/2 Float Float
Float Float ˆ/2 Float Float

powm(+IntExprBase, +IntExprExp, +IntExprMod)
Result = (IntExprBaseIntExprExp) modulo IntExprMod. Only available when compiled with
unbounded integer support. This formula is required for Diffie-Hellman key-exchange, a

SWI-Prolog 9.3 Reference Manual

254 CHAPTER 4. BUILT-IN PREDICATES

technique where two parties can establish a secret key over a public network. IntExprBase and
IntExprExp must be non-negative (>= 0), IntExprMod must be positive (> 0).93

lgamma(+Expr)
Return the natural logarithm of the absolute value of the Gamma function.94

erf(+Expr)
Wikipedia: “In mathematics, the error function (also called the Gauss error function) is a
special function (non-elementary) of sigmoid shape which occurs in probability, statistics and
partial differential equations.”

erfc(+Expr)
Wikipedia: “The complementary error function.”

pi [ISO]

Evaluate to the mathematical constant π (3.14159. . .).

e
Evaluate to the mathematical constant e (2.71828. . .).

epsilon
Evaluate to the difference between the float 1.0 and the first larger floating point number.
Deprecated. The function nexttoward/2 provides a better alternative.

inf
Evaluate to positive infinity. See section 2.15.1 and section 4.27.2. This value can be negated
using -/1.

nan
Evaluate to Not a Number. See section 2.15.1 and section 4.27.2.

cputime
Evaluate to a floating point number expressing the CPU time (in seconds) used by Prolog up till
now. See also statistics/2 and time/1.

eval(+Expr)
Evaluate Expr. Although ISO standard dictates that ‘A=1+2, B is A’ works and unifies B to 3,
it is widely felt that source level variables in arithmetic expressions should have been limited
to numbers. In this view the eval function can be used to evaluate arbitrary expressions.95

Bitvector functions The functions below are not covered by the standard. The msb/1 function
also appears in hProlog and SICStus Prolog. The getbit/2 function also appears in ECLiPSe,
which also provides setbit(Vector,Index) and clrbit(Vector,Index). The others are SWI-Prolog
extensions that improve handling of —unbounded— integers as bit-vectors.

93The underlying GMP mpz powm() function allows negative values under some conditions. As the conditions are
expensive to pre-compute, error handling from GMP is non-trivial and negative values are not needed for Diffie-Hellman
key-exchange we do not support these.

94Some interfaces also provide the sign of the Gamma function. We cannot do that in an arithmetic function. Future
versions may provide a predicate lgamma/3 that returns both the value and the sign.

95The eval/1 function was first introduced by ECLiPSe and is under consideration for YAP.

SWI-Prolog 9.3 Reference Manual

https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Error_function

4.28. MISC ARITHMETIC SUPPORT PREDICATES 255

msb(+IntExpr)
Return the largest integer N such that (IntExpr >> N) /\ 1 =:= 1. This is the (zero-
origin) index of the most significant 1 bit in the value of IntExpr, which must evaluate to a
positive integer. Errors for 0, negative integers, and non-integers.

lsb(+IntExpr)
Return the smallest integer N such that (IntExpr >> N) /\ 1 =:= 1. This is the
(zero-origin) index of the least significant 1 bit in the value of IntExpr, which must evaluate to
a positive integer. Errors for 0, negative integers, and non-integers.

popcount(+IntExpr)
Return the number of 1s in the binary representation of the non-negative integer IntExpr.

getbit(+IntExprV, +IntExprI)
Evaluates to the bit value (0 or 1) of the IntExprI-th bit of IntExprV. Both arguments must eval-
uate to non-negative integers. The result is equivalent to (IntExprV >> IntExprI)/\1,
but more efficient because materialization of the shifted value is avoided. Future versions
will optimise (IntExprV >> IntExprI)/\1 to a call to getbit/2, providing both
portability and performance.96

4.28 Misc arithmetic support predicates

set random(+Option)
Controls the random number generator accessible through the functions random/1 and
random float/0. Note that the library random provides an alternative API to the same
random primitives.

seed(+Seed)
Set the seed of the random generator for this thread. Seed is an integer or the atom
random. If random, repeat the initialization procedure described with the function
random/1. Here is an example:

?- set_random(seed(111)), A is random(6).
A = 5.
?- set_random(seed(111)), A is random(6).
A = 5.

state(+State)
Set the generator to a state fetched using the state property of random property/1.
Using other values may lead to undefined behaviour.97

random property(?Option)
True when Option is a current property of the random generator. Currently, this predicate
provides access to the state. This predicate is not present on systems where the state is
inaccessible.

96This issue was fiercely debated at the ISO standard mailinglist. The name getbit was selected for compatibility with
ECLiPSe, the only system providing this support. Richard O’Keefe disliked the name and argued that efficient handling of
the above implementation is the best choice for this functionality.

97The limitations of the underlying (GMP) library are unknown, which makes it impossible to validate the State.

SWI-Prolog 9.3 Reference Manual

256 CHAPTER 4. BUILT-IN PREDICATES

state(-State)
Describes the current state of the random generator. State is a normal Prolog term that can
be asserted or written to a file. Applications should make no other assumptions about its
representation. The only meaningful operation is to use as argument to set random/1
using the state(State) option.98

current arithmetic function(?Head)
True when Head is an evaluable function. For example:

?- current_arithmetic_function(sin(_)).
true.

4.29 Built-in list operations

Most list operations are defined in the library lists described in section A.25. Some that are imple-
mented with more low-level primitives are built-in and described here.

is list(+Term)
True if Term is bound to the empty list ([]) or a compound term with name ‘[|]’99 and arity 2
and the second argument is a list.100 This predicate acts as if defined by the definition below on
acyclic terms. The implementation safely fails if Term represents a cyclic list.

is_list(X) :-
var(X), !,
fail.

is_list([]).
is_list([_|T]) :-

is_list(T).

memberchk(?Elem, +List) [semidet]

True when Elem is an element of List. This ‘chk’ variant of member/2 is semi deterministic
and typically used to test membership of a list. Raises a type error if scanning List encounters
a non-list. Note that memberchk/2 does not perform a full list typecheck. For example,
memberchk(a, [a|b]) succeeds without error. If List is cyclic and Elem is not a member
of List, memberchk/2 eventually raises a type error.101

98BUG: GMP provides no portable mechanism to fetch and restore the state. The current implementation works, but the
state depends on the platform. I.e., it is generally not possible to reuse the state with another version of GMP or on a CPU
with different datasizes or endian-ness.

99The traditional list functor name is the dot (’.’). This is still the case of the command line option --traditional
is given. See also section 5.1.

100In versions before 5.0.1, is list/1 just checked for [] or [|] and proper list/1 had the role of the current
is list/1. The current definition conforms to the de facto standard. Assuming proper coding standards, there should
only be very few cases where a quick-and-dirty is list/1 is a good choice. Richard O’Keefe pointed at this issue.

101Eventually here means it will scan as many elements as the longest list that may exist given the current stack usage
before raising the exception.

SWI-Prolog 9.3 Reference Manual

4.29. BUILT-IN LIST OPERATIONS 257

length(?List, ?Length) [ISO]

True if Length represents the number of elements in List. This predicate is a true relation and
can be used to find the length of a list or produce a list (holding variables) of length Length.
The predicate is non-deterministic, producing lists of increasing length if List is a partial list
and Length is a variable.

?- length(List,4).
List = [_27940,_27946,_27952,_27958].

?- length(List,Length).
List = [], Length = 0 ;
List = [_24698], Length = 1 ;
List = [_24698,_25826], Length = 2
...

It raises errors if Length is bound to a non-integer or a negative integer or if List is neither a list
nor a partial list. This error condition includes cyclic lists:102

?- A=[1,2,3|A], length(A,L).
ERROR: Type error: ‘list’ expected ...

Covering an edge case, the predicate fails if the tail of List is equivalent to Length:103

?- List=[1,2,3|Length],length(List,Length).
false.

?- length(Length,Length).
false.

sort(+List, -Sorted) [ISO]

True if Sorted can be unified with a list holding the elements of List, sorted to the standard
order of terms (see section 4.6). Duplicates are removed. The implementation is in C, using
natural merge sort.104 The sort/2 predicate can sort a cyclic list, returning a non-cyclic
version with the same elements.

Note that List may contain non-ground terms. If Sorted is unbound at call-time, for each con-
secutive pair of elements in Sorted, the relation E1 @< E2 will hold. However, unifying a
variable in Sorted may cause this relation to become invalid, even unifying a variable in Sorted
with another (older) variable. See also section 4.6.1.

sort(+Key, +Order, +List, -Sorted)
True when Sorted can be unified with a list holding the element of List. Key determines which

102ISO demands failure here. We think an error is more appropriate.
103This is logically correct. An exception would be more appropriate, but to our best knowledge, current practice in Prolog

does not describe a suitable candidate exception term.
104Contributed by Richard O’Keefe.

SWI-Prolog 9.3 Reference Manual

258 CHAPTER 4. BUILT-IN PREDICATES

part of each element in List is used for comparing two term and Order describes the relation
between each set of consecutive elements in Sorted.105

If Key is the integer zero (0), the entire term is used to compare two elements. Using Key=0 can
be used to sort arbitrary Prolog terms. Other values for Key can only be used with compound
terms or dicts (see section 5.4). An integer key extracts the Key-th argument from a compound
term. An integer or atom key extracts the value from a dict that is associated with the given key.
A type error is raised if the list element is of the wrong type and an existence error is raised if
the compound has not enough argument or the dict does not contain the requested key.

Deeper nested elements of structures can be selected by using a list of keys for the Key argument.

The Order argument is described in the table below:106

Order Ordering Duplicate handling
@< ascending remove
@=< ascending keep
@> descending remove
@>= descending keep

The sort is stable, which implies that, if duplicates are kept, the order of duplicates is not
changed. If duplicates are removed, only the first element of a sequence of duplicates appears
in Sorted.

This predicate supersedes most of the other sorting primitives, for example:

sort(List, Sorted) :- sort(0, @<, List, Sorted).
msort(List, Sorted) :- sort(0, @=<, List, Sorted).
keysort(Pairs, Sorted) :- sort(1, @=<, Pairs, Sorted).

The following example sorts a list of rows, for example resulting from csv read file/2)
ascending on the 3rd column and descending on the 4th column (for sets of rows where the 3rd
column is equal):

sort(4, @>=, Rows0, Rows1),
sort(3, @=<, Rows1, Sorted).

See also sort/2 (ISO), msort/2, keysort/2, predsort/3 and order by/2.

msort(+List, -Sorted)
Equivalent to sort/2, but does not remove duplicates. Raises a type error if List is a
cyclic list or not a list.

keysort(+List, -Sorted) [ISO]

Sort a list of pairs. List must be a list of Key-Value pairs, terms whose principal functor is (-)/2.

105The definition of this predicate was established after discussion with Joachim Schimpf from the ECLiPSe team.
ECLiPSe currently only accepts <, =<, > and >= for the Order argument but this is likely to change. SWI-Prolog ex-
tends this predicate to deal with dicts.

106For compatibility with ECLiPSe, the values <, =<, > and >= are allowed as synonyms.

SWI-Prolog 9.3 Reference Manual

4.30. FINDING ALL SOLUTIONS TO A GOAL 259

List is sorted on Key according to the standard order of terms (see section 4.6.1). Duplicates are
not removed. Sorting is stable with regard to the order of the Values, i.e., the order of multiple
elements that have the same Key is not changed.

The keysort/2 predicate is often used together with library pairs. It can be used to sort
lists on different or multiple criteria. For example, the following predicates sorts a list of atoms
according to their length, maintaining the initial order for atoms that have the same length.

:- use_module(library(pairs)).

sort_atoms_by_length(Atoms, ByLength) :-
map_list_to_pairs(atom_length, Atoms, Pairs),
keysort(Pairs, Sorted),
pairs_values(Sorted, ByLength).

predsort(+Pred, +List, -Sorted)
Sorts similar to sort/2, but determines the order of two terms by calling
Pred(-Delta, +E1, +E2). This call must unify Delta with one of <, > or =. Duplicates
are removed (i.e. equivalence classes of elements as defined by Pred are collapsed to a single
element in Sorted) If the built-in predicate compare/3 is used, the result is the same as
sort/2. See also keysort/2.

4.30 Finding all Solutions to a Goal

findall(+Template, :Goal, -Bag) [ISO]

Create a list of the instantiations Template gets successively on backtracking over Goal and
unify the result with Bag. Succeeds with an empty list if Goal has no solutions.

findall/3 is equivalent to bagof/3 with all free variables appearing in Goal scoped to
the Goal with an existential (caret) operator (ˆ), except that bagof/3 fails when Goal has no
solutions.

findall(+Template, :Goal, -Bag, +Tail)
As findall/3, but returns the result as the difference list Bag-Tail. The 3-argument version
is defined as

findall(Templ, Goal, Bag) :-
findall(Templ, Goal, Bag, [])

findnsols(+N, @Template, :Goal, -List) [nondet]

findnsols(+N, @Template, :Goal, -List, ?Tail) [nondet]

As findall/3 and findall/4, but generates at most N solutions. If N solutions are
returned, this predicate succeeds with a choice point if Goal has a choice point. Backtracking
returns the next chunk of (at most) N solutions. In addition to passing a plain integer for N,
a term of the form count(N) is accepted. Using count(N), the size of the next chunk can

SWI-Prolog 9.3 Reference Manual

260 CHAPTER 4. BUILT-IN PREDICATES

be controlled using nb setarg/3. The non-deterministic behaviour used to implement the
chunk option in pengines. Based on Ciao, but the Ciao version is deterministic. Portability
can be achieved by wrapping the goal in once/1. Below are three examples. The first
illustrates standard chunking of answers. The second illustrates that the chunk size can be
adjusted dynamically and the last illustrates that no choice point is left if Goal leaves no
choice-point after the last solution.

?- findnsols(5, I, between(1, 12, I), L).
L = [1, 2, 3, 4, 5] ;
L = [6, 7, 8, 9, 10] ;
L = [11, 12].

?- State = count(2),
findnsols(State, I, between(1, 12, I), L),
nb_setarg(1, State, 5).

State = count(5), L = [1, 2] ;
State = count(5), L = [3, 4, 5, 6, 7] ;
State = count(5), L = [8, 9, 10, 11, 12].

?- findnsols(4, I, between(1, 4, I), L).
L = [1, 2, 3, 4].

bagof(+Template, :Goal, -Bag) [ISO]

Unify Bag with the alternatives of Template. If Goal has free variables besides the one sharing
with Template, bagof/3 will backtrack over the alternatives of these free variables, unifying
Bag with the corresponding alternatives of Template. The construct +VarˆGoal tells bagof/3
not to bind Var in Goal. bagof/3 fails if Goal has no solutions.

The example below illustrates bagof/3 and the ˆ operator. The variable bindings are printed
together on one line to save paper.

2 ?- listing(foo).
foo(a, b, c).
foo(a, b, d).
foo(b, c, e).
foo(b, c, f).
foo(c, c, g).
true.

3 ?- bagof(C, foo(A, B, C), Cs).
A = a, B = b, C = G308, Cs = [c, d] ;
A = b, B = c, C = G308, Cs = [e, f] ;
A = c, B = c, C = G308, Cs = [g].

4 ?- bagof(C, Aˆfoo(A, B, C), Cs).
A = G324, B = b, C = G326, Cs = [c, d] ;
A = G324, B = c, C = G326, Cs = [e, f, g].

SWI-Prolog 9.3 Reference Manual

4.31. FORALL 261

5 ?-

setof(+Template, +Goal, -Set) [ISO]

Equivalent to bagof/3, but sorts the result using sort/2 to get a sorted list of alternatives
without duplicates.

4.31 Forall

forall(:Cond, :Action) [semidet]

For all alternative bindings of Cond, Action can be proven. The example verifies that all arith-
metic statements in the given list are correct. It does not say which is wrong if one proves
wrong.

?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]),
Result =:= Formula).

The predicate forall/2 is implemented as \+ (Cond, \+ Action), i.e., There is
no instantiation of Cond for which Action is false.. The use of double negation implies that
forall/2 does not change any variable bindings. It proves a relation. The forall/2 con-
trol structure can be used for its side-effects. E.g., the following asserts relations in a list into
the dynamic database:

?- forall(member(Child-Parent, ChildPairs),
assertz(child_of(Child, Parent))).

Using forall/2 as forall(Generator, SideEffect) is preferred over the classical failure
driven loop as shown below because it makes it explicit which part of the construct is the
generator and which part creates the side effects. Also, unexpected failure of the side effect
causes the construct to fail. Failure makes it evident that there is an issue with the code, while
a failure driven loop would succeed with an erroneous result.

...,
(Generator,

SideEffect,
fail

; true
)

If your intent is to create variable bindings, the forall/2 control structure is inadequate.
Possibly you are looking for maplist/2, findall/3 or foreach/2.

SWI-Prolog 9.3 Reference Manual

262 CHAPTER 4. BUILT-IN PREDICATES

4.32 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The ‘writef’ family
(writef/1, writef/2, swritef/3), is compatible with Edinburgh C-Prolog and should be con-
sidered deprecated. The ‘format’ family (format/1, format/2, format/3), was defined by
Quintus Prolog and currently available in many Prolog systems, although the details vary.

4.32.1 Writef

writef(+Atom) [deprecated]

Equivalent to writef(Atom, []). See writef/2 for details.

writef(+Format, +Arguments) [deprecated]

Formatted write. Format is an atom whose characters will be printed. Format may contain
certain special character sequences which specify certain formatting and substitution actions.
Arguments provides all the terms required to be output.

Escape sequences to generate a single special character:

\n Output a newline character (see also nl/[0,1])
\l Output a line separator (same as \n)
\r Output a carriage return character (ASCII 13)
\t Output the ASCII character TAB (9)
\\ The character \ is output
\% The character % is output
\nnn where ⟨nnn⟩ is an integer (1-3 digits); the character with

code ⟨nnn⟩ is output (NB : ⟨nnn⟩ is read as decimal)

Note that \l, \nnn and \\ are interpreted differently when character escapes are in effect. See
section 2.15.1.

Escape sequences to include arguments from Arguments. Each time a % escape sequence is
found in Format the next argument from Arguments is formatted according to the specification.

SWI-Prolog 9.3 Reference Manual

4.32. FORMATTED WRITE 263

%t
print/1 the next item (mnemonic: term)

%w
write/1 the next item

%q
writeq/1 the next item

%d Write the term, ignoring operators. See also
write term/2. Mnemonic: old Edinburgh
display/1

%p
print/1 the next item (identical to %t)

%n Put the next item as a character (i.e., it is a character code)
%r Write the next item N times where N is the second item

(an integer)
%s Write the next item as a String (so it must be a list of char-

acters)
%f Perform a ttyflush/0 (no items used)
%Nc Write the next item Centered in N columns
%Nl Write the next item Left justified in N columns
%Nr Write the next item Right justified in N columns. N is a

decimal number with at least one digit. The item must be
an atom, integer, float or string.

swritef(-String, +Format, +Arguments) [deprecated]

Equivalent to writef/2, but “writes” the result on String instead of the current output stream.
Example:

?- swritef(S, ’%15L%w’, [’Hello’, ’World’]).

S = "Hello World"

swritef(-String, +Format) [deprecated]

Equivalent to swritef(String, Format, []).

4.32.2 Format

The format family of predicates is the most versatile and portable107 way to produce textual output.

format(+Format)
Defined as ‘format(Format) :- format(Format, []).’. See format/2 for de-
tails.

format(+Format, :Arguments)
Format is an atom, list of character codes, or a Prolog string. Arguments is a list of arguments
required by the format specification. For backward compatibility, if Format needs exactly one
argument and the required argument is not a list, single argument needs not be nested in a list.

107Unfortunately not covered by any standard.

SWI-Prolog 9.3 Reference Manual

264 CHAPTER 4. BUILT-IN PREDICATES

This feature is deprecated as it easily leads to mistakes and make static analysis by check/0
less accurate.

Special sequences start with the tilde (˜), followed by an optional numeric argument, option-
ally followed by a colon modifier (:), 108 followed by a character describing the action to be
undertaken. A numeric argument is either a sequence of digits, representing a positive decimal
number, a sequence ‘⟨character⟩, representing the character code value of the character (only
useful for ˜t) or a asterisk (*), in which case the numeric argument is taken from the next argu-
ment of the argument list, which should be a positive integer. E.g., the following three examples
all pass 46 (.) to ˜t:

?- format(’˜w ˜46t ˜w˜72|˜n’, [’Title’, ’Page’]).
?- format(’˜w ˜‘.t ˜w˜72|˜n’, [’Title’, ’Page’]).
?- format(’˜w ˜*t ˜w˜72|˜n’, [’Title’, 46, ’Page’]).

Some format expressions may call back Prolog, i.e., ˜p, ˜W, ˜@ and user defined extensions
registered with format predicate/2. Output written to the stream current output is
merged into the format/2 output. If there is no pending rubber (˜t) and the the position
notation aligns, only the output is switched. Otherwise the output is captured in a temporary
memory buffer and emitted after the callback finishes. The system attempts to preserve the
position and alignment promises. It sets the tty property of the temporary stream to reflect the
main stream and uses the position information of the temporary stream to update its notion of
the position. Notable ansi format/3 cooperates properly in callbacks.109.

Numeric conversion (d, D, e, E, f, g, G, h and H) accept an arithmetic expression as argument.
This is introduced to handle rational numbers transparently (see section 4.27.2). The floating
point conversions allow for unlimited precision for printing rational numbers in decimal form.
E.g., the following will write as many 3’s as you want by changing the ‘50’.

?- format(’˜50f’, [10 rdiv 3]).
3.33

˜ Output the tilde itself.

a Output the next argument, which must be an atom. This option is equivalent to w, except
that it requires the argument to be an atom.

c Interpret the next argument as a character code and add it to the output. This argument
must be a valid Unicode character code. Note that the actually emitted bytes are defined by
the character encoding of the output stream and an exception may be raised if the output
stream is not capable of representing the requested Unicode character. See section 2.18.1
for details.

d Output next argument as a decimal number. It should be an integer. If a numeric argument
is specified, a dot is inserted argument positions from the right (useful for doing fixed
point arithmetic with integers, such as handling amounts of money).

108The colon modifiers is a SWI-Prolog extension, proposed by Richard O’Keefe.
109As of version 8.3.30

SWI-Prolog 9.3 Reference Manual

4.32. FORMATTED WRITE 265

The colon modifier (e.g., ˜:d) causes the number to be printed according to the locale of
the output stream. See section 4.23.

D Same as d, but makes large values easier to read by inserting a comma every three digits
left or right of the dot. This is the same as ˜:d, but using the fixed English locale.
If D is modified using the colon (˜:D), it uses the Prolog grouping character . See
also setup prolog integer grouping/0. Future versions may also support line
breaks in big integers.

e Output next argument as a floating point number in exponential notation. The numeric
argument specifies the precision. Default is 6 digits. Exact representation depends on the
C library function printf(). This function is invoked with the format %.⟨precision⟩e.

E Equivalent to e, but outputs a capital E to indicate the exponent.

f Floating point in non-exponential notation. The numeric argument defines the number of
digits right of the decimal point. If the numeric argument is zero (0), the value is printed
as an integer. If the colon modifier (:) is used, the float is formatted using conventions
from the current locale, which may define the decimal point as well as grouping of digits
left of the decimal point.

g Floating point in e or f notation, whichever is shorter.

G Floating point in E or f notation, whichever is shorter.

h

H Print a floating point number with the minimal number of digits such that read/1 pro-
duces exactly (as in ==/2) the same number. The argument specifies whether a number
is written using exponential notation (using e (h) or E (H)) or fixed point notation (as ˜f).
If the argument is -1, the number is always written using exponential notation. Otherwise,
number is written using exponential notation if the exponent is less than Arg-1 or greater
than Arg+d, where d is the number of digits emitted to establish the required precision.
Using an argument larger than the the maximum exponent such as ˜999h never uses ex-
ponential notation. The default argument is 3. The predicate write/1 and friends act as
if using the format ˜3h. This option is compatible to SICStus Prolog.

i Ignore next argument of the argument list. Produces no output.

I Emit a decimal number using Prolog digit grouping (the underscore, _). The argument
describes the size of each digit group. The default is 3. See also section 2.15.1. For
example:

?- A is 1<<100, format(’˜10I’, [A]).
1_2676506002_2822940149_6703205376

k Give the next argument to write canonical/1.

n Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not
properly implemented yet.

p Give the next argument to print/1.

q Give the next argument to writeq/1.

SWI-Prolog 9.3 Reference Manual

266 CHAPTER 4. BUILT-IN PREDICATES

r Print integer in radix numeric argument notation (default 8). Thus ˜16r prints its argu-
ment hexadecimal. The argument should be in the range [2, . . . , 36]. Lowercase letters
are used for digits above 9. The colon modifier may be used to form locale-specific digit
groups.

R Same as r, but uses uppercase letters for digits above 9.

s Output text from a list of character codes, characters, string (see string/1 and sec-
tion 5.2) or atom from the next argument. If an numeric argument is given the string is
truncated to this number of characters.

@ Interpret the next argument as a goal and execute it. Output written to the
current output stream is inserted at this place. Goal is called in the module call-
ing format/3. This option is not present in the original definition by Quintus, but
supported by some other Prolog systems. The goal is executed as \+ \+ Goal, i.e.,
bindings created by the goal are discarded.

t All remaining space between 2 tab stops is distributed equally over ˜t statements between
the tab stops. This space is padded with spaces by default. If an argument is supplied, it
is taken to be the character code of the character used for padding. This can be used to do
left or right alignment, centering, distributing, etc. See also ˜| and ˜+ to set tab stops. A
tab stop is assumed at the start of each line.

| Set a tab stop on the current position. If an argument is supplied set a tab stop on the
position of that argument. This will cause all ˜t’s to be distributed between the previous
and this tab stop.
If the current column is at or past the requested tabstop and the modifier (:) is used, a
newline is inserted and the padding character of the last ˜t is used to pad to the requested
position.

+ Set a tab stop (as ˜|) relative to the last tab stop or the beginning of the line if no tab
stops are set before the ˜+. This constructs can be used to fill fields. The partial format
sequence below prints an integer right-aligned and padded with zeros in 6 columns. The
. . . sequences in the example illustrate that the integer is aligned in 6 columns regardless
of the remainder of the format specification.

format(’...˜|˜‘0t˜d˜6+...’, [..., Integer, ...])

w Give the next argument to write/1.

W Give the next two arguments to write term/2. For example,
format(’˜W’, [Term, [numbervars(true)]]). This option is SWI-Prolog
specific.

Example:

simple_statistics :-
<obtain statistics> % left to the user
format(’˜tStatistics˜t˜72|˜n˜n’),
format(’Runtime: ˜‘.t ˜2f˜34| Inferences: ˜‘.t ˜D˜72|˜n’,

[RunT, Inf]),
....

SWI-Prolog 9.3 Reference Manual

4.32. FORMATTED WRITE 267

will output

Statistics

Runtime: 3.45 Inferences: 60,345

format(+Output, +Format, :Arguments)
As format/2, but write the output on the given Output. The de-facto standard only allows
Output to be a stream. The SWI-Prolog implementation allows all valid arguments for
with output to/2.110 For example:

?- format(atom(A), ’˜D’, [1000000]).
A = ’1,000,000’

4.32.3 Programming Format

format predicate(+Char, +Head)
If a sequence ˜c (tilde, followed by some character) is found, the format/3 and friends
first check whether the user has defined a predicate to handle the format. If not, the built-in
formatting rules described above are used. Char is either a character code or a one-character
atom, specifying the letter to be (re)defined. Head is a term, whose name and arity are used
to determine the predicate to call for the redefined formatting character. The first argument
to the predicate is the numeric argument of the format command, or the atom default if
no argument is specified. The remaining arguments are filled from the argument list. The
example below defines ˜T to print a timestamp in ISO8601 format (see format time/3).
The subsequent block illustrates a possible call.

:- format_predicate(’T’, format_time(_Arg,_Time)).

format_time(_Arg, Stamp) :-
must_be(number, Stamp),
format_time(current_output, ’%FT%T%z’, Stamp).

?- get_time(Now),
format(’Now, it is ˜T˜n’, [Now]).

Now, it is 2012-06-04T19:02:01+0200
Now = 1338829321.6620328.

current format predicate(?Code, ?:Head)
True when ˜Code is handled by the user-defined predicate specified by Head.

110Earlier versions defined sformat/3. These predicates have been moved to the library backcomp.

SWI-Prolog 9.3 Reference Manual

268 CHAPTER 4. BUILT-IN PREDICATES

4.33 Global variables

Global variables are associations between names (atoms) and terms. They differ in various ways from
storing information using assert/1 or recorda/3.

• The value lives on the Prolog (global) stack. This implies that lookup time is independent of the
size of the term. This is particularly interesting for large data structures such as parsed XML
documents or the CHR global constraint store.

• They support both global assignment using nb setval/2 and backtrackable assignment using
b setval/2.

• Only one value (which can be an arbitrary complex Prolog term) can be associated to a variable
at a time.

• Their value cannot be shared among threads. Each thread has its own namespace and values for
global variables.

• Currently global variables are scoped globally. We may consider module scoping in future
versions.

Both b setval/2 and nb setval/2 implicitly create a variable if the referenced name does
not already refer to a variable.

Global variables may be initialised from directives to make them available during the program
lifetime, but some considerations are necessary for saved states and threads. Saved states do not store
global variables, which implies they have to be declared with initialization/1 to recreate them
after loading the saved state. Each thread has its own set of global variables, starting with an empty set.
Using thread initialization/1 to define a global variable it will be defined, restored after
reloading a saved state and created in all threads that are created after the registration. Finally, global
variables can be initialised using the exception hook exception/3. See also nb current/2 and
nb delete/1.

b setval(+Name, +Value)
Associate the term Value with the atom Name or replace the currently associated value with
Value. On backtracking the assignment is reversed. If the variable Name did not exist before
calling b setval/2, backtracking causes the variable to be deleted.111

b getval(+Name, -Value)
Get the value associated with the global variable Name and unify it with Value. Note that this
unification may further instantiate the value of the global variable. If this is undesirable the
normal precautions (double negation or copy term/2) must be taken. The b getval/2
predicate generates errors if Name is not an atom or the requested variable does not exist.

nb setval(+Name, +Value)
Associates a copy of Value created with duplicate term/2 with the atom Name. Note that
this can be used to set an initial value other than [] prior to backtrackable assignment. Starting
with version 9.3.18, if the new Value contains the old value, the old value is not copied. This
implies that push/1 below has complexity O(1), regardless of the length of the list Old.

111Prior to version 8.3.28 backtracking over the variable creation caused the variable to get the value [], i.e., the empty
list. If this is desirable use nb setval(Var, []) before b setval/2.

SWI-Prolog 9.3 Reference Manual

4.33. GLOBAL VARIABLES 269

push(Var, Value) :-
nb_getval(Var, Old),
nb_setval(Var, [Value|Old]).

nb getval(+Name, -Value)
The nb getval/2 predicate is a synonym for b getval/2, introduced for compatibility
and symmetry. As most scenarios will use a particular global variable using either non-
backtrackable or backtrackable assignment, using nb getval/2 can be used to document
that the variable is non-backtrackable. Raises existence error(variable, Name) if the
variable does not exist. Alternatively, nb current/2 can used to query a global variable.
This version fails if the variable does not exist rather than raising an exception.

nb linkval(+Name, +Value)
Associates the term Value with the atom Name without copying it. This is a fast special-
purpose variation of nb setval/2 intended for expert users only because the semantics on
backtracking to a point before creating the link are poorly defined for compound terms. The
principal term is always left untouched, but backtracking behaviour on arguments is undone if
the original assignment was trailed and left alone otherwise, which implies that the history that
created the term affects the behaviour on backtracking. Consider the following example:

demo_nb_linkval :-
T = nice(N),
(N = world,

nb_linkval(myvar, T),
fail

; nb_getval(myvar, V),
writeln(V)

).

nb current(?Name, ?Value)
Enumerate all defined variables with their value. The order of enumeration is undefined. Note
that nb current/2 can be used as an alternative for nb getval/2 to request the value
of a variable and fail silently if the variable does not exists. Note that if the variable is not
defined, exception/3 is called attempting to define it. As of version 8.3.28, a failure of
exception/3 to define the variable causes the variable to be defined with a reserved valued
to avoid subsequent calls to exception/3.

nb delete(+Name)
Delete the named global variable. Succeeds also if the named variable does not exist. Deleting
a global variable ensures the variable is associated to a reserved value to avoid subsequent calls
to exception/3. Note that this implies that the resources associated with a global variable
are never fully reclaimed.

SWI-Prolog 9.3 Reference Manual

270 CHAPTER 4. BUILT-IN PREDICATES

4.33.1 Compatibility of SWI-Prolog Global Variables

Global variables have been introduced by various Prolog implementations recently. The implemen-
tation of them in SWI-Prolog is based on hProlog by Bart Demoen. In discussion with Bart it was
decided that the semantics of hProlog nb setval/2, which is equivalent to nb linkval/2, is
not acceptable for normal Prolog users as the behaviour is influenced by how built-in predicates that
construct terms (read/1, =../2, etc.) are implemented.

GNU-Prolog provides a rich set of global variables, including arrays. Arrays can be implemented
easily in SWI-Prolog using functor/3 and setarg/3 due to the unrestricted arity of compound
terms.

4.34 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide
terminal-independent I/O for screen terminals. These predicates are only available on Unix machines.
The SWI-Prolog Windows console accepts the ANSI escape sequences.

tty get capability(+Name, +Type, -Result)
Get the capability named Name from the termcap library. See termcap(5) for the capability
names. Type specifies the type of the expected result, and is one of string, number or
bool. String results are returned as an atom, number results as an integer, and bool results as
the atom on or off. If an option cannot be found, this predicate fails silently. The results are
only computed once. Successive queries on the same capability are fast. This predicate can
raise several exceptions if the terminal environment is incomplete, notably if the environment
variable TERM does not exist or there is no matching entry in the termcap database.

tty goto(+X, +Y)
Goto position (X, Y) on the screen. Note that the predicates line count/2 and
line position/2 will not have a well-defined behaviour while using this predicate.

tty put(+Atom, +Lines)
Put an atom via the termcap library function tputs(). This function decodes padding infor-
mation in the strings returned by tty get capability/3 and should be used to output
these strings. Lines is the number of lines affected by the operation, or 1 if not applicable (as in
almost all cases).

tty size(-Rows, -Columns)
Determine the size of the terminal. Platforms:

Unix If the system provides ioctl calls for this, these are used and tty size/2 properly
reflects the actual size after a user resize of the window. The ioctl is issued on the
file descriptor associated with the user input stream. As a fallback, the system uses
tty get capability/3 using li and co capabilities. In this case the reported size
reflects the size at the first call and is not updated after a user-initiated resize of the termi-
nal.

Windows Getting the size of the terminal is provided for swipl-win.exe. The requested
value reflects the current size. For the multithreaded version the console that is associated
with the user input stream is used.

SWI-Prolog 9.3 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 271

4.35 Operating System Interaction

The predicates in this section provide basic access to the operating system that has been part of the
Prolog legacy tradition. Note that more advanced access to low-level OS features is provided by
several libraries from the clib package, notably library process, socket, unix and filesex.

shell(+Command)
Equivalent to ‘shell(Command, 0)’. See shell/2 for details.

shell(+Command, -Status)
Execute Command on the operating system. Command is given to the Bourne shell (/bin/sh).
Status is unified with the exit status of the command.

On Windows, shell/[1,2] executes the command using the CreateProcess() API
and waits for the command to terminate. If the command ends with a & sign, the command is
handed to the WinExec() API, which does not wait for the new task to terminate. See also
win exec/2 and win shell/2. Please note that the CreateProcess() API does not
imply the Windows command interpreter (cmd.exe and therefore commands that are built in
the command interpreter can only be activated using the command interpreter. For example, a
file can be copied using the command below.

?- shell(’cmd.exe /C copy file1.txt file2.txt’).

Note that many of the operations that can be achieved using the shell built-in commands can
easily be achieved using Prolog primitives. See make directory/1, delete file/1,
rename file/2, etc. The clib package provides filesex, implementing various high level
file operations such as copy file/2. Using Prolog primitives instead of shell commands
improves the portability of your program.

The library process provides process create/3 and several related primitives that sup-
port more fine-grained interaction with processes, including I/O redirection and management of
asynchronous processes.

getenv(+Name, -Value)
Get environment variable. Fails silently if the variable does not exist. Please note that environ-
ment variable names are case-sensitive on Unix systems and case-insensitive on Windows.

setenv(+Name, +Value)
Set an environment variable. Name and Value must be instantiated to atoms or integers. The
environment variable will be passed to shell/[0-2] and can be requested using getenv/2.
They also influence expand file name/2. Environment variables are shared between
threads. Depending on the underlying C library, setenv/2 and unsetenv/1 may not be
thread-safe and may cause memory leaks. Only changing the environment once and before
starting threads is safe in all versions of SWI-Prolog.

unsetenv(+Name)
Remove an environment variable from the environment. Some systems lack the underlying
unsetenv() library function. On these systems unsetenv/1 sets the variable to the empty
string.

SWI-Prolog 9.3 Reference Manual

272 CHAPTER 4. BUILT-IN PREDICATES

setlocale(+Category, -Old, +New)
Set/Query the locale setting which tells the C library how to interpret text files, write num-
bers, dates, etc. Category is one of all, collate, ctype, messages, monetary,
numeric or time. For details, please consult the C library locale documentation. See also
section 2.18.1. Please note that the locale is shared between all threads and thread-safe usage
of setlocale/3 is in general not possible. Do locale operations before starting threads or
thoroughly study threading aspects of locale support in your environment before using in multi-
threaded environments. Locale settings are used by format time/3, collation key/2
and locale sort/2.

The messages locale defines the language used by print message/2. Note that this locale
is not available on all operating system. Notably Windows does not support this category. See
win get user preferred ui languages/2.

4.35.1 Windows-specific Operating System Interaction

The predicates in this section are only available on the Windows version of SWI-Prolog. Their use
is discouraged if there are portable alternatives. For example, win exec/2 and win shell/2 can
often be replaced by the more portable shell/2 or the more powerful process create/3.

win exec(+Command, +Show)
Windows only. Spawns a Windows task without waiting for its completion. Show is one
of the Win32 SW * constants written in lowercase without the SW *: hide maximize
minimize restore show showdefault showmaximized showminimized
showminnoactive showna shownoactive shownormal. In addition, iconic is a
synonym for minimize and normal for shownormal.

win shell(+Operation, +File, +Show)
Windows only. Opens the document File using the Windows shell rules for doing so. Operation
is one of open, print or explore or another operation registered with the shell for the given
document type. On modern systems it is also possible to pass a URL as File, opening the URL
in Windows default browser. This call interfaces to the Win32 API ShellExecute(). The
Show argument determines the initial state of the opened window (if any). See win exec/2
for defined values.

win shell(+Operation, +File)
Same as win shell(Operation, File, normal).

win registry get value(+Key, +Name, -Value)
Windows only. Fetches the value of a Windows registry key. Key is an atom formed as a
path name describing the desired registry key. Name is the desired attribute name of the key.
Value is unified with the value. If the value is of type DWORD, the value is returned as an
integer. If the value is a string, it is returned as a Prolog atom. Other types are currently
not supported. The default ‘root’ is HKEY CURRENT USER. Other roots can be specified
explicitly as HKEY CLASSES ROOT, HKEY CURRENT USER, HKEY LOCAL MACHINE
or HKEY USERS. The example below fetches the extension to use for Prolog files (see
README.TXT on the Windows version):

?- win_registry_get_value(
’HKEY_LOCAL_MACHINE/Software/SWI/Prolog’,

SWI-Prolog 9.3 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 273

fileExtension,
Ext).

Ext = pl

win folder(?Name, -Directory)
True if Name is the Windows ‘CSIDL’ of Directory. If Name is unbound, all known Windows
special paths are generated. Name is the CSIDL after deleting the leading CSIDL and
mapping the constant to lowercase. Check the Windows documentation for the function
SHGetSpecialFolderPath() for a description of the defined constants. This example
extracts the ‘My Documents’ folder:

?- win_folder(personal, MyDocuments).

MyDocuments = ’C:/Documents and Settings/jan/My Documents’

win add dll directory(+AbsDir)
This predicate adds a directory to the search path for dependent DLL files. If possible, this
is achieved with win add dll directory/2. Otherwise, %PATH% is extended with
the provided directory. AbsDir may be specified in the Prolog canonical syntax. See
prolog to os filename/2. Note that use foreign library/1 passes an abso-
lute path to the DLL if the destination DLL can be located from the specification using
absolute file name/3. This predicate is available from library shlib and can be
autoloaded.

win add dll directory(+AbsDir, -Cookie)
This predicate adds a directory to the search path for dependent DLL files. If the call is success-
ful it unifies Cookie with a handle that must be passed to win remove dll directory/1
to remove the directory from the search path. Error conditions:

• This predicate fails if Windows does not yet support the underlying primitives. These are
available in recently patched Windows 7 systems and later.

• This predicate throws an exception if the provided path is invalid or the underlying Win-
dows API returns an error.

If open shared object/2 is passed an absolute path to a DLL on a Win-
dows installation that supports AddDllDirectory() and friends,112 SWI-Prolog
uses LoadLibraryEx() with the flags LOAD LIBRARY SEARCH DLL LOAD DIR and
LOAD LIBRARY SEARCH DEFAULT DIRS. In this scenario, directories from %PATH% are
not searched. Additional directories can be added using win add dll directory/2.

win remove dll directory(-Cookie)
Remove a DLL search directory installed using win add dll directory/2.

112Windows 7 with up-to-date patches or Windows 8.

SWI-Prolog 9.3 Reference Manual

274 CHAPTER 4. BUILT-IN PREDICATES

win process modules(-FileNames)
This predicate is a wrapper around EnumProcessModules(). FileNames is unified with a
list of absolute paths for all modules of the Windows process. Modules are the main executable
file and all DLLs loaded into the process, except data DLLs. The returned file names are
in canonical Prolog representation. This predicate may be used to debug loading a DLL
from an unexpected location and as a helper for packaging all dependencies when creating a
distribution. According to the Windows documentation this API may return incorrect results
if DLLs are loaded or unloaded while EnumProcessModules() is in progress. See also
qsave program/2.

win get user preferred ui languages(+Format, -Languages)
Unifies Languages with a list of the user preferred languages (Windows Display Languages)
in order of preference. If Format is name, the list elements are atoms. See Language Names
for details. If Format is id, Languages is a list of numeric language ids represented as Prolog
integers. This predicate provides Windows alternative to setlocale/3 using the category
messages.

4.35.2 Apple specific Operating System Interaction

Non-portable Apple MacOS specific predicates are prefixed with apple .

apple current locale identifier(-Identifier)
Unify Identifier with the value for CFLocaleGetIdentifier() of the Apple current
locale. The Identifier is an atom that consists of the primary language identifier, e.g., en for
English followed by an underscore and an identifier for the Region in the MacOS Language
& Region preferences. For example, with the primary language set to “English (UK)”
and the Region to “United Kingdom” we get en GB. This relates to the locale identifier
en GB.UTF-8. Unfortunately it is not that simple. For example, we can combine the primary
language “English (UK)” with the Region “Netherlands” to end up with en NL which is not a
valid MacOS locale.

4.35.3 Dealing with time and date

Representing time in a computer system is surprisingly complicated. There are a large number of
time representations in use, and the correct choice depends on factors such as compactness, resolution
and desired operations. Humans tend to think about time in hours, days, months, years or centuries.
Physicists think about time in seconds. But, a month does not have a defined number of seconds.
Even a day does not have a defined number of seconds as sometimes a leap-second is introduced to
synchronise properly with our earth’s rotation. At the same time, resolution demands a range from
better than pico-seconds to millions of years. Finally, civilizations have a wide range of calendars.
Although there exist libraries dealing with most of this complexity, our desire to keep Prolog clean
and lean stops us from fully supporting these.

For human-oriented tasks, time can be broken into years, months, days, hours, minutes, seconds
and a timezone. Physicists prefer to have time in an arithmetic type representing seconds or frac-
tion thereof, so basic arithmetic deals with comparison and durations. An additional advantage of
the physicist’s approach is that it requires much less space. For these reasons, SWI-Prolog uses an
arithmetic type as its prime time representation.

SWI-Prolog 9.3 Reference Manual

https://docs.microsoft.com/en-us/windows/win32/intl/language-names

4.35. OPERATING SYSTEM INTERACTION 275

Many C libraries deal with time using fixed-point arithmetic, dealing with a large but finite time
interval at constant resolution. In our opinion, using a floating point number is a more natural choice
as we can use a natural unit and the interface does not need to be changed if a higher resolution is
required in the future. Our unit of choice is the second as it is the scientific unit.113 We have placed
our origin at 1970-01-01T0:0:0Z for compatibility with the POSIX notion of time as well as with
older time support provided by SWI-Prolog.

Where older versions of SWI-Prolog relied on the POSIX conversion functions, the current im-
plementation uses libtai to realise conversion between time-stamps and calendar dates for a period of
10 million years.

Time and date data structures

We use the following time representations

TimeStamp
A TimeStamp is a floating point number expressing the time in seconds since the Epoch at
1970-01-01.

date(Y,M,D,H,Mn,S,Off,TZ,DST)
We call this term a date-time structure. The first 5 fields are integers expressing the year,
month (1..12), day (1..31), hour (0..23) and minute (0..59). The S field holds the seconds as a
floating point number between 0.0 and 60.0. Off is an integer representing the offset relative to
UTC in seconds, where positive values are west of Greenwich. If converted from local time
(see stamp date time/3), TZ holds the name of the local timezone. If the timezone is not
known, TZ is the atom -. DST is true if daylight saving time applies to the current time,
false if daylight saving time is relevant but not effective, and - if unknown or the timezone
has no daylight saving time.

date(Y,M,D)
Date using the same values as described above. Extracted using date time value/3.

time(H,Mn,S)
Time using the same values as described above. Extracted using date time value/3.

Time and date predicates

get time(-TimeStamp)
Return the current time as a TimeStamp. The granularity is system-dependent. See sec-
tion 4.35.3.

stamp date time(+TimeStamp, -DateTime, +TimeZone)
Convert a TimeStamp to a DateTime in the given timezone. See section 4.35.3 for details on
the data types. TimeZone describes the timezone for the conversion. It is one of local to
extract the local time, ’UTC’ to extract a UTC time or an integer describing the seconds west
of Greenwich.

113Using Julian days is a choice made by the Eclipse team. As conversion to dates is needed for a human readable notation
of time and Julian days cannot deal naturally with leap seconds, we decided for the second as our unit.

SWI-Prolog 9.3 Reference Manual

http://cr.yp.to/libtai.html

276 CHAPTER 4. BUILT-IN PREDICATES

date time stamp(+DateTime, -TimeStamp)
Compute the timestamp from a date/9 term. Values for month, day, hour, minute or second
may be left unbound from the right, i.e., seconds may be unbound, or seconds and minutes, etc.
It is not allowed to specify the seconds and leave one of the more significant fields unbound.
Unbound values unified to their lowest possible value.

Values for month, day, hour, minute or second need not be normalized. This flexibility allows
for easy computation of the time at any given number of these units from a given timestamp.
Normalization can be achieved following this call with stamp date time/3. This example
computes the date 200 days after 2006-07-14:

?- date_time_stamp(date(2006,7,214,0,0,0,0,-,-), Stamp),
stamp_date_time(Stamp, D, 0),
date_time_value(date, D, Date).

Date = date(2007, 1, 30)

When computing a time stamp from a local time specification, the UTC offset (arg 7), TZ (arg 8)
and DST (arg 9) argument may be left unbound and are unified with the proper information.
The example below, executed in Amsterdam, illustrates this behaviour. On the 25th of March
at 01:00, DST does not apply. At 02.00, the clock is advanced by one hour and thus both 02:00
and 03:00 represent the same time stamp.

1 ?- date_time_stamp(date(2012,3,25,1,0,0,UTCOff,TZ,DST),
Stamp).

UTCOff = -3600,
TZ = ’CET’,
DST = false,
Stamp = 1332633600.0.

2 ?- date_time_stamp(date(2012,3,25,2,0,0,UTCOff,TZ,DST),
Stamp).

UTCOff = -7200,
TZ = ’CEST’,
DST = true,
Stamp = 1332637200.0.

3 ?- date_time_stamp(date(2012,3,25,3,0,0,UTCOff,TZ,DST),
Stamp).

UTCOff = -7200,
TZ = ’CEST’,
DST = true,
Stamp = 1332637200.0.

Note that DST and offset calculation are based on the POSIX function mktime(). If
mktime() returns an error, a representation error dst is generated.

date time value(?Key, +DateTime, ?Value)
Extract values from a date/9 term. Provided keys are:

SWI-Prolog 9.3 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 277

key value
year Calendar year as an integer
month Calendar month as an integer 1..12
day Calendar day as an integer 1..31
hour Clock hour as an integer 0..23
minute Clock minute as an integer 0..59
second Clock second as a float 0.0..60.0
utc offset Offset to UTC in seconds (positive is west)
time zone Name of timezone; fails if unknown
daylight saving Bool (true) if dst is in effect
date Term date(Y,M,D)
time Term time(H,M,S)

format time(+Out, +Format, +StampOrDateTime)
Modelled after POSIX strftime(), using GNU extensions. Out is a destination as specified
with with output to/2. Format is an atom or string with the following conversions.
Conversions start with a percent (%) character.114 StampOrDateTime is either a numeric
time-stamp, a term date(Y,M,D,H,M,S,O,TZ,DST) or a term date(Y,M,D).

a The abbreviated weekday name according to the current locale. Use format time/4
for POSIX locale.

A The full weekday name according to the current locale. Use format time/4 for POSIX
locale.

b The abbreviated month name according to the current locale. Use format time/4 for
POSIX locale.

B The full month name according to the current locale. Use format time/4 for POSIX
locale.

c The preferred date and time representation for the current locale.

C The century number (year/100) as a 2-digit integer.

d The day of the month as a decimal number (range 01 to 31).

D Equivalent to %m/%d/%y. (For Americans only. Americans should note that in other
countries %d/%m/%y is rather common. This means that in an international context this
format is ambiguous and should not be used.)

e Like %d, the day of the month as a decimal number, but a leading zero is replaced by a
space.

E Modifier. Not implemented.

f Number of microseconds. The f can be prefixed by an integer to print the desired number
of digits. E.g., %3f prints milliseconds. This format is not covered by any standard,
but available with different format specifiers in various incarnations of the strftime()
function.

F Equivalent to %Y-%m-%d (the ISO 8601 date format).

g Like %G, but without century, i.e., with a 2-digit year (00-99).
114Descriptions taken from Linux Programmer’s Manual

SWI-Prolog 9.3 Reference Manual

278 CHAPTER 4. BUILT-IN PREDICATES

G The ISO 8601 year with century as a decimal number. The 4-digit year corresponding to
the ISO week number (see %V). This has the same format and value as %y, except that if
the ISO week number belongs to the previous or next year, that year is used instead.

V The ISO 8601:1988 week number of the current year as a decimal number, range 01 to
53, where week 1 is the first week that has at least 4 days in the current year, and with
Monday as the first day of the week. See also %U and %W.

h Equivalent to %b.

H The hour as a decimal number using a 24-hour clock (range 00 to 23).

I The hour as a decimal number using a 12-hour clock (range 01 to 12).

j The day of the year as a decimal number (range 001 to 366).

k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are preceded
by a blank. (See also %H.)

l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are preceded
by a blank. (See also %I.)

m The month as a decimal number (range 01 to 12).

M The minute as a decimal number (range 00 to 59).

n A newline character.

O Modifier to select locale-specific output. Not implemented.

p Either ‘AM’ or ‘PM’ according to the given time value, or the corresponding strings for
the current locale. Noon is treated as ‘pm’ and midnight as ‘am’.115

P Like %p but in lowercase: ‘am’ or ‘pm’ or a corresponding string for the current locale.

r The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to ‘%I:%M:%S
%p’.

R The time in 24-hour notation (%H:%M). For a version including the seconds, see %T
below.

s The number of seconds since the Epoch, i.e., since 1970-01-01 00:00:00 UTC.

S The second as a decimal number (range 00 to 60). (The range is up to 60 to allow for
occasional leap seconds.)

t A tab character.

T The time in 24-hour notation (%H:%M:%S).

u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w.

U The week number of the current year as a decimal number, range 00 to 53, starting with
the first Sunday as the first day of week 01. See also %V and %W.

w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.

W The week number of the current year as a decimal number, range 00 to 53, starting with
the first Monday as the first day of week 01.

x The preferred date representation for the current locale without the time.

X The preferred time representation for the current locale without the date.

115Despite the above claim, some locales yield am or pm in lower case.

SWI-Prolog 9.3 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 279

y The year as a decimal number without a century (range 00 to 99).

Y The year as a decimal number including the century.

z The timezone as hour offset from GMT using the format HHmm. Required to emit
RFC822-conforming dates (using ’%a, %d %b %Y %T %z’). Our implementation
supports %:z, which modifies the output to HH:mm as required by XML-Schema. Note
that both notations are valid in ISO 8601. The sequence %:z is compatible to the GNU
date(1) command.

Z The timezone or name or abbreviation.

+ The date and time in date(1) format.

% A literal ‘%’ character.

The table below gives some format strings for popular time representations. RFC1123
is used by HTTP. The full implementation of http timestamp/2 as available from
http/http header is here.

http_timestamp(Time, Atom) :-
stamp_date_time(Time, Date, ’UTC’),
format_time(atom(Atom),

’%a, %d %b %Y %T GMT’,
Date, posix).

Standard Format string
xsd ’%FT%T%:z’
ISO8601 ’%FT%T%z’
RFC822 ’%a, %d %b %Y %T %z’
RFC1123 ’%a, %d %b %Y %T GMT’

format time(+Out, +Format, +StampOrDateTime, +Locale)
Format time given a specified Locale. This predicate is a work-around for lacking proper
portable and thread-safe time and locale handling in current C libraries. In its current
implementation the only value allowed for Locale is posix, which currently only modifies
the behaviour of the a, A, b and B format specifiers. The predicate is used to be able to emit
POSIX locale week and month names for emitting standardised time-stamps such as RFC1123.

parse time(+Text, -Stamp)
Same as parse time(Text, Format, Stamp). See parse time/3.

parse time(+Text, ?Format, -Stamp)
Parse a textual time representation, producing a time-stamp. Supported formats for Text are
in the table below. If the format is known, it may be given to reduce parse time and avoid
ambiguities. Otherwise, Format is unified with the format encountered.

SWI-Prolog 9.3 Reference Manual

280 CHAPTER 4. BUILT-IN PREDICATES

Name Example
rfc 1123 Fri, 08 Dec 2006 15:29:44 GMT

Fri, 08 Dec 2006 15:29:44 +0000
iso 8601 2006-12-08T17:29:44+02:00

20061208T172944+0200
2006-12-08T15:29Z
2006-12-08
20061208
2006-12
2006-W49-5
2006-342

day of the week(+Date,-DayOfTheWeek)
Computes the day of the week for a given date. Date = date(Year,Month,Day). Days of
the week are numbered from one to seven: Monday = 1, Tuesday = 2, . . . , Sunday = 7.

4.35.4 Controlling the swipl-win.exe console window

The Windows executable swipl-win.exe console has a number of predicates to control the appear-
ance of the console. Being totally non-portable, we do not advise using it for your own application,
but use XPCE or another portable GUI platform instead. We give the predicates for reference here.

window title(-Old, +New)
Unify Old with the title displayed in the console and change the title to New.116

win window pos(+ListOfOptions)
Interface to the MS-Windows SetWindowPos() function, controlling size, position and
stacking order of the window. ListOfOptions is a list that may hold any number of the terms
below:

size(W, H)
Change the size of the window. W and H are expressed in character units.

position(X, Y)
Change the top-left corner of the window. The values are expressed in pixel units.

zorder(ZOrder)
Change the location in the window stacking order. Values are bottom, top, topmost
and notopmost. Topmost windows are displayed above all other windows.

show(Bool)
If true, show the window, if false hide the window.

activate
If present, activate the window.

win window color(+Which, +RGB)
Change the color of the console window. Which is one of foreground, background,
selection foreground or selection background. RGB is a term

116BUG: This predicate should have been called win window title for consistent naming.

SWI-Prolog 9.3 Reference Manual

4.36. FILE SYSTEM INTERACTION 281

rgb(Red,Green,Blue) where the components are values between 0 and 255. The defaults are
established using the Windows API GetSysColor().

win has menu
True if win insert menu/2 and win insert menu item/4 are present.

win insert menu(+Label, +Before)
Insert a new entry (pulldown) in the menu. If the menu already contains this entry, nothing is
done. The Label is the label and, using the Windows convention, a letter prefixed with & is
underlined and defines the associated accelerator key. Before is the label before which this one
must be inserted. Using - adds the new entry at the end (right). For example, the call below
adds an Application entry just before the Help menu.

win_insert_menu(’&Application’, ’&Help’)

win insert menu item(+Pulldown, +Label, +Before, :Goal)
Add an item to the named Pulldown menu. Label and Before are handled as in
win insert menu/2, but the label - inserts a separator. Goal is called if the user
selects the item.

4.36 File System Interaction

The predicates in this section provide interaction with the file system and (syntactic) operations on
file names. SWI-Prolog file system interaction is based on the POSIX standard. On Windows we use
the Unicode (wide character) versions of the C runtime library functions.

The file operations define a large set of error conditions. Errors are mapped to Prolog exceptions
using a generic function that receives the action (e.g., make directory), type (e.g., directory),
the term that describes the object (name) of the file system and the errno value. Unfortunately, the re-
sulting exceptions are often misleading. For example, calling make directory/1 such that it must
create multiple directories (e.g., d1/d2/d3) returns an existence error on the directory d1/d2/d3
rather than the missing component. On Windows the situation is even worse because many of its run-
time functions distinguish only a few error codes. For example, wmkdir() only produces EEXIST
or ENOENT and all failures except for an already existing target result in an existence error excep-
tion. We can only improve on this situation by implementing the translation of errno to a Prolog
exception specifically for each file operation and perform additional tests to distinguish the different
error conditions that are represented by the same errno value. This is hard, in particular because this
translation needs to depend on the OS and specific file system limitations.

SWI-Prolog uses the Windows Unicode functions to access the file system. Internally all Prolog’s
file handling is based on C char* strings. On POSIX systems these strings use multibyte encodings
according to the current locale (nowadays often UTF-8). On Windows the encoding is fixed to UTF-
8 and a wrapper around the low-level file functions translates this to UTF-16117 before calling the
Win32 *W() or C runtime w*() functions.

Windows absolute file paths are traditionally limited to 260 characters (PATH MAX). More recent
versions of Windows support long files. Many of the Unicode file functions support longer paths. For

117Before 8.5.16 to UCS-2, allowing only for Unicode code points up to 0xffff.

SWI-Prolog 9.3 Reference Manual

282 CHAPTER 4. BUILT-IN PREDICATES

others, support for long paths can be forced by prefixing the path with “\\?\” (“\\?UNC\” for UNC
paths (//server/path)). This syntax does not allow for relative paths. Thus, SWI-Prolog file functions
use GetFullPathName() to arrive at absolute canonical paths and apply the appropriate prefix
before calling Windows low-level functions.

Unfortunately the support is not very robust. Some functions still apply length limits while others
do not work with the above mentioned prefix. The result depends on the Windows version, several
Windows registry entries and the file system. Exceeding the length limit is often reported as non-
existence of the target file or directory.

access file(+File, +Mode)
True if File exists and can be accessed by this Prolog process under mode Mode. Mode is one
of the atoms read, write, append, execute, search, exist, or none. Fails silently
otherwise. File may also be the name of a directory. access file(File, none) simply
succeeds without testing anything.

If Mode is write or append, this predicate also succeeds if the file does not exist and the
user has write access to the directory of the specified location.

The mode execute is only intended for use with regular files and the mode search only
with directories. However, the two modes are currently equivalent and both can be used with
either files or directories. This may change in the future, so the results of checking execute
access on directories or search access on regular files should not be relied on.

The behaviour is backed up by the POSIX access() API. The Windows replacement
(waccess()) returns incorrect results because it does not consider ACLs (Access Control
Lists). The Prolog flag win file access check may be used to control the level of check-
ing performed by Prolog. Please note that checking access never provides a guarantee that a
subsequent open succeeds without errors due to inherent concurrency in file operations. It is
generally more robust to try and open the file and handle possible exceptions. See open/4 and
catch/3.

exists file(+File)
True if File exists and is a regular file. This does not imply the user has read or write ac-
cess to the file. See also exists directory/1 and access file/2. The current
implementation fails silently, also on error error conditions such as File being too long.

file directory name(+File, -Directory)
Extracts the directory part of File. This predicate removes the longest match for the regular
expression /*[ˆ/]*/*$. If the result is empty it binds Directory to / if the first character of
File is / and . otherwise. The behaviour is consistent with the POSIX dirname program.118

See also directory file path/3 from filesex. The system ensures that for every
valid Path using the Prolog (POSIX) directory separators, following is true on systems with a
sound implementation of same file/2.119 See also prolog to os filename/2.

...,
file_directory_name(FilePath, Dir),

118Before SWI-Prolog 7.7.13 trailing / where not removed, translation /a/b/ into /a/b. Volker Wysk pointed at this
incorrect behaviour.

119On some systems, Path and Path2 refer to the same entry in the file system, but same file/2 may fail.

SWI-Prolog 9.3 Reference Manual

4.36. FILE SYSTEM INTERACTION 283

file_base_name(FilePath, File),
directory_file_path(Dir, File, Path2),
same_file(FilePath, Path2).

file base name(+File, -Name)
Extracts the file name part from name that may include directories. Similar to
file directory name/2 the extraction is based on the regex /*([ˆ/]*)/*$,
now capturing the non-/ segment. If the segment is empty it unifies -Name with / if File
starts with / and the empty atom (’’) otherwise. The behaviour is consistent with the POSIX
basename program.120

same file(+File1, +File2)
True if both filenames refer to the same physical file. That is, if File1 and File2 are the same
string or both names exist and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths). On systems that provide stat() with meaningful values for
st dev and st inode, same file/2 is implemented by comparing the device and inode
identifiers. On Windows, same file/2 uses GetFileInformationByHandle() and
compares the volume serial number and file index.121

exists directory(+Directory)
True if Directory exists and is a directory. This does not imply the user has read, search or
write permission for the directory. The current implementation fails silently, also on error error
conditions such as Directory being too long.

delete file(+File)
Remove File from the file system. Note that on POSIX systems the remove() call works on
read-only files as long as the containing directory has write access. The Windows remove()
call raises a permission error if the file is read-only. SWI-Prolog removes the read-only
attribute if remove() fails and tries again. If the file still cannot be removed it restores
the read-only attribute and delete file/1 raises a permission error. As a consequence a
read-only file that cannot be removed is briefly read-write. Also note that while an open file
can be removed on POSIX systems (where it is actually deleted when closed), deleting an open
file on Windows is not possible.

rename file(+File1, +File2)
Rename File1 as File2. The semantics is compatible to the semantics of the POSIX rename()
system call as far as the operating system allows. Notably, if File2 exists, the operation suc-
ceeds (except for possible permission errors) and is atomic (meaning there is no window where
File2 does not exist). Note that File2 cannot be an existing directory.122 To move a file to
another directory one must create File2 from the target directory and the base name of File1.
See file base name/2.

The rename() system call has a large number of error conditions. Errors are mapped to Prolog
exceptions using a generic conversion based on the File1 argument. As a result, the errors may
be confusing. Future versions may improve on this.

120Before SWI-Prolog 7.7.13, if argPath ended with a / -Name was unified with the empty atom.
121As of version 8.5.16. Earlier versions only compare the canonical name obtained using GetFullPathName().
122The POSIX semantics describe one exception: a directory can be moved to an existing empty directory.

SWI-Prolog 9.3 Reference Manual

284 CHAPTER 4. BUILT-IN PREDICATES

size file(+File, -Size)
Unify Size with the size of File in bytes.

time file(+File, -Time)
Unify the last modification time of File with Time. Time is a floating point number expressing
the seconds elapsed since Jan 1, 1970. See also convert time/[2,8] and get time/1.

absolute file name(+File, -Absolute)
Expand a local filename into an absolute path. The absolute path is canonicalised: references to
., .. and repeated directory separators (/) are deleted. This predicate ensures that expanding
a filename returns the same absolute path regardless of how the file is addressed. Notably, if a
file appears in multiple directories due to symbolic or hard links absolute file name/2
returns the same absolute filename. SWI-Prolog uses absolute filenames to register source
files independent of the current working directory. The directory separators are always /;
prolog to os filename/2 can be used to obtain the the operating system’s preferred
form.

This predicate has a different history than absolute file name/3 and should primarily be
used to get an absolute canonical name from a relative name. If File is a term Alias(Relative)
is behaviour is defined as below, i.e., if an accessible file can be found using the provided
search path this is returned. Otherwise it returns the the expansion of the alias path.123

Users are advised to use absolute file name/3 with appropriate options for resolving
an Alias(Relative) term.

absolute_file_name(Spec, AbsFile) :-
absolute_file_name(Spec, File, [access(read), file_errors(fail)]),
!,
AbsFile = File.

absolute_file_name(Spec, AbsFile) :-
absolute_file_name(Spec, AbsFile, []).

See also absolute file name/3, file search path/2, and
expand file name/2.

absolute file name(+Spec, -Absolute, +Options)
Convert the given file specification into an absolute path. Spec is a term Alias(Relative)
(e.g., (library(lists)), a relative filename or an absolute filename. The pri-
mary intention of this predicate is to resolve files specified as Alias(Relative), which use
file search path/2 to look up the possibilities for Alias. This predicate only returns
non-directories, unless the option file type(directory) is specified or the requested access is
none. The result always uses the directory separator /; if the operating system uses something
different, SWI-Prolog converts the file name before it makes an OS call. If you need the
filename in the OS’s preferred form, use prolog to os filename/2. Supported Options
are:

extensions(ListOfExtensions)
List of file extensions to try. Default is [’’]. For each extension,

123The SICStus implementation behaves as absolute file name/3 with an empty option list.

SWI-Prolog 9.3 Reference Manual

4.36. FILE SYSTEM INTERACTION 285

absolute file name/3 will first add the extension and then verify the condi-
tions imposed by the other options. If the condition fails, the next extension on the list is
tried. Extensions may be specified both as .ext or plain ext.

relative to(+FileOrDir)
Resolve the path relative to the given directory or the directory holding the given
file. Without this option, paths are resolved relative to the working directory (see
working directory/2) or, if Spec is atomic and absolute file name/[2,3]
is executed in a directive, it uses the current source file as reference. Note that a directive
using initialization/1 is executed after loading the file. This implies that such
paths are resolved relative to the working directory for the toplevel file and relative to the
file loading the file holding the initialization/1 directive otherwise.
Up to version 9.3.9, the system tried both the directory holding the current source and the
current working directory.

access(Mode)
Imposes the condition access file(File, Mode). Mode is one of read, write, append,
execute, search, exist or none. See also access file/2. The default is none
which, if file type is not specified as directory or regular, returns absolute
file names that result from expanding aliases without inspecting the actual file system.

file type(Type)
Defines extensions. Current mapping: txt implies [’’], prolog implies [’.pl’,
’’], executable implies [’.so’, ’’] and qlf implies [’.qlf’, ’’]. The
Type directory implies [’’] and causes this predicate to generate (only) directories.
The Type regular is the opposite of directory and is the default if no file type is
specified and the effective access mode is none.
The file type source is an alias for prolog for compatibility with SICStus Prolog. See
also prolog file type/2.

file errors(fail/error)
If error (default), throw an existence error exception if the file cannot be found.
If fail, stay silent.124

solutions(first/all)
If first (default), the predicate leaves no choice point. Otherwise a choice point will be
left and backtracking may yield more solutions.

expand(Boolean)
If true (default is false) and Spec is atomic, call expand file name/2 followed
by member/2 on Spec before proceeding. This is a SWI-Prolog extension intended to
minimise porting effort after SWI-Prolog stopped expanding environment variables and
the ˜ by default. This option should be considered deprecated. In particular the use of
wildcard patterns such as * should be avoided.

The Prolog flag verbose file search can be set to true to help debugging Prolog’s
search for files. See also file search path/2.

This predicate is derived from Quintus Prolog. In Quintus Prolog, the argument order was
absolute file name(+Spec, +Options, -Path). The argument order has been changed for
compatibility with ISO and SICStus. The Quintus argument order is still accepted.

124Silent operation was the default up to version 3.2.6.

SWI-Prolog 9.3 Reference Manual

286 CHAPTER 4. BUILT-IN PREDICATES

is absolute file name(+File)
True if File specifies an absolute path name. On POSIX systems, this implies the path starts
with a ‘/’. For Microsoft-based systems this implies the path starts with ⟨letter⟩: or //⟨host⟩/.
This predicate is intended to provide platform-independent checking for absolute paths. See
also absolute file name/2 and prolog to os filename/2.

file name extension(?Base, ?Extension, ?Name)
This predicate is used to add, remove or test filename extensions. The main reason for its
introduction is to deal with different filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will also be done case-insensitive. Extension may
be specified with or without a leading dot (.). If an Extension is generated, it will not have a
leading dot.

directory files(+Directory, -Entries)
Unify Entries with a list of entries in Directory. Each member of Entries is an atom denoting an
entry relative to Directory. Entries contains all entries, including hidden files and, if supplied
by the OS, the special entries . and ... See also expand file name/2.125

expand file name(+WildCard, -List)
Unify List with a sorted list of files or directories matching WildCard. The normal Unix wild-
card constructs ‘?’, ‘*’, ‘[...]’ and ‘{...}’ are recognised. The interpretation of ‘{...}’
is slightly different from the C shell (csh(1)). The comma-separated argument can be arbitrary
patterns, including ‘{...}’ patterns. The empty pattern is legal as well: ‘\{.pl,\}’ matches
either ‘.pl’ or the empty string.

If the pattern contains wildcard characters, only existing files and directories are returned. Ex-
panding a ‘pattern’ without wildcard characters returns the argument, regardless of whether or
not it exists.

Before expanding wildcards, the construct \$\arg{var} is expanded to the value of the
environment variable var, and a possible leading ˜ character is expanded to the user’s home
directory.126

prolog to os filename(?PrologPath, ?OsPath)
Convert between the internal Prolog path name conventions and the operating system path
name conventions. The internal conventions follow the POSIX standard, which implies that
this predicate is equivalent to =/2 (unify) on POSIX (e.g., Unix) systems. On Windows systems
it changes the directory separator from \ into /.

read link(+File, -Link, -Target)
If File points to a symbolic link, unify Link with the value of the link and Target to the file the
link is pointing to. Target points to a file, directory or non-existing entry in the file system, but
never to a link. Fails if File is not a link. Fails always on systems that do not support symbolic
links.

125This predicate should be considered a misnomer because it returns entries rather than files. We stick to this name for
compatibility with, e.g., SICStus, Ciao and YAP.

126On Windows, the home directory is determined as follows: if the environment variable HOME exists, this is used. If
the variables HOMEDRIVE and HOMEPATH exist (Windows-NT), these are used. At initialisation, the system will set the
environment variable HOME to point to the SWI-Prolog home directory if neither HOME nor HOMEPATH and HOMEDRIVE
are defined.

SWI-Prolog 9.3 Reference Manual

4.36. FILE SYSTEM INTERACTION 287

tmp file(+Base, -TmpName) [deprecated]

Create a name for a temporary file. Base is an identifier for the category of file. The TmpName
is guaranteed to be unique. If the system halts, it will automatically remove all created
temporary files. Base is used as part of the final filename. Portable applications should limit
themselves to alphanumeric characters. The directory for temporary files is defined by the
Prolog flag tmp dir.

Because it is possible to guess the generated filename, attackers may create the filesystem entry
as a link and possibly create a security issue. New code should use tmp file stream/3.

tmp file stream(+Encoding, -FileName, -Stream)
tmp file stream(-FileName, -Stream, +Options)

Create a temporary filename FileName, open it for writing and unify Stream with the output
stream. If the OS supports it, the created file is only accessible to the current user and the file is
created using the open()-flag O EXCL, which guarantees that the file did not exist before this
call. The directory for temporary files is defined by the Prolog flag tmp dir. The following
options are processed:

encoding(+Encoding)
Encoding of Stream. Default is the value of the Prolog flag encoding. The value
binary opens the file in binary mode.

extension(+Ext)
Ensure the created file has the given extension. Default is no extension. Using an exten-
sion may be necessary to run external programs on the file.

This predicate is a safe replacement of tmp file/2. Note that in those cases where the
temporary file is needed to store output from an external command, the file must be closed
first. E.g., the following downloads a file from a URL to a temporary file and opens the file for
reading (on Unix systems you can delete the file for cleanup after opening it for reading):

open_url(URL, In) :-
tmp_file_stream(text, File, Stream),
close(Stream),
process_create(curl, [’-o’, File, URL], []),
open(File, read, In),
delete_file(File). % Unix-only

Temporary files created using this call are removed if the Prolog process terminates gracefully.
Calling delete file/1 using FileName removes the file and removes the entry from the
administration of files-to-be-deleted.

make directory(+Directory)
Create a new directory (folder) on the filesystem. Raises an exception on failure. On Unix
systems, the directory is created with default permissions (defined by the process umask
setting).

delete directory(+Directory)
Delete directory (folder) from the filesystem. Raises an exception on failure. Please note that
in general it will not be possible to delete a non-empty directory.

SWI-Prolog 9.3 Reference Manual

288 CHAPTER 4. BUILT-IN PREDICATES

working directory(-Old, +New)
Unify Old with an absolute path to the current working directory and change working directory
to New. Use the pattern working directory(CWD, CWD) to get the current directory. See
also absolute file name/2 and chdir/1.127 Note that the working directory is shared
between all threads. Applications are strongly encouraged not to change the working directory
or change the working directory once during the initialization.

chdir(+Path)
Compatibility predicate. New code should use working directory/2.

4.37 User Top-level Manipulation

break
Recursively start a new Prolog top level. This Prolog top level shares everything from the
environment it was started in. Debugging is switched off on entering a break and restored on
leaving one. The break environment is terminated by typing the system’s end-of-file character
(control-D). If that is somehow not functional, the term end of file. can be entered to
return from the break environment. If the -t toplevel command line option is given, this
goal is started instead of entering the default interactive top level (prolog/0).

Notably the GUI based versions (swipl-win on Windows and MacOS) provide the menu
Run/New thread that opens a new toplevel that runs concurrently with the initial toplevel.
The concurrent toplevel can be used to examine the program, in particular global dy-
namic predicates. It can not access global variables or thread-local dynamic predicates (see
thread local/1) of the main thread.

abort
Abort the Prolog execution and restart the top level. If the -t toplevel command line
option is given, this goal is restarted instead of entering the default interactive top level.

Aborting is implemented by throwing the reserved exception unwind(abort). This exception
can be caught using catch/3, but the recovery goal is wrapped with a predicate that prunes
the choice points of the recovery goal (i.e., as once/1) and re-throws the exception. This is
illustrated in the example below, where we press control-C and ‘a’. See also section 4.10.2.

?- catch((repeat,fail), E, true).
ˆCAction (h for help) ? abort
% Execution Aborted

halt [ISO]

Terminate Prolog execution with default exit code using halt/1. The default exit code is
normally 0, but can be 1 if one of the Prolog flags on error or on warning is set to
status and there have been errors or warnings.

127BUG: Some of the file I/O predicates use local filenames. Changing directory while file-bound streams are open causes
wrong results on telling/1, seeing/1 and current stream/3.

SWI-Prolog 9.3 Reference Manual

4.37. USER TOP-LEVEL MANIPULATION 289

halt(+Status) [ISO]

Terminate Prolog execution with Status. When possible, raise the exception
unwind(halt(Status)). Currently, this is used when halt/1 is called in the main thread
and there is no intermediate C function on the stack that called PL next solution()
without the PL Q PASS EXCEPTION flag. Future versions may also use signal based exit
from threads.

After the exception bubbled up to the top or if the halt exception could not be raised, system
termination starts. System termination (see also PL halt()) preforms the following steps:

1. Set the Prolog flag exit status to Status.

2. Call all hooks registered using at halt/1. If Status equals 0 (zero), any of these hooks
calls cancel halt/1, termination is cancelled.

3. Call all hooks registered using PL at halt(). In the future, if any of these hooks returns
non-zero, termination will be cancelled. Currently, this only prints a warning.

4. Perform the following system cleanup actions:

• Raise unwind(halt(Status)) in all running threads.
• Wait for a maximum of 1 second for all threads to respond to this exception. Reg-

istered thread at exit/1 hooks are executed. Threads not responding within 1
second are cancelled forcefully.

• Flush I/O and close all streams except for standard I/O.
• Reset the terminal if its properties were changed.
• Remove temporary files and incomplete compilation output.
• Reclaim memory.

5. Call exit(Status) to terminate the process

halt/1 has been extended in SWI-Prolog to accept the arg abort. This performs as halt/1
above except that:

• Termination cannot be cancelled with cancel halt/1.

• abort() is called instead of exit(Status).

In addition to an integer status name we also allow passing a signal name. This is similar to
abort, blocking halt cancellation and set the termination code to 128+signum. For example,
using halt(term) the system exits with status 143 (= 128+15) on Linux.

prolog
This goal starts the default interactive top level. Queries are read from the stream user input.
See also the Prolog flag history. The prolog/0 predicate is terminated (succeeds) by
typing the end-of-file character (typically control-D).

The following hooks allow for expanding queries and handling the result of a query. These hooks
are used by the top level variable expansion mechanism described in section 2.9.

user:expand query(+Query, -Expanded, +Bindings, -ExpandedBindings)
Hook in module user, normally not defined. Query and Bindings represents the query read

SWI-Prolog 9.3 Reference Manual

290 CHAPTER 4. BUILT-IN PREDICATES

from the user and the names of the free variables as obtained using read term/3. If this
predicate succeeds, it should bind Expanded and ExpandedBindings to the query and bindings
to be executed by the top level. This predicate is used by the top level (prolog/0). See also
expand answer/2 and term expansion/2.

prolog:expand answer(+Goal, +Bindings, -ExpandedBindings)
Hook in module prolog, normally not defined. Expand the result of a successfully executed
top-level query. Bindings is the query ⟨Name⟩ = ⟨Value⟩ binding list from the query.
ExpandedBindings must be unified with the bindings the top level should print. Goal provides
the instantiated query. This hook supersedes user:expand answer/2.

user:expand answer(+Bindings, -ExpandedBindings) [deprecated]

Hook in module user, normally not defined. This hook provides backward compatibility and
is superseded by prolog:expand answer/3.

4.38 Creating a Protocol of the User Interaction

SWI-Prolog offers the possibility to log the interaction with the user on a file.128 All Prolog interac-
tion, including warnings and tracer output, are written to the protocol file.

protocol(+File)
Start protocolling on file File. If there is already a protocol file open, then close it first. If File
exists it is truncated.

protocola(+File)
Equivalent to protocol/1, but does not truncate the File if it exists.

noprotocol
Stop making a protocol of the user interaction. Pending output is flushed on the file.

protocolling(-File)
True if a protocol was started with protocol/1 or protocola/1 and unifies File with the
current protocol output file.

4.39 Debugging and Tracing Programs

This section is a reference to the debugger interaction predicates. A more use-oriented overview of
the debugger is in section 2.10.

If you have installed XPCE, you can use the graphical front-end of the tracer. This front-end is
installed using the predicate guitracer/0.

trace
Start the tracer. trace/0 itself cannot be seen in the tracer. Note that the Prolog top level
treats trace/0 special; it means ‘trace the next goal’.

tracing
True if the tracer is currently switched on. tracing/0 itself cannot be seen in the tracer.

128A similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

SWI-Prolog 9.3 Reference Manual

4.39. DEBUGGING AND TRACING PROGRAMS 291

notrace
Stop the tracer. notrace/0 itself cannot be seen in the tracer.

notrace(:Goal)
Call Goal, but suspend the debugger while Goal is executing. The current implementation cuts
the choice points of Goal after successful completion. See once/1. Later implementations
may have the same semantics as call/1.

debug
Start debugger. In debug mode, Prolog stops at spy and break points, disables last-call optimi-
sation and aggressive destruction of choice points to make debugging information accessible.
Implemented by the Prolog flag debug.

Note that the min free parameter of all stacks is enlarged to 8 K cells if debugging is switched
off in order to avoid excessive GC. GC complicates tracing because it renames the ⟨NNN⟩ vari-
ables and replaces unreachable variables with the atom <garbage_collected>. Calling
nodebug/0 does not reset the initial free-margin because several parts of the top level and
debugger disable debugging of system code regions. See also set prolog stack/2.

nodebug
Stop debugger. Implemented by the Prolog flag debug. See also debug/0.

debugging
Print debug status and spy points on current output stream. See also the Prolog flag debug.

spy(+Pred)
Put a spy point on all predicates meeting the predicate specification Pred. See section A.24.

nospy(+Pred)
Remove spy point from all predicates meeting the predicate specification Pred.

nospyall
Remove all spy points from the entire program.

leash(?Ports)
Set/query leashing (ports which allow for user interaction). Ports is one of +Name, -Name,
?Name or a list of these. +Name enables leashing on that port, -Name disables it and ?Name
succeeds or fails according to the current setting. Recognised ports are call, redo, exit,
fail and unify. The special shorthand all refers to all ports, full refers to all ports
except for the unify port (default). half refers to the call, redo and fail port.

visible(+Ports)
Set the ports shown by the debugger. See leash/1 for a description of the Ports specification.
Default is full.

unknown(-Old, +New)
Edinburgh-Prolog compatibility predicate, interfacing to the ISO Prolog flag unknown. Val-
ues are trace (meaning error) and fail. If the unknown flag is set to warning,
unknown/2 reports the value as trace.

style check(+Spec)
Modify/query style checking options. Spec is one of the terms below or a list of these.

SWI-Prolog 9.3 Reference Manual

292 CHAPTER 4. BUILT-IN PREDICATES

• +Style enables a style check

• -Style disables a style check

• ?(Style) queries a style check (note the brackets). If Style is unbound, all active style check
options are returned on backtracking.

Loading a file using load files/2 or one of its derived predicates reset the style checking
options to their value before loading the file, scoping the option to the remainder of the file and
all files loaded after changing the style checking.

singleton(true)
The predicate read clause/3 (used by the compiler to read source code) warns on
variables appearing only once in a term (clause) which have a name not starting with an
underscore. See section 2.15.1 for details on variable handling and warnings.

no effect(true)
This warning is generated by the compiler for BIPs (built-in predicates) that are inlined
by the compiler and for which the compiler can prove that they are meaningless. An
example is using ==/2 against a not-yet-initialised variable as illustrated in the example
below. This comparison is always false.

always_false(X) :-
X == Y,
write(Y).

var branches(false)
Verifies that if a variable is introduced in a branch and used after the branch, it is in-
troduced in all branches. This code aims at bugs following the skeleton below, where
p(Next) may be called with Next unbound.

p(Arg) :-
(Cond
-> Next = value1
; true
),
p(Next).

If a variable V is intended to be left unbound, one can use V= . This construct is removed
by the compiler and thus has no implications for the performance of your program.
This check was suggested together with semantic singleton checking. The SWI-Prolog
libraries contain about a hundred clauses that are triggered by this style check. Unlike
semantic singleton analysis, only a tiny fraction of these clauses proofed faulty. In most
cases, the branches failing to bind the variable fail or raise an exception or the caller
handles the case where the variable is unbound. The status of this style check is unclear. It
might be removed in the future or it might be enhanced with a deeper analysis to be more
precise.

discontiguous(true)
Warn if the clauses for a predicate are not together in the same source file. It is advised
to disable the warning for discontiguous predicates using the discontiguous/1
directive.

SWI-Prolog 9.3 Reference Manual

4.40. DEBUGGING AND DECLARING DETERMINISM 293

charset(false)
Warn on atoms and variable names holding non-ASCII characters that are not quoted.
See also section 2.15.1.

4.40 Debugging and declaring determinism

A common issue with Prolog programs of a procedural nature is to guarantee deterministic behaviour
and debug possible problems with determinism. SWI-Prolog provides several mechanisms to make
writing, debugging and maintaining deterministic code easier. One of them is Single Sided Unification
using =>/2 rules as described in section 5.6. This section deals with annotating your program.

If a program does not behave according to these annotations it raises an error/2 exception
where the formal term is determinism error(Pred, Declared, Observed, DeclType), where De-
clared is currently always det, Observed is one of fail or nondet and DeclType is one of property
(det/1), guard ($/0) or goal ($/1). Using trap/1 or gtrap/1 we can ask Prolog to start the
debugger in such events using

?- gtrap(determinism_error(_,_,_,_)).

WARNING: The primitives in this section are experimental. The naming and exact
semantics may change. If you are interested in this, please follow and contribute to
discussion on the Discourse forum.

det(+PredicateIndicators) [directive]

Declare a number of predicates as det (deterministic). As a result, both failure and success
with a choicepoint is considered an error. The behaviour if the declaration is violated is
controlled with the Prolog flag determinism error. The default is to raise an exception
(error). Consider the following program:

:- det(p/1).

p(1).
p(2).

Now, a call ?- p(1). behaves normally. However:

?- p(X).
ERROR: Deterministic procedure p/1 succeeded with a choicepoint
ERROR: In:
ERROR: [10] p(1)

?- p(a).
ERROR: Deterministic procedure p/1 failed
ERROR: In:
ERROR: [10] p(a)

SWI-Prolog 9.3 Reference Manual

294 CHAPTER 4. BUILT-IN PREDICATES

Violations throw an error/2 exception determinism error(Pred, Declared, Observed,
property).

The trap/1 (cli) or gtrap/1 (gui) predicate can be used to make the debugger stop near the
error. For example:

?- gtrap(determinism_error(_,_,_,_)).

$ [experimental]

The $/0 constructs acts similar to the !/0, but in addition declares that the remainder of the
clause body shall succeed deterministically. It exploits the same underlying mechanism as the
det/1 declaration. See also $/1.

Violations throw an error/2 exception determinism error(Pred, Declared, Observed,
guard).

$(:Goal) [experimental]

Verify that Goal succeeds deterministically. This predicate has no effect if Goal succeeds with-
out a choicepoint. Otherwise the result depends on the Prolog flag determinism error:

silent
Act as once/1.

warning
Print a warning and act as once/1.

error
Raise a determinism error exception.

Note that if $/1 is used for the last call, last call optimization is not effective. This behaviour
ensures consistent errors or warnings. Last call optimization with determinism checking can
be realised using ..., $, Last., i.e. by executing $/0 before the last call rather than
wrapping the last call in $/1.

Violations throw an error/2 exception determinism error(Pred, Declared, Observed,
goal).

A deterministic predicate may call normal predicates. No error is triggered as long as the de-
terministic predicate either ignores a possible failure, e.g., using \+/1 and prunes possible choice
points created by called predicates. If the last predicate is a normal predicate the requirement to suc-
ceed deterministically is transferred to the new goal. As last-call optimization causes the information
which predicate initially claimed to be deterministic to be lost, the error is associated with the called
predicate. Debug mode (see debug/0 or the Prolog flag debug) may be used to avoid last call
optimization and find the call stack that causes the issue.

4.41 Obtaining Runtime Statistics

The predicate statistics/2 is built-in. More high level predicates are available from library
statistics. See section A.53.

SWI-Prolog 9.3 Reference Manual

4.42. EXECUTION PROFILING 295

statistics(+Key, -Value)
Unify system statistics determined by Key with Value. The possible keys are given in the
table 4.3. This predicate supports additional keys for compatibility reasons. These keys
are described in table 4.4. CPU time results are based on clock gettime(), times()
or wall time since the process was started (in that order of preference). On Windows
GetProcessTimes() is used. Both clock gettime() and GetProcessTimes()
provide a nanosecond resolution interface. The actual resolution depends on the platform.

Starting with version 9.1.9, the cputime and inferences keys include the final value for
threads that have been created by the calling thread and has been joined by the calling thread.
The new keys self cputime and self inferences may be used to get statistics for the
calling thread only. Both keys also exist in the single threaded version, where the “self” key
always returns the same value as the one without “self”.

4.42 Execution profiling

This section describes the hierarchical execution profiler. This profiler is based on ideas from gprof
described in [Graham et al., 1982]. The profiler consists of two parts: the information-gathering com-
ponent built into the kernel,129 and a presentation component which is defined in the statistics
library. The latter can be hooked, which is used by the XPCE module swi/pce profile to provide
an interactive graphical frontend for the results.

4.42.1 library(prolog profile): Execution profiler

This module provides a simple frontend on the execution profiler with a hook to the GUI visualiser
for profiling results defined in library(swi/pce_profile).

profile(:Goal)
profile(:Goal, +Options)

Run once(Goal) under the execution profiler. If the (xpce) GUI is enabled this predicate is
hooked by library(swi/pce_profile) and results are presented in a gui that enables
navigating the call tree and jump to predicate implementations. Without the GUI, a simple
textual report is generated. Defined options are:

time(Which)
Profile cpu or wall time. The default is CPU time.

sample rate(Rate)
Samples per second, any numeric value between 1 and 1000. Default is defined by the
Prolog flag profile sample rate, which defaults to 200.

ports(Bool)
Specifies ports counted - true (all ports), false (call port only) or classic (all with
some errors). Accomodates space/accuracy tradeoff building call tree. Default is defined
by the Prolog flag profile ports, which defaults to true.

129There are two implementations; one based on setitimer() using the SIGPROF signal and one using Windows
Multi Media (MM) timers. On other systems the profiler is not provided.

SWI-Prolog 9.3 Reference Manual

296 CHAPTER 4. BUILT-IN PREDICATES

Native keys (times as float in seconds)
agc Number of atom garbage collections performed
agc gained Number of atoms removed
agc time Time spent in atom garbage collections
atoms Total number of defined atoms
atom space Bytes used to represent atoms
c stack System (C-) stack limit. 0 if not known.
cgc Number of clause garbage collections performed
cgc gained Number of clauses reclaimed
cgc time Time spent in clause garbage collections
clauses Total number of clauses in the program
codes Total size of (virtual) executable code in words
cputime (User) CPU time since thread was started in seconds. Includes CPU time in

completed child threads. See also self cputime and process cputime.
epoch Time stamp when thread was started
errors Number of error messages printed
functors Total number of defined name/arity pairs
functor space Bytes used to represent functors
global Allocated size of the global stack in bytes
globalused Number of bytes in use on the global stack
global shifts Number of global stack expansions
heapused Bytes of heap in use by Prolog (0 if not maintained)
inferences Total number of passes via the call and redo ports since Prolog was started.

Includes inferences in child threads. See also self inferences.
modules Total number of defined modules
local Allocated size of the local stack in bytes
local shifts Number of local stack expansions
localused Number of bytes in use on the local stack
table space used Amount of bytes in use by the thread’s answer tables
trail Allocated size of the trail stack in bytes
trail shifts Number of trail stack expansions
trailused Number of bytes in use on the trail stack
shift time Time spent in stack-shifts
self cputime (User) CPU time since thread was started in seconds
self inferences Total number of passes via the call and redo ports since Prolog was started
stack Total memory in use for stacks in all threads
predicates Total number of predicates. This includes predicates that are undefined or not

yet resolved.
indexes created Number of clause index tables creates.
indexes destroyed Number of clause index tables destroyed.
process epoch Time stamp when Prolog was started
process cputime (User) CPU time since Prolog was started in seconds
thread cputime MT-version: Seconds CPU time used by finished threads. The implementa-

tion requires non-portable functionality. Currently works on Linux, MacOSX,
Windows and probably some more.

threads MT-version: number of active threads
threads created MT-version: number of created threads
engines MT-version: number of existing engines
engines created MT-version: number of created engines
threads peak MT-version: highest id handed out. This is a fair but possibly not 100% accu-

rate value for the highest number of threads since the process was created.
warnings Number of warning messages printed

Table 4.3: Keys for statistics/2. Space is expressed in bytes. Time is expressed in seconds,
represented as a floating point number.

SWI-Prolog 9.3 Reference Manual

4.42. EXECUTION PROFILING 297

Compatibility keys (times in milliseconds)
runtime [CPU time, CPU time since last] (milliseconds, excluding time spent in

garbage collection)
system time [System CPU time, System CPU time since last] (milliseconds)
real time [Wall time, Wall time since last] (integer seconds. See get time/1)
walltime [Wall time since start, Wall time since last] (milliseconds, SICStus compati-

bility)
memory [Total unshared data, free memory] (Used is based on ru idrss from

getrusage(). Free is based on RLIMIT DATA from getrlimit().
Both are reported as zero if the OS lacks support. Free is -1 if getrlimit()
is supported but returns infinity.)

stacks [global use, local use]
program [heap use, 0]
global stack [global use, global free]
local stack [local use, local free]
trail [trail use, trail free]
garbage collection [number of GC, bytes gained, time spent, bytes left] The last column is a SWI-

Prolog extension. It contains the sum of the memory left after each collection,
which can be divided by the count to find the average working set size after
GC. Use [Count, Gained, Time|] for compatibility.

stack shifts [global shifts, local shifts, time spent]
atoms [number, memory use, 0]
atom garbage collection [number of AGC, bytes gained, time spent]
clause garbage collection [number of CGC, clauses gained, time spent]
core Same as memory

Table 4.4: Compatibility keys for statistics/2. Time is expressed in milliseconds.

SWI-Prolog 9.3 Reference Manual

298 CHAPTER 4. BUILT-IN PREDICATES

top(N)
When generating a textual report, show the top N predicates.

cumulative(Bool)
If true (default false), show cumulative output in a textual report.

See also show coverage/2 from library(test_cover).
To be done The textual input reflects only part of the information.

show profile(+Options)
Display last collected profiling data. Options are

top(N)
When generating a textual report, show the top N predicates.

cumulative(Bool)
If true (default false), show cumulative output in a textual report.

profile data(-Data) [det]

Gather all relevant data from profiler. This predicate may be called while profiling is active
in which case it is suspended while collecting the data. Data is a dict providing the following
fields:

summary : Dict
Overall statistics providing

• samples:Count: Times the statistical profiler was called
• ticks:Count Virtual ticks during profiling
• accounting:Count Tick spent on accounting
• time:Seconds Total time sampled
• nodes:Count Nodes in the call graph.
• sample period: MicroSeconds Same interval timer period in micro seconds
• ports: Ports One of true, false or classic

nodes
List of nodes. Each node provides:

• predicate:PredicateIndicator
• ticks self:Count
• ticks siblings:Count
• call:Count
• redo:Count
• exit:Count
• callers:list_of(Relative)
• callees:list_of(Relative)

Relative is a term of the shape below that represents a caller or callee. Future versions are likely
to use a dict instead.

node(PredicateIndicator, CycleID, Ticks, TicksSiblings,
Calls, Redos, Exits)

SWI-Prolog 9.3 Reference Manual

4.42. EXECUTION PROFILING 299

Figure 4.1: Execution profiler showing the activity of the predicate chat:inv map list/5.

profile procedure data(?Pred, -Data:dict) [nondet]

Collect data for Pred. If Pred is unbound data for each predicate that has profile data available
is returned. Data is described in profile data/1 as an element of the nodes key.

4.42.2 Visualizing profiling data

Browsing the annotated call-tree as described in section 4.42.3 itself is not very attractive. Therefore,
the results are combined per predicate, collecting all callers and callees as well as the propagation
of time and activations in both directions. Figure 4.1 illustrates this. The central yellowish line is
the ‘current’ predicate with counts for time spent in the predicate (‘Self’), time spent in its children
(‘Siblings’), activations through the call and redo ports. Above that are the callers. Here, the two time
fields indicate how much time is spent serving each of the callers. The columns sum to the time in the
yellowish line. The caller <recursive> is the number of recursive calls. Below the yellowish lines are
the callees, with the time spent in the callee itself for serving the current predicate and the time spent
in the callees of the callee (’Siblings’), so the whole time-block adds up to the ‘Siblings’ field of the
current predicate. The ‘Access’ fields show how many times the current predicate accesses each of
the callees.

The predicates have a menu that allows changing the view of the detail window to the given caller
or callee, showing the documentation (if it is a built-in) and/or jumping to the source.

The statistics shown in the report field of figure 4.1 show the following information:

• samples
Number of times the call-tree was sampled for collecting time statistics. On most hardware, the
resolution of SIGPROF is 1/100 second. This number must be sufficiently large to get reliable
timing figures. The Time menu allows viewing time as samples, relative time or absolute time.

• sec
Total user CPU time with the profiler active.

• predicates
Total count of predicates that have been called at least one time during the profile.

• nodes
Number of nodes in the call-tree.

SWI-Prolog 9.3 Reference Manual

300 CHAPTER 4. BUILT-IN PREDICATES

• distortion
How much of the time is spent building the call-tree as a percentage of the total execution time.
Timing samples while the profiler is building the call-tree are not added to the call-tree.

4.42.3 Information gathering

While the program executes under the profiler, the system builds a dynamic call-tree. It does this using
three hooks from the kernel: one that starts a new goal (profCall), one that tells the system which goal
is resumed after an exit (profExit) and one that tells the system which goal is resumed after a fail (i.e.,
which goal is used to retry (profRedo)). The profCall() function finds or creates the subnode
for the argument predicate below the current node, increments the call-count of this link and returns
the sub-node which is recorded in the Prolog stack-frame. Choice-points are marked with the current
profiling node. profExit() and profRedo() pass the profiling node where execution resumes.

Just using the above algorithm would create a much too big tree due to recursion. For this reason
the system performs detection of recursion. In the simplest case, recursive procedures increment the
‘recursive’ count on the current node. Mutual recursion, however, is not easily detected. For example,
call/1 can call a predicate that uses call/1 itself. This can be viewed as a recursive invocation,
but this is generally not desirable. Recursion is currently assumed if the same predicate with the
same parent appears higher in the call-graph. Early experience with some non-trivial programs are
promising.

The last part of the profiler collects statistics on the CPU time used in each node. On systems
providing setitimer() with SIGPROF, it ‘ticks’ the current node of the call-tree each time the
timer fires. On Windows, a MM-timer in a separate thread checks 100 times per second how much
time is spent in the profiled thread and adds this to the current node. See section 4.42.3 for details.

Profiling in the Windows Implementation

Profiling in the Windows version is similar, but as profiling is a statistical process it is good to be
aware of the implementation130 for proper interpretation of the results.

Windows does not provide timers that fire asynchronously, frequent and proportional to the CPU
time used by the process. Windows does provide multi-media timers that can run at high frequency.
Such timers, however, run in a separate thread of execution and they are fired on the wall clock
rather than the amount of CPU time used. The profiler installs such a timer running, for saving
CPU time, rather inaccurately at about 100 Hz. Each time it is fired, it determines the CPU time in
milliseconds used by Prolog since the last time it was fired. If this value is non-zero, active predicates
are incremented with this value.

4.43 Memory Management

4.43.1 Garbage collection

garbage collect
Invoke the global and trail stack garbage collector. Normally the garbage collector is invoked
automatically if necessary. Explicit invocation might be useful to reduce the need for
garbage collections in time-critical segments of the code. After the garbage collection
trim stacks/0 is invoked to release the collected memory resources.

130We hereby acknowledge Lionel Fourquaux, who suggested the design described here after a newsnet enquiry.

SWI-Prolog 9.3 Reference Manual

4.43. MEMORY MANAGEMENT 301

garbage collect atoms
Reclaim unused atoms. Normally invoked after agc margin (a Prolog flag) atoms have been
created. On multithreaded versions the actual collection is delayed until there are no threads
performing normal garbage collection. In this case garbage collect atoms/0 returns
immediately. Note that there is no guarantee it will ever happen, as there may always be threads
performing garbage collection.

garbage collect clauses
Reclaim retracted clauses. During normal operation, retracting a clause implies setting the
erased generation to the current generation of the database and increment the generation.
Keeping the clause around is both needed to realise the logical update view and deal with the
fact that other threads may be executing the clause. Both static and dynamic code is processed
this way.131.

The clause garbage collector (CGC) scans the environment stacks of all threads for referenced
dirty predicates and at which generation this reference accesses the predicate. It then removes
the references for clauses that have been retracted before the oldest access generation from the
clause list as well as the secondary clauses indexes of the predicate. If the clause list is not
being scanned, the clause references and ultimately the clause itself is reclaimed.

The clause garbage collector is called under three conditions, (1) after reloading a source file,
(2) if the memory occupied by retracted but not yet reclaimed clauses exceeds 12.5% of the
program store, or (3) if skipping dead clauses in the clause lists becomes too costly. The cost of
clause garbage collection is proportional with the total size of the local stack of all threads (the
scanning phase) and the number of clauses in all ‘dirty’ predicates (the reclaiming phase).

set prolog gc thread(+Status)
Control whether or not atom and clause garbage collection are executed in a dedicated thread.
The default is true. Values for Status are true, false and stop. The latter stops the
gc thread but allows is to be recreated lazily. This is use by e.g., fork/1 to avoid forking a
multi-threaded application. See also gc thread.

trim stacks
Release stack memory resources that are not in use at this moment, returning them to the
operating system. It can be used to release memory resources in a backtracking loop, where
the iterations require typically seconds of execution time and very different, potentially large,
amounts of stack space. Such a loop can be written as follows:

loop :-
generator,

trim_stacks,
potentially_expensive_operation,

stop_condition, !.

The Prolog top-level loop is written this way, reclaiming memory resources after every user
query. See also trim heap/0 and thread idle/2.

131Up to version 7.3.11, dynamic code was handled using reference counts.

SWI-Prolog 9.3 Reference Manual

302 CHAPTER 4. BUILT-IN PREDICATES

set prolog stack(+Stack, +KeyValue)
Set a parameter for one of the Prolog runtime stacks. Stack is one of local, global or
trail. The table below describes the Key(Value) pairs.

Current settings can be retrieved with prolog stack property/2.

min free(+Cells)
Minimum amount of free space after trimming or shifting the stack. Setting this value
higher can reduce the number of garbage collections and stack-shifts at the cost of
higher memory usage. The amount is reported and specified in cells. A cell is 4 bytes
in the 32-bit version and 8 bytes on the 64-bit version. See address bits. See also
trim stacks/0 and debug/0.

low(+Cells)
factor(+Number)

These two figures determine whether, if the stacks are low, a stack shift (expansion) or
garbage collection is performed. This depends on these two parameters, the current stack
usage and the amount of stack used after the last garbage collection. A garbage collection
is started if used > factor × lastused+ low.

spare(+Cells)
All stacks trigger overflow before actually reaching the limit, so the resulting error can be
handled gracefully. The spare stack is used for print message/2 from the garbage
collector and for handling exceptions. The default suffices, unless the user redefines
related hooks. Do not specify large values for this because it reduces the amount of
memory available for your real task.
Related hooks are message hook/3 (redefining GC messages),
prolog trace interception/4 and prolog exception hook/5.

prolog stack property(?Stack, ?KeyValue)
True if KeyValue is a current property of Stack. See set prolog stack/2 for defined
properties.

The total space limit for all stacks is controlled using the prolog flag stack limit.

4.43.2 Heap memory (malloc)

SWI-Prolog’s memory management is based on the C runtime malloc() function and related func-
tions. The characteristics of the malloc() implementation may affect performance and overall
memory usage of the system. For most Prolog programs the performance impact of the allocator is
small.132 The impact on total memory usage can be significant though, in particular for multi-threaded
applications. This is due to two aspects of SWI-Prolog memory management:

• The Prolog stacks are allocated using malloc(). The stacks can be extremely large. SWI-
Prolog assumes malloc() will use a mechanism that allows returning this memory to the OS.
Most todays allocators satisfy this requirement.

132Multi-threaded applications may suffer from allocators that do not effectively avoid false sharing that affect CPU cache
behaviour or operate using a single lock to provide thread safety. Such allocators should be rare in modern OSes.

SWI-Prolog 9.3 Reference Manual

4.43. MEMORY MANAGEMENT 303

• Atoms and clauses are allocated by the thread that requires them, but this memory is freed by
the thread running the atom or clause garbage collector (see garbage collect atoms/0
and garbage collect clauses/0). Normally these run in the thread gc, which means
that all deallocation happens in this thread. Notably the ptmalloc implementation used by the
GNU C library (glibc) seems to handle this poorly.

Starting with version 8.1.27, SWI-Prolog by default links against tcmalloc when available. Note
that changing the allocator can only be done by linking the main executable (swipl) to an alternative
library. When embedded (see section 12.4.25) the main program that embeds libswipl must be
linked with tcmalloc. On ELF based systems (Linux), this effect can also be achieved using the
environment variable LD PRELOAD:

% LD_PRELOAD=/path/to/libtcmalloc.so swipl ...

SWI-Prolog attempts to detect the currently active allocator and sets the Prolog flag malloc if the
detection succeeds. regardless of the malloc implementation, trim heap/0 is provided.

trim heap [det]

his predicate attempts to return heap memory to the operating system. There
is no portable way of doing so. If the system detects tcmalloc it calls
MallocExtension ReleaseFreeMemory(). If the system detects ptmalloc as
provided by the GNU runtime library it calls malloc trim(). In other cases this predicate
simply succeeds. See also trim stacks/0

TCMalloc control predicates

If SWI-Prolog core detects that tcmalloc is the current allocator and provides the following additional
predicates.

malloc property(?Property) [nondet]

True when Property is a property of the current allocator. The properties are defined by the allo-
cator. The properties of tcmalloc are defined in gperftools/malloc_extension.h:133

’generic.current allocated bytes’(-Int)
Number of bytes currently allocated by application.

’generic.heap size’(-Int)
Number of bytes in the heap (= current allocated bytes + fragmentation + freed memory
regions).

’tcmalloc.max total thread cache bytes’(-Int)
Upper limit on total number of bytes stored across all thread caches.

’tcmalloc.current total thread cache bytes’(-Int)
Number of bytes used across all thread caches.

’tcmalloc.central cache free bytes’(-Int)
Number of free bytes in the central cache that have been assigned to size classes. They
always count towards virtual memory usage, and unless the underlying memory is
swapped out by the OS, they also count towards physical memory usage.

133Documentation copied from the header.

SWI-Prolog 9.3 Reference Manual

http://www.malloc.de/en/
https://github.com/google/tcmalloc

304 CHAPTER 4. BUILT-IN PREDICATES

’tcmalloc.transfer cache free bytes’(-Int)
Number of free bytes that are waiting to be transferred between the central cache and
a thread cache. They always count towards virtual memory usage, and unless the
underlying memory is swapped out by the OS, they also count towards physical

’tcmalloc.thread cache free bytes’(-Int)
Number of free bytes in thread caches. They always count towards virtual memory usage,
and unless the underlying memory is swapped out by the OS, they also count towards
physical memory usage.

’tcmalloc.pageheap free bytes’(-Int)
Number of bytes in free, mapped pages in page heap. These bytes can be used to fulfill
allocation requests. They always count towards virtual memory usage, and unless the
underlying memory is swapped out by the OS, they also count towards physical memory
usage. This property is not writable.

’tcmalloc.pageheap unmapped bytes’(-Int)
Number of bytes in free, unmapped pages in page heap. These are bytes that have been
released back to the OS, possibly by one of the MallocExtension ”Release” calls. They
can be used to fulfill allocation requests, but typically incur a page fault. They always
count towards virtual memory usage, and depending on the OS, typically do not count
towards physical memory usage.

set malloc(+Property) [det]

Set properties described in malloc property/1. Currently the only writable property is
tcmalloc.max total thread cache bytes. Setting an unknown property raises a
domain error and setting a read-only property raises a permission error exception.

thread idle(:Goal, +Duration) [semidet]

Indicates to the system that the calling thread will idle for some time while calling Goal as
once/1. This call releases resources to the OS to minimise the footprint of the calling thread
while it waits. Despite the name this predicate is always provided, also if the system is not
configured with tcmalloc or is single threaded. Duration is one of

short
Calls trim stacks/0 and, if tcmalloc is used, calls
MallocExtension MarkThreadTemporarilyIdle() which empties the
thread’s malloc cache but preserves the cache itself.

long
Calls garbage collect/0 and trim stacks/0 and, if tcmalloc is used, calls
MallocExtension MarkThreadIdle() which releases all thread-specific
allocation data structures.

4.44 Windows DDE interface

The predicates in this section deal with MS-Windows ‘Dynamic Data Exchange’ or DDE protocol.134

A Windows DDE conversation is a form of interprocess communication based on sending reserved
window events between the communicating processes.

134This interface is contributed by Don Dwiggins.

SWI-Prolog 9.3 Reference Manual

4.44. WINDOWS DDE INTERFACE 305

Failing DDE operations raise an error of the structure below, where Operation is the name of the
(partial) operation that failed and Message is a translation of the operator error code. For some errors,
Context provides additional comments.

error(dde_error(Operation, Message), Context)

4.44.1 DDE client interface

The DDE client interface allows Prolog to talk to DDE server programs. We will demonstrate the use
of the DDE interface using the Windows PROGMAN (Program Manager) application:

1 ?- open_dde_conversation(progman, progman, C).

C = 0
2 ?- dde_request(0, groups, X)

--> Unifies X with description of groups

3 ?- dde_execute(0, ’[CreateGroup("DDE Demo")]’).
true.

4 ?- close_dde_conversation(0).
true.

For details on interacting with progman, use the SDK online manual section on the Shell DDE
interface. See also the Prolog library(progman), which may be used to write simple Windows
setup scripts in Prolog.

open dde conversation(+Service, +Topic, -Handle)
Open a conversation with a server supporting the given service name and topic (atoms). If
successful, Handle may be used to send transactions to the server. If no willing server is found
this predicate fails silently.

close dde conversation(+Handle)
Close the conversation associated with Handle. All opened conversations should be closed
when they’re no longer needed, although the system will close any that remain open on process
termination.

dde request(+Handle, +Item, -Value)
Request a value from the server. Item is an atom that identifies the requested data, and Value
will be a string (CF TEXT data in DDE parlance) representing that data, if the request is
successful.

dde execute(+Handle, +Command)
Request the DDE server to execute the given command string. Succeeds if the command could
be executed and fails with an error message otherwise.

SWI-Prolog 9.3 Reference Manual

306 CHAPTER 4. BUILT-IN PREDICATES

dde poke(+Handle, +Item, +Command)
Issue a POKE command to the server on the specified Item. command is passed as data of type
CF TEXT.

4.44.2 DDE server mode

The library(dde) defines primitives to realise simple DDE server applications in SWI-Prolog.
These features are provided as of version 2.0.6 and should be regarded as prototypes. The C part
of the DDE server can handle some more primitives, so if you need features not provided by this
interface, please study library(dde).

dde register service(+Template, +Goal)
Register a server to handle DDE request or DDE execute requests from other applications.
To register a service for a DDE request, Template is of the form:

+Service(+Topic, +Item, +Value)

Service is the name of the DDE service provided (like progman in the client example above).
Topic is either an atom, indicating Goal only handles requests on this topic, or a variable that
also appears in Goal. Item and Value are variables that also appear in Goal. Item represents the
request data as a Prolog atom.135

The example below registers the Prolog current prolog flag/2 predicate to be accessi-
ble from other applications. The request may be given from the same Prolog as well as from
another application.

?- dde_register_service(prolog(current_prolog_flag, F, V),
current_prolog_flag(F, V)).

?- open_dde_conversation(prolog, current_prolog_flag, Handle),
dde_request(Handle, home, Home),
close_dde_conversation(Handle).

Home = ’/usr/local/lib/pl-2.0.6/’

Handling DDE execute requests is very similar. In this case the template is of the form:

+Service(+Topic, +Item)

Passing a Value argument is not needed as execute requests either succeed or fail. If Goal
fails, a ‘not processed’ is passed back to the caller of the DDE request.

dde unregister service(+Service)
Stop responding to Service. If Prolog is halted, it will automatically call this on all open
services.

135Up to version 3.4.5 this was a list of character codes. As recent versions have atom garbage collection there is no need
for this anymore.

SWI-Prolog 9.3 Reference Manual

4.45. MISCELLANEOUS 307

dde current service(-Service, -Topic)
Find currently registered services and the topics served on them.

dde current connection(-Service, -Topic)
Find currently open conversations.

4.45 Miscellaneous

dwim match(+Atom1, +Atom2)
True if Atom1 matches Atom2 in the ‘Do What I Mean’ sense. Both Atom1 and Atom2 may
also be integers or floats. The two atoms match if:

• They are identical
• They differ by one character (spy ≡ spu)
• One character is inserted/deleted (debug ≡ deug)
• Two characters are transposed (trace ≡ tarce)
• ‘Sub-words’ are glued differently (existsfile ≡ existsFile ≡ exists file)
• Two adjacent sub-words are transposed (existsFile ≡ fileExists)

dwim match(+Atom1, +Atom2, -Difference)
Equivalent to dwim match/2, but unifies Difference with an atom identifying the differ-
ence between Atom1 and Atom2. The return values are (in the same order as above):
equal, mismatched char, inserted char, transposed char, separated and
transposed word.

wildcard match(+Pattern, +String)
wildcard match(+Pattern, +String, +Options)

True if String matches the wildcard pattern Pattern. Pattern is very similar to the Unix csh
pattern matcher. The patterns are given below:

? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.

⟨char1⟩-⟨char2⟩ indicates a range.
{...} Matches any of the patterns of the comma-separated list between the braces.

Example:

?- wildcard_match(’[a-z]*.{pro,pl}[%˜]’, ’a_hello.pl%’).
true.

The wildcard match/3 version processes the following option:

case sensitive(+Boolean)
When false (default true), match case insensitively.

SWI-Prolog 9.3 Reference Manual

308 CHAPTER 4. BUILT-IN PREDICATES

sleep(+Time)
Suspend execution Time seconds. Time is either a floating point number or an integer. Gran-
ularity is dependent on the system’s timer granularity. A negative time causes the timer to
return immediately. A zero time yields the CPU if this is supported on the target OS. On most
non-realtime operating systems we can only ensure execution is suspended for at least Time
seconds.

On Unix systems the sleep/1 predicate is realised —in order of preference— by
nanosleep(), usleep(), select() if the time is below 1 minute, or sleep(). On
Windows systems Sleep() is used.

SWI-Prolog 9.3 Reference Manual

SWI-Prolog extensions 5
This chapter describes extensions to the Prolog language introduced with SWI-Prolog version 7 in
2014. The changes bring more modern syntactical conventions to Prolog such as key-value maps,
called dicts, as primary citizens and a restricted form of functional notation. They also extend Prolog
basic types with strings, providing a natural notation to textual material as opposed to identifiers
(atoms) and lists.

These extensions make the syntax more intuitive to new users, simplify the integration of domain
specific languages (DSLs) and facilitate a more natural Prolog representation for popular exchange
languages such as XML and JSON.

While many programs run unmodified in SWI-Prolog version 7, some require modifications,
especially those that pass double quoted strings to general purpose list processing predicates.
See section 5.2.4 and section 5.2.5 for information and tools on porting. We provide a tool
(list strings/0) that we used to port a huge code base in half a day.

5.1 Lists are special

As of version 7, SWI-Prolog lists can be distinguished unambiguously at runtime from ./2 terms and
the atom ’[]’.

Traditional list SWI-Prolog 7 list

’.’ ’[|]’
/ \ / \

1 ’.’ 1 ’[|]’
/ \ / \
2 ’.’ 2 ’[|]’

/ \ / \
3 ’[]’ 3 []

terminated with terminated with
the atom ’[]’, a special constant
indistinguishable from text which is printed as []

The constant [] is special constant that is not an atom. It has the following properties:

atom([]). fails
atomic([]). succeeds
[] == ’[]’. fails
[] == []. succeeds

SWI-Prolog 9.3 Reference Manual

310 CHAPTER 5. SWI-PROLOG EXTENSIONS

The ‘cons’ operator for creating list cells has changed from the pretty atom ‘.’ to the ugly atom ‘[|]’,
so we can use the ‘.’ for other purposes, notably functional notation on dicts. See section 5.4.1.

This modification has minimal impact on typical Prolog code. It does affect foreign code (see sec-
tion 12) that uses the normal atom and compound term interface for manipulating lists. In most cases
this can be avoided by using the dedicated list functions. For convenience, the macros ATOM nil and
ATOM dot are provided by SWI-Prolog.h.

Another place that is affected is write canonical/1. Impact is minimized by using
the list syntax for lists. The predicates read term/2 and write term/2 support the option
dotlists(true), which causes read term/2 to read .(a,[]) as [a] and write term/2
to write [a] as .(a,[]).

5.1.1 Motivating ‘[|]’ and [] for lists

Representing lists the conventional way using ./2 as list cell and the atom ’[]’ as list terminator
both (independently) pose conflicts, while these conflicts are easily avoided.

• Using ./2 prevents using this commonly used symbol as an operator because a.B cannot be
distinguished from [a|B]. Freeing ./2 provides us with a unique term that we can use for
functional notation on dicts as described in section 5.4.1.

• Using the atom ’[]’ as list terminator prevents dynamic distinction between atoms and the
empty list. As a result, we cannot use type polymorphism that involve both atoms and lists. For
example, we cannot use multi lists (arbitrary deeply nested lists) of atoms. Multi lists of atoms
are in some situations a good representation of a flat list that is assembled from sub sequences.
The alternative, using difference lists or DCGs, is often less natural and sometimes requires
‘opening’ proper lists (i.e., copying the list while replacing the terminating atom ’[]’ with a
variable) that have to be added to the sequence. The ambiguity of atom and list is particularly
painful when mapping external data representations that do not suffer from this ambiguity.

At the same time, avoiding atom ’[]’ as a list terminator makes the various text representations
unambiguous, which allows us to write predicates that require a textual argument to accept any
of atoms, strings, lists of character codes or characters. Traditionally, the empty list, as an atom,
is afflicted with an ambiguous interpretation as it can stand for any of the strings "[]" and "".

5.2 The string type and its double quoted syntax

As of SWI-Prolog version 7, text enclosed in double quotes (e.g., "Hello world") is read as
objects of the type string. Strings are distinct from lists, which makes it possible to recognize them at
runtime and print them using the string syntax:

?- write("Hello world!").
Hello world!

?- writeq("Hello world!").
"Hello world!"

A string is a compact representation of a character sequence that lives on the global (term) stack.
Strings are represented by sequences of Unicode character codes including the character code 0

SWI-Prolog 9.3 Reference Manual

5.2. THE STRING TYPE AND ITS DOUBLE QUOTED SYNTAX 311

Mode double quotes back quotes
Version 7 default string codes
--traditional codes symbol char

Table 5.1: Mapping of double and back quoted text in the two modes.

(zero). The length of strings is limited by the available space on the global (term) stack (see
set prolog stack/2). Section 5.2.3 motivates the introduction of strings and mapping double
quoted text to this type.

Whereas in version 7, double-quoted text is mapped to strings, back-quoted text (as in ‘text‘)
is mapped to a list of character codes, i.e. integers that are Unicode code points. In a traditional
setting, back-quoted would be mapped to a list of characters (also known as chars), which are atoms
of length 1.

The settings for the flags that control how double- and back-quoted text is read is summarised
in table 5.1. Programs that aim for compatibility should realise that the ISO standard defines back-
quoted text, but does not define the back quotes Prolog flag and does not define the term that is
produced by back-quoted text.

5.2.1 Representing text: strings, atoms and code lists

With the introduction of strings as a Prolog data type, there are three main ways to represent text:
using strings, using atoms and using lists of character codes. As a fourth way, one may also use lists
of chars. This section explains what to choose for what purpose. Both strings and atoms are atomic
objects: you can only look inside them using dedicated predicates, while lists of character codes or
chars are compound data structures forming an extended structure that must follow a convention.

Lists of character codes is what you need if you want to parse text using Prolog gram-
mar rules (DCGs, see phrase/3). Most of the text reading predicates (e.g.,
read line to codes/2) return a list of character codes because most applications need
to parse these lines before the data can be processed. As said above, the back-quoted text nota-
tion (‘hello‘) can be used to easily specify a list of character codes. The 0’c notation can
be used to specify a single character code.

Atoms are identifiers. They are typically used in cases where identity comparison is the main oper-
ation and that are typically not composed nor taken apart. Examples are RDF resources (URIs
that identify something), system identifiers (e.g., ’Boeing 747’), but also individual words
in a natural language processing system. They are also used where other languages would use
enumerated types, such as the names of days in the week. Unlike enumerated types, Prolog
atoms do not form a fixed set and the same atom can represent different things in different
contexts.

Strings typically represents text that is processed as a unit most of the time, but which is not an
identifier for something. Format specifications for format/3 is a good example. Another
example is a descriptive text provided in an application. Strings may be composed and decom-
posed using e.g., string concat/3 and sub string/5 or converted for parsing using
string codes/2 or created from codes generated by a generative grammar rule, also using
string codes/2.

SWI-Prolog 9.3 Reference Manual

312 CHAPTER 5. SWI-PROLOG EXTENSIONS

5.2.2 Predicates that operate on strings

Strings are manipulated using a set of predicates that mirrors the set of predicates used for manipu-
lating atoms. In addition to the list below, string/1 performs the type check for this type and is
described in section 4.5.

SWI-Prolog’s string primitives are being synchronized with ECLiPSe. We expect the set of predi-
cates documented in this section to be stable, although it might be expanded. In general, SWI-Prolog’s
text manipulation predicates accept any form of text as input argument - they accept anytext input.
anytext comprises:

• atoms

• strings

• lists of character codes

• list of characters

• number types: integers, floating point numbers and non-integer rationals. Under the hood, these
must first be formatted into a text representation according to some inner convention before they
can be used.

The predicates produce the type indicated by the predicate name as output. This policy simplifies
migration and writing programs that can run unmodified or with minor modifications on systems that
do not support strings. Code should avoid relying on this feature as much as possible for clarity as
well as to facilitate a more strict mode and/or type checking in future releases.

atom string(?Atom, ?String)
Bi-directional conversion between an atom and a string. At least one of the two arguments must
be instantiated. An initially uninstantiated variable on the “string side” is always instantiated
to a string. An initially uninstantiated variable on the “atom side” is always instantiated to an
atom. If both arguments are instantiated, their list-of-character representations must match, but
the types are not enforced. The following all succeed:

atom_string("x",’x’).
atom_string(’x’,"x").
atom_string(3.1415,3.1415).
atom_string(’3r2’,3r2).
atom_string(3r2,’3r2’).
atom_string(6r4,3r2).

number string(?Number, ?String)
Bi-directional conversion between a number and a string. At least one of the two arguments
must be instantiated. Besides the type used to represent the text, this predicate differs in several
ways from its ISO cousin:1

1Note that SWI-Prolog’s syntax for numbers is not ISO compatible either.

SWI-Prolog 9.3 Reference Manual

http://eclipseclp.org/wiki/Prolog/Strings

5.2. THE STRING TYPE AND ITS DOUBLE QUOTED SYNTAX 313

• If String does not represent a number, the predicate fails rather than throwing a syntax
error exception.

• Leading white space and Prolog comments are not allowed.

• Numbers may start with + or -.

• It is not allowed to have white space between a leading + or - and the number.

• Floating point numbers in exponential notation do not require a dot before exponent, i.e.,
"1e10" is a valid number.

Unlike other predicates of this family, if instantiated, String cannot be an atom.

The corresponding ‘atom-handling’ predicate is atom number/2, with reversed argument
order.

term string(?Term, ?String)
Bi-directional conversion between a term and a string. If String is instantiated, it is parsed and
the result is unified with Term. Otherwise Term is ‘written’ using the option quoted(true)
and the result is converted to String. If String only contains white space and/or comments, an
syntax error(end of string) exception is raised.

term string(?Term, ?String, +Options)
As term string/2, passing Options to either read term/2 or write term/2. For
example:

?- term_string(Term, ’a(A)’, [variable_names(VNames)]).
Term = a(_9674),
VNames = [’A’=_9674].

string chars(?String, ?Chars)
Bi-directional conversion between a string and a list of characters. At least one of the two
arguments must be instantiated.

See also: atom chars/2.

string codes(?String, ?Codes)
Bi-directional conversion between a string and a list of character codes. At least one of the two
arguments must be instantiated.

string bytes(?String, ?Bytes, +Encoding)
True when the (Unicode) String is represented by Bytes in Encoding. If String is instantiated
it may represent text as an atom, string, list of character codes or list or characters. Bytes
is always a list of integers in the range 0 . . . 255. At least one of String or Bytes must be
instantiated. This predicate is notably intended as an intermediate step to perform byte
oriented operations on text. Examples are (base64) encoding, encryption, computing a (secure)
hash, etc. Encoding is typically utf8. All valid stream encodings except for wchar t are
supported. See section 2.18.1. Note that this translation is only provided for strings. Creating
an atom from bytes requires atom string/2.2

2Strings are an efficient intermediate and this conversion is needed only in some uncommon scenarios.

SWI-Prolog 9.3 Reference Manual

314 CHAPTER 5. SWI-PROLOG EXTENSIONS

text to string(+Text, -String) [det]

Converts Text to a string. Text is anytext excluding the number types. When running in
--traditional mode, ’[]’ is ambiguous and interpreted as an empty string.

string length(+String, -Length)
Unify Length with the number of characters in String. This predicate is functionally equivalent
to atom length/2 and also accepts anytext as its first argument. Numeric types are
formatted into strings before the length of their string representation is determined.3 See also
write length/3.

string code(?Index, +String, ?Code)
True when Code represents the character at the 1-based Index position in String. If Index is
unbound the string is scanned from index 1. Raises a domain error if Index is negative. Fails
silently if Index is zero or greater than the length of String. The mode string code(-,+,+) is
deterministic if the searched-for Code appears only once in String. See also sub string/5.

get string code(+Index, +String, -Code)
Semi-deterministic version of string code/3. In addition, this version provides strict range
checking, throwing a domain error if Index is less than 1 or greater than the length of String.
ECLiPSe provides this to support String[Index] notation.

string concat(?String1, ?String2, ?String3)
Similar to atom concat/3, but the unbound argument will be unified with a string object
rather than an atom. Also, if both String1 and String2 are unbound and String3 is bound to text,
it breaks String3, unifying the start with String1 and the end with String2 as append does with
lists. Note that this is not particularly fast on long strings, as for each redo the system has to
create two entirely new strings, while the list equivalent only creates a single new list-cell and
moves some pointers around.

split string(+String, +SepChars, +PadChars, -SubStrings) [det]

Break String into SubStrings. The SepChars argument provides the characters that act as
separators and thus the length of SubStrings is one more than the number of separators found if
SepChars and PadChars do not have common characters. If SepChars and PadChars are equal,
sequences of adjacent separators act as a single separator. Leading and trailing characters for
each substring that appear in PadChars are removed from the substring. The input arguments
can be either atoms, strings or char/code lists. Compatible with ECLiPSe. Below are some
examples:

A simple split wherever there is a ‘.’:

?- split_string("a.b.c.d", ".", "", L).
L = ["a", "b", "c", "d"].

Consider sequences of separators as a single one:

?- split_string("/home//jan///nice/path", "/", "/", L).
L = ["home", "jan", "nice", "path"].

3This behavior should be considered deprecated

SWI-Prolog 9.3 Reference Manual

5.2. THE STRING TYPE AND ITS DOUBLE QUOTED SYNTAX 315

Split and remove white space:

?- split_string("SWI-Prolog, 7.0", ",", " ", L).
L = ["SWI-Prolog", "7.0"].

Only remove leading and trailing white space (trim the string):

?- split_string(" SWI-Prolog ", "", "\s\t\n", L).
L = ["SWI-Prolog"].

In the typical use cases, SepChars either does not overlap PadChars or is equivalent to han-
dle multiple adjacent separators as a single (often white space). The behaviour with par-
tially overlapping sets of padding and separators should be considered undefined. See also
read string/5.

sub string(+String, ?Before, ?Length, ?After, ?SubString)
This predicate is functionally equivalent to sub atom/5, but operates on strings. Note that
this implies the string input arguments can be either strings or atoms. If SubString is un-
bound (output) it is unified with a string. The following example splits a string of the form
⟨name⟩=⟨value⟩ into the name part (an atom) and the value (a string).

name_value(String, Name, Value) :-
sub_string(String, Before, _, After, "="),
!,
sub_atom(String, 0, Before, _, Name),
sub_string(String, _, After, 0, Value).

The next example defines a predicate that inserts a value at a position. See sub atom/5 for
more examples.

string_insert(Str, Val, At, NewStr) :-
sub_string(Str, 0, At, A1, S1),
sub_string(Str, At, A1, _, S2),
atomics_to_string([S1,Val,S2], NewStr).

atomics to string(+List, -String)
List is a list of strings, atoms, or number types. Succeeds if String can be unified with the
concatenated elements of List. Equivalent to atomics to string(List, ”, String).

atomics to string(+List, +Separator, -String)
Creates a string just like atomics to string/2, but inserts Separator between each pair
of inputs. For example:

?- atomics_to_string([gnu, "gnat", 1], ’, ’, A).
A = "gnu, gnat, 1"

SWI-Prolog 9.3 Reference Manual

316 CHAPTER 5. SWI-PROLOG EXTENSIONS

string upper(+String, -UpperCase)
Convert String to upper case and unify the result with UpperCase.

string lower(+String, LowerCase)
Convert String to lower case and unify the result with LowerCase.

read string(+Stream, ?Length, -String)
Read at most Length characters from Stream and return them in the string String. If Length
is unbound, Stream is read to the end and Length is unified with the number of characters
read. The number of bytes read depends on the encoding of Stream (see section 2.18.1). This
predicate may be used to read a sequence of bytes when the stream is in octet encoding. See
open/4 and set stream/2 for controlling the encoding.

read string(+Stream, +SepChars, +PadChars, -Sep, -String)
Read a string from Stream, providing functionality similar to split string/4. The predi-
cate performs the following steps:

1. Skip all characters that match PadChars

2. Read up to a character that matches SepChars or end of file

3. Discard trailing characters that match PadChars from the collected input

4. Unify String with a string created from the input and Sep with the code of the separator
character read. If input was terminated by the end of the input, Sep is unified with -1.

The predicate read string/5 called repeatedly on an input until Sep is -1 (end of file) is
equivalent to reading the entire file into a string and calling split string/4, provided that
SepChars and PadChars are not partially overlapping.4 Below are some examples:

Read a line:

read_string(Input, "\n", "\r", Sep, String)

Read a line, stripping leading and trailing white space:

read_string(Input, "\n", "\r\t ", Sep, String)

Read up to ‘,’ or ‘)’, unifying Sep with 0’, i.e. Unicode 44, or 0’), i.e. Unicode 41:

read_string(Input, ",)", "\t ", Sep, String)

open string(+String, -Stream)
True when Stream is an input stream that accesses the content of String. String can be any text
representation, i.e., string, atom, list of codes or list of characters. The created Stream has the
reposition property (see stream property/2). Note that the internal encoding of the
data is either ISO Latin 1 or UTF-8.

4Behaviour that is fully compatible would require unlimited look-ahead.

SWI-Prolog 9.3 Reference Manual

5.2. THE STRING TYPE AND ITS DOUBLE QUOTED SYNTAX 317

5.2.3 Why has the representation of double quoted text changed?

Prolog defines two forms of quoted text. Traditionally, single quoted text is mapped to atoms while
double quoted text is mapped to a list of character codes (integers) or characters (atoms of length 1).
Representing text using atoms is often considered inadequate for several reasons:

• It hides the conceptual difference between text and program symbols. Where content of text
often matters because it is used in I/O, program symbols are merely identifiers that match with
the same symbol elsewhere. Program symbols can often be consistently replaced, for example
to obfuscate or compact a program.

• Atoms are globally unique identifiers. They are stored in a shared table. Volatile strings repre-
sented as atoms come at a significant price due to the required cooperation between threads for
creating atoms. Reclaiming temporary atoms using Atom garbage collection is a costly process
that requires significant synchronisation.

• Many Prolog systems (not SWI-Prolog) put severe restrictions on the length of atoms or the
maximum number of atoms.

Representing text as lists, be it of character codes or characters, also comes at a price:

• It is not possible to distinguish (at runtime) a list of integers or atoms from a string. Sometimes
this information can be derived from (implicit) typing. In other cases the list must be embedded
in a compound term to distinguish the two types. For example, s("hello world") could
be used to indicate that we are dealing with a string.

Lacking runtime information, debuggers and the toplevel can only use heuristics to decide
whether to print a list of integers as such or as a string (see portray text/1).

While experienced Prolog programmers have learned to cope with this, we still consider this an
unfortunate situation.

• Lists are expensive structures, taking 2 cells per character (3 for SWI-Prolog in its current form).
This stresses memory consumption on the stacks while pushing them on the stack and dealing
with them during garbage collection is unnecessarily expensive.

5.2.4 Adapting code for double quoted strings

We observe that in many programs, most strings are only handled as a single unit during their lifetime.
Examining real code tells us that double quoted strings typically appear in one of the following roles:

A DCG literal Although represented as a list of codes is the correct representation for handling in
DCGs, the DCG translator can recognise the literal and convert it to the proper representation.
Such code need not be modified.

A format string This is a typical example of text that is conceptually not a program identifier. For-
mat is designed to deal with alternative representations of the format string. Such code need not
be modified.

Getting a character code The construct [X] = "a" is a commonly used template for getting the
character code of the letter ’a’. ISO Prolog defines the syntax 0’a for this purpose. Code using
this must be modified. The modified code will run on any ISO compliant Prolog Processor.

SWI-Prolog 9.3 Reference Manual

318 CHAPTER 5. SWI-PROLOG EXTENSIONS

As argument to list predicates to operate on strings Here, we might see code simi-
lar to append("name:", Rest, Codes). Such code needs to be modi-
fied. In this particular example, the following is a good portable alternative:
phrase("name:", Codes, Rest)

Checks for a character to be in a set Such tests are often performed with code such as this:
memberchk(C, "˜!@#$"). This is a rather inefficient check in a traditional Prolog system
because it pushes a list of character codes cell-by-cell onto the Prolog stack and then traverses
this list cell-by-cell to see whether one of the cells unifies with C. If the test is successful,
the string will eventually be subject to garbage collection. The best code for this is to write a
predicate as below, which pushes nothing on the stack and performs an indexed lookup to see
whether the character code is in ‘my class’.

my_class(0’˜).
my_class(0’!).
...

An alternative to reach the same effect is to use term expansion to create the clauses:

term_expansion(my_class(_), Clauses) :-
findall(my_class(C),

string_code(_, "˜!@#$", C),
Clauses).

my_class(_).

Finally, the predicate string code/3 can be exploited directly as a replacement for the
memberchk/2 on a list of codes. Although the string is still pushed onto the stack, it is more
compact and only a single entity.

5.2.5 Predicates to support adapting code for double quoted strings

The predicates in this section can help adapting your program to the new convention for handling
double quoted strings. We have adapted a huge code base with which we were not familiar in about
half a day.

list strings
This predicate may be used to assess compatibility issues due to the representation of double
quoted text as string objects. See section 5.2 and section 5.2.3. To use it, load your program
into Prolog and run list strings/0. The predicate lists source locations of string objects
encountered in the program that are not considered safe. Such string need to be examined
manually, after which one of the actions below may be appropriate:

• Rewrite the code. For example, change [X] = "a" into X = 0’a.

• If a particular module relies heavily on representing strings as lists of character code,
consider adding the following directive to the module. Note that this flag only applies to
the module in which it appears.

SWI-Prolog 9.3 Reference Manual

5.3. SYNTAX CHANGES SINCE SWI-PROLOG 7 319

:- set_prolog_flag(double_quotes, codes).

• Use a back quoted string (e.g., ‘text‘). Note that this will not make your code run re-
gardless of the --traditional command line option and code exploiting this mapping
is also not portable to ISO compliant systems.

• If the strings appear in facts and usage is safe, add a clause to the multifile predicate
check:string predicate/1 to silence list strings/0 on all clauses of that
predicate.

• If the strings appear as an argument to a predicate that can handle string objects,
add a clause to the multifile predicate check:valid string goal/1 to silence
list strings/0.

check:string predicate(:PredicateIndicator)
Declare that PredicateIndicator has clauses that contain strings, but that this is safe. For ex-
ample, if there is a predicate help info/2, where the second argument contains a double
quoted string that is handled properly by the predicates of the applications’ help system, add
the following declaration to stop list strings/0 from complaining:

:- multifile check:string_predicate/1.

check:string_predicate(user:help_info/2).

check:valid string goal(:Goal)
Declare that calls to Goal are safe. The module qualification is the actual module in
which Goal is defined. For example, a call to format/3 is resolved by the predicate
system:format/3. and the code below specifies that the second argument may be a string
(system predicates that accept strings are defined in the library).

:- multifile check:valid_string_goal/1.

check:valid_string_goal(system:format(_,S,_)) :- string(S).

5.3 Syntax changes since SWI-Prolog 7

5.3.1 Operators and quoted atoms

As of SWI-Prolog version 7, quoted atoms lose their operator property. This means that expressions
such as A = ’dynamic’/1 are valid syntax, regardless of the operator definitions. From questions
on the mailinglist this is what people expect.5 To accommodate for real quoted operators, a quoted

5We believe that most users expect an operator declaration to define a new token, which would explain why the operator
name is often quoted in the declaration, but not while the operator is used. We are afraid that allowing for this easily creates
ambiguous syntax. Also, many development environments are based on tokenization. Having dynamic tokenization due to
operator declarations would make it hard to support Prolog in such editors.

SWI-Prolog 9.3 Reference Manual

320 CHAPTER 5. SWI-PROLOG EXTENSIONS

atom that needs quotes can still act as an operator.6 A good use-case for this is a unit library7, which
allows for expressions such as below.

?- Y isu 600kcal - 1h*200’W’.
Y = 1790400.0’J’.

5.3.2 Compound terms with zero arguments

As of SWI-Prolog version 7, the system supports compound terms that have no arguments. This
implies that e.g., name() is valid syntax. This extension aims at functions on dicts (see sec-
tion 5.4) as well as the implementation of domain specific languages (DSLs). To minimise the
consequences, the classic predicates functor/3 and =../2 have not been modified. The predi-
cates compound name arity/3 and compound name arguments/3 have been added. These
predicates operate only on compound terms and behave consistently for compounds with zero argu-
ments. Code that generalises a term using the sequence below should generally be changed to use
compound name arity/3.

...,
functor(Specific, Name, Arity),
functor(General, Name, Arity),
...,

Replacement of =../2 by compound name arguments/3 is typically needed to deal with code
that follow the skeleton below.

...,
Term0 =.. [Name|Args0],
maplist(convert, Args0, Args),
Term =.. [Name|Args],
...,

For predicates, goals and arithmetic functions (evaluable terms), ⟨name⟩ and ⟨name⟩() are equivalent.
Below are some examples that illustrate this behaviour.

go() :- format(’Hello world˜n’).

?- go().
Hello world

?- go.
Hello world

?- Pi is pi().

6Suggested by Joachim Schimpf.
7https://groups.google.com/d/msg/comp.lang.prolog/ozqdzI-gi_g/2G16GYLIS0IJ

SWI-Prolog 9.3 Reference Manual

https://groups.google.com/d/msg/comp.lang.prolog/ozqdzI-gi_g/2G16GYLIS0IJ

5.4. DICTS: STRUCTURES WITH NAMED ARGUMENTS 321

Pi = 3.141592653589793.

?- Pi is pi.
Pi = 3.141592653589793.

Note that the canonical representation of predicate heads and functions without arguments is an atom.
Thus, clause(go(), Body) returns the clauses for go/0, but clause(-Head, -Body, +Ref) unifies
Head with an atom if the clause specified by Ref is part of a predicate with zero arguments.

5.3.3 Block operators

Introducing curly bracket and array subscripting.8 The symbols [] and {} may be declared as an
operator, which has the following effect:

[]
This operator is typically declared as a low-priority yf postfix operator, which allows for
array[index] notation. This syntax produces a term []([index],array).

{ }
This operator is typically declared as a low-priority xf postfix operator, which
allows for head(arg) { body } notation. This syntax produces a term
{}({body},head(arg)).

Below is an example that illustrates the representation of a typical ‘curly bracket language’ in
Prolog.

?- op(100, xf, {}).
?- op(100, yf, []).
?- op(1100, yf, ;).

?- displayq(func(arg)
{ a[10] = 5;

update();
}).

{}({;(=([]([10],a),5),;(update()))},func(arg))

5.4 Dicts: structures with named arguments

SWI-Prolog version 7 introduces dicts as an abstract object with a concrete modern syntax and func-
tional notation for accessing members and as well as access functions defined by the user. The syntax
for a dict is illustrated below. Tag is either a variable or an atom. As with compound terms, there is
no space between the tag and the opening brace. The keys are either atoms or small integers (up to

8Introducing block operators was proposed by Jose Morales. It was discussed in the Prolog standardization mailing list,
but there were too many conflicts with existing extensions (ECLiPSe and B-Prolog) and doubt about their need to reach an
agreement. Increasing need to get to some solution resulted in what is documented in this section. These extensions are also
implemented in recent versions of YAP.

SWI-Prolog 9.3 Reference Manual

322 CHAPTER 5. SWI-PROLOG EXTENSIONS

max tagged integer). The values are arbitrary Prolog terms which are parsed using the same
rules as used for arguments in compound terms.

Tag{Key1:Value1, Key2:Value2, ...}

A dict can not hold duplicate keys. The dict is transformed into an opaque internal representation
that does not respect the order in which the key-value pairs appear in the input text. If a dict is
written, the keys are written according to the standard order of terms (see section 4.6.1). Here are
some examples, where the second example illustrates that the order is not maintained and the third
illustrates an anonymous dict.

?- A = point{x:1, y:2}.
A = point{x:1, y:2}.

?- A = point{y:2, x:1}.
A = point{x:1, y:2}.

?- A = _{first_name:"Mel", last_name:"Smith"}.
A = _G1476{first_name:"Mel", last_name:"Smith"}.

Dicts can be unified following the standard symmetric Prolog unification rules. As dicts use an internal
canonical form, the order in which the named keys are represented is not relevant. This behaviour is
illustrated by the following example.

?- point{x:1, y:2} = Tag{y:2, x:X}.
Tag = point,
X = 1.

Note In the current implementation, two dicts unify only if they have the same set of keys and the tags
and values associated with the keys unify. In future versions, the notion of unification between dicts
could be modified such that two dicts unify if their tags and the values associated with common keys
unify, turning both dicts into a new dict that has the union of the keys of the two original dicts.

5.4.1 Functions on dicts

The infix operator dot (op(100, yfx, .) is used to extract values and evaluate functions on dicts.
Functions are recognised if they appear in the argument of a goal in the source text, possibly nested
in a term. The keys act as field selector, which is illustrated in this example.

?- X = point{x:1,y:2}.x.
X = 1.

?- Pt = point{x:1,y:2}, write(Pt.y).
2
Pt = point{x:1,y:2}.

?- X = point{x:1,y:2}.C.

SWI-Prolog 9.3 Reference Manual

5.4. DICTS: STRUCTURES WITH NAMED ARGUMENTS 323

X = 1,
C = x ;
X = 2,
C = y.

The compiler translates a goal that contains ./2 terms in its arguments into a conjunction of calls to
./3 defined in the system module. Terms functor.2 that appears in the head are replaced with a
variable and calls to ./3 are inserted at the start of the body. Below are two examples, where the
first extracts the x key from a dict and the second extends a dict containing an address with the postal
code, given a find postal code/4 predicate.

dict_x(X, X.x).

add_postal_code(Dict, Dict.put(postal_code, Code)) :-
find_postal_code(Dict.city,

Dict.street,
Dict.house_number,
Code).

Note that expansion of ./2 terms implies that such terms cannot be created by writing them
explicitly in your source code. Such terms can still be created with functor/3, =../2,
compound name arity/3 and compound name arguments/3.9

.(+Dict, +Function, -Result)
This predicate is called to evaluate ./2 terms found in the arguments of a goal. This predicate
evaluates the field extraction described above, raising an exception if Function is an atom (key)
and Dict does not contain the requested key. If Function is a compound term, it checks for the
predefined functions on dicts described in section 5.4.1 or executes a user defined function as
described in section 5.4.1.

User defined functions on dicts

The tag of a dict associates the dict to a module. If the dot notation uses a compound term, this calls
the goal below.

⟨module⟩:⟨name⟩(Arg1, ..., +Dict, -Value)

Functions are normal Prolog predicates. The dict infrastructure provides a more convenient syntax
for representing the head of such predicates without worrying about the argument calling conventions.
The code below defines a function multiply(Times) on a point that creates a new point by multi-
plying both coordinates. and len10 to compute the length from the origin. The . and := operators
are used to abstract the location of the predicate arguments. It is allowed to define multiple a function
with multiple clauses, providing overloading and non-determinism.

9Traditional code is unlikely to use ./2 terms because they were practically reserved for usage in lists. We do not
provide a quoting mechanism as found in functional languages because it would only be needed to quote ./2 terms, such
terms are rare and term manipulation provides an escape route.

10as length would result in a predicate length/2, this name cannot be used. This might change in future versions.

SWI-Prolog 9.3 Reference Manual

324 CHAPTER 5. SWI-PROLOG EXTENSIONS

:- module(point, []).

M.multiply(F) := point{x:X, y:Y} :-
X is M.x*F,
Y is M.y*F.

M.len() := Len :-
Len is sqrt(M.x**2 + M.y**2).

After these definitions, we can evaluate the following functions:

?- X = point{x:1, y:2}.multiply(2).
X = point{x:2, y:4}.

?- X = point{x:1, y:2}.multiply(2).len().
X = 4.47213595499958.

Predefined functions on dicts

Dicts currently define the following reserved functions:

get(?KeyPath)
Return the value associates with KeyPath. KeyPath is either a single key or a term
Key1/Key2/.... Each key is either an atom, small integer or a variable. While Dict.Key
throws an existence error, this function fails silently if a key does not exist in the target dict.
See also :</2, which can be used to test for existence and unify multiple key values from a
dict. For example:

?- write(t{a:x}.get(a)).
x
?- write(t{a:x}.get(b)).
false.
?- write(t{a:t{b:x}}.get(a/b)).
x

put(+New)
Evaluates to a new dict where the key-values in New replace or extend the key-values in the
original dict. See put dict/3.

get(?KeyPath, +Default)
Same as get/1, but if no match is found the function evaluates to Default. If KeyPath contains
variables possible choice points are respected and the function only evaluates to Default if the
pattern has no matches.

SWI-Prolog 9.3 Reference Manual

5.4. DICTS: STRUCTURES WITH NAMED ARGUMENTS 325

put(+KeyPath, +Value)
Evaluates to a new dict where the KeyPath-Value replaces or extends the key-values in the
original dict. KeyPath is either a key or a term KeyPath/Key,11 replacing the value associated
with Key in a sub-dict of the dict on which the function operates. See put dict/4. Below
are some examples:

?- A = _{}.put(a, 1).
A = _G7359{a:1}.

?- A = _{a:1}.put(a, 2).
A = _G7377{a:2}.

?- A = _{a:1}.put(b/c, 2).
A = _G1395{a:1, b:_G1584{c:2}}.

?- A = _{a:_{b:1}}.put(a/b, 2).
A = _G1429{a:_G1425{b:2}}.

?- A = _{a:1}.put(a/b, 2).
A = _G1395{a:_G1578{b:2}}.

5.4.2 Predicates for managing dicts

This section documents the predicates that are defined on dicts. We use the naming and argument
conventions of the traditional assoc.

is dict(@Term)
True if Term is a dict. This is the same as is dict(Term,).

is dict(@Term, -Tag)
True if Term is a dict of Tag.

get dict(?Key, +Dict, -Value)
Unify the value associated with Key in dict with Value. If Key is unbound, all associations
in Dict are returned on backtracking. The order in which the associations are returned is
undefined. This predicate is normally accessed using the functional notation Dict.Key. See
section 5.4.1.

Fails silently if Key does not appear in Dict. This is different from the behavior of the functional
‘.‘-notation, which throws an existence error in that case.

get dict(+Key, +Dict, -Value, -NewDict, +NewValue) [semidet]

Create a new dict after updating the value for Key. Fails if Value does not unify with the current
value associated with Key. Dict is either a dict or a list the can be converted into a dict.

Has the behavior as if defined in the following way:

11Note that we do not use the ’.’ functor here, because the ./2 would evaluate.

SWI-Prolog 9.3 Reference Manual

326 CHAPTER 5. SWI-PROLOG EXTENSIONS

get_dict(Key, Dict, Value, NewDict, NewValue) :-
get_dict(Key, Dict, Value),
put_dict(Key, Dict, NewValue, NewDict).

dict create(-Dict, +Tag, +Data)
Create a dict in Tag from Data. Data is a list of attribute-value pairs using the syntax
Key:Value, Key=Value, Key-Value or Key(Value). An exception is raised if Data is
not a proper list, one of the elements is not of the shape above, a key is neither an atom nor a
small integer or there is a duplicate key.

dict pairs(?Dict, ?Tag, ?Pairs)
Bi-directional mapping between a dict and an ordered list of pairs (see section A.34).

dict same keys(?Dict1, ?Dict2)
True when Dict1 and Dict2 have the same set of keys. The tag is not considered. This predicate
is semidet if both arguments are instantiated to a dict. If one is instantiated to a dict and the
other is unbound, it generates a dict with the same keys and unbound tag and values. The
predicate is dict/2 may be used test tag equivalence or unify the tags. This predicate raises
an instantiation error if both argument are unbound or a type error if one of the
arguments is neither a dict nor a variable.

put dict(+New, +DictIn, -DictOut)
DictOut is a new dict created by replacing or adding key-value pairs from New to Dict. New is
either a dict or a valid input for dict create/3. This predicate is normally accessed using
the functional notation. Below are some examples:

?- A = point{x:1, y:2}.put(_{x:3}).
A = point{x:3, y:2}.

?- A = point{x:1, y:2}.put([x=3]).
A = point{x:3, y:2}.

?- A = point{x:1, y:2}.put([x=3,z=0]).
A = point{x:3, y:2, z:0}.

put dict(+Key, +DictIn, +Value, -DictOut)
DictOut is a new dict created by replacing or adding Key-Value to DictIn. For example:

?- A = point{x:1, y:2}.put(x, 3).
A = point{x:3, y:2}.

This predicate can also be accessed by using the functional notation, in which case Key can also
be a *path* of keys. For example:

SWI-Prolog 9.3 Reference Manual

5.4. DICTS: STRUCTURES WITH NAMED ARGUMENTS 327

?- Dict = _{}.put(a/b, c).
Dict = _6096{a:_6200{b:c}}.

del dict(+Key, +DictIn, ?Value, -DictOut)
True when Key-Value is in DictIn and DictOut contains all associations of DictIn except for
Key.

+Select :< +From [semidet]

True when Select is a ‘sub dict’ of From: the tags must unify and all keys in Select must appear
with unifying values in From. From may contain keys that are not in Select. This operation
is frequently used to match a dict and at the same time extract relevant values from it. For
example:

plot(Dict, On) :-
_{x:X, y:Y, z:Z} :< Dict, !,
plot_xyz(X, Y, Z, On).

plot(Dict, On) :-
_{x:X, y:Y} :< Dict, !,
plot_xy(X, Y, On).

The goal Select :< From is equivalent to select dict(Select, From,).

select dict(+Select, +From, -Rest) [semidet]

True when the tags of Select and From have been unified, all keys in Select appear in From and
the corresponding values have been unified. The key-value pairs of From that do not appear in
Select are used to form an anonymous dict, which is unified with Rest. For example:

?- select_dict(P{x:0, y:Y}, point{x:0, y:1, z:2}, R).
P = point,
Y = 1,
R = _{z:2}.

See also :</2 to ignore Rest and >:</2 for a symmetric partial unification of two dicts.

+Dict1 >:< +Dict2
This operator specifies a partial unification between Dict1 and Dict2. It is true when the tags
and the values associated with all common keys have been unified. The values associated to
keys that do not appear in the other dict are ignored. Partial unification is symmetric. For
example, given a list of dicts, find dicts that represent a point with X equal to zero:

member(Dict, List),
Dict >:< point{x:0, y:Y}.

See also :</2 and select dict/3.

SWI-Prolog 9.3 Reference Manual

328 CHAPTER 5. SWI-PROLOG EXTENSIONS

Destructive assignment in dicts

This section describes the destructive update operations defined on dicts. These actions can only
update keys and not add or remove keys. If the requested key does not exist the predicate raises
existence error(key, Key, Dict). Note the additional argument.

Destructive assignment is a non-logical operation and should be used with care because the system
may copy or share identical Prolog terms at any time. Some of this behaviour can be avoided by
adding an additional unbound value to the dict. This prevents unwanted sharing and ensures that
copy term/2 actually copies the dict. This pitfall is demonstrated in the example below:

?- A = a{a:1}, copy_term(A,B), b_set_dict(a, A, 2).
A = B, B = a{a:2}.

?- A = a{a:1,dummy:_}, copy_term(A,B), b_set_dict(a, A, 2).
A = a{a:2, dummy:_G3195},
B = a{a:1, dummy:_G3391}.

b set dict(+Key, !Dict, +Value) [det]

Destructively update the value associated with Key in Dict to Value. The update is trailed and
undone on backtracking. This predicate raises an existence error if Key does not appear in Dict.
The update semantics are equivalent to setarg/3 and b setval/2.

nb set dict(+Key, !Dict, +Value) [det]

Destructively update the value associated with Key in Dict to a copy of Value. The update is
not undone on backtracking. This predicate raises an existence error if Key does not appear in
Dict. The update semantics are equivalent to nb setarg/3 and nb setval/2.

nb link dict(+Key, !Dict, +Value) [det]

Destructively update the value associated with Key in Dict to Value. The update is not undone
on backtracking. This predicate raises an existence error if Key does not appear in Dict. The
update semantics are equivalent to nb linkarg/3 and nb linkval/2. Use with extreme
care and consult the documentation of nb linkval/2 before use.

5.4.3 When to use dicts?

Dicts are a new type in the Prolog world. They compete with several other types and libraries. In
the list below we have a closer look at these relations. We will see that dicts are first of all a good
replacement for compound terms with a high or not clearly fixed arity, library record and option
processing.

Compound terms Compound terms with positional arguments form the traditional way to package
data in Prolog. This representation is well understood, fast and compound terms are stored
efficiently. Compound terms are still the representation of choice, provided that the number of
arguments is low and fixed or compactness or performance are of utmost importance.

A good example of a compound term is the representation of RDF triples using the term
rdf(Subject, Predicate, Object) because RDF triples are defined to have precisely these three
arguments and they are always referred to in this order. An application processing information

SWI-Prolog 9.3 Reference Manual

5.4. DICTS: STRUCTURES WITH NAMED ARGUMENTS 329

about persons should probably use dicts because the information that is related to a person is not
so fixed. Typically we see first and last name. But there may also be title, middle name, gender,
date of birth, etc. The number of arguments becomes unmanageable when using a compound
term, while adding or removing an argument leads to many changes in the program.

Library record Using library record relieves the maintenance issues associated with using com-
pound terms significantly. The library generates access and modification predicates for each
field in a compound term from a declaration. The library provides sound access to compound
terms with many arguments. One of its problems is the verbose syntax needed to access or
modify fields which results from long names for the generated predicates and the restriction
that each field needs to be extracted with a separate goal. Consider the example below, where
the first uses library record and the second uses dicts.

...,
person_first_name(P, FirstName),
person_last_name(P, LastName),
format(’Dear ˜w ˜w,˜n˜n’, [FirstName, LastName]).

...,
format(’Dear ˜w ˜w,˜n˜n’, [Dict.first_name, Dict.last_name]).

Records have a fixed number of arguments and (non-)existence of an argument must be rep-
resented using a value that is outside the normal domain. This lead to unnatural code. For
example, suppose our person also has a title. If we know the first name we use this and else we
use the title. The code samples below illustrate this.

salutation(P) :-
person_first_name(P, FirstName), nonvar(FirstName), !,
person_last_name(P, LastName),
format(’Dear ˜w ˜w,˜n˜n’, [FirstName, LastName]).

salutation(P) :-
person_title(P, Title), nonvar(Title), !,
person_last_name(P, LastName),
format(’Dear ˜w ˜w,˜n˜n’, [Title, LastName]).

salutation(P) :-
_{first_name:FirstName, last_name:LastName} :< P, !,
format(’Dear ˜w ˜w,˜n˜n’, [FirstName, LastName]).

salutation(P) :-
_{title:Title, last_name:LastName} :< P, !,
format(’Dear ˜w ˜w,˜n˜n’, [Title, LastName]).

Library assoc This library implements a balanced binary tree. Dicts can replace the use of this
library if the association is fairly static (i.e., there are few update operations), all keys are atoms
or (small) integers and the code does not rely on ordered operations.

SWI-Prolog 9.3 Reference Manual

330 CHAPTER 5. SWI-PROLOG EXTENSIONS

Library option Option lists are introduced by ISO Prolog, for example for read term/3,
open/4, etc. The option library provides operations to extract options, merge options lists,
etc. Dicts are well suited to replace option lists because they are cheaper, can be processed
faster and have a more natural syntax.

Library pairs This library is commonly used to process large name-value associations. In many
cases this concerns short-lived data structures that result from findall/3, maplist/3
and similar list processing predicates. Dicts may play a role if frequent random key lookups
are needed on the resulting association. For example, the skeleton ‘create a pairs list’, ‘use
list to assoc/2 to create an assoc’, followed by frequent usage of get assoc/3 to ex-
tract key values can be replaced using dict pairs/3 and the dict access functions. Using
dicts in this scenario is more efficient and provides a more pleasant access syntax.

5.4.4 A motivation for dicts as primary citizens

Dicts, or key-value associations, are a common data structure. A good old example are property lists
as found in Lisp, while a good recent example is formed by JavaScript objects. Traditional Prolog
does not offer native property lists. As a result, people are using a wide range of data structures for
key-value associations:

• Using compound terms and positional arguments, e.g., point(1,2).

• Using compound terms with library record, which generates access predicates for a term
using positional arguments from a description.

• Using lists of terms Name=Value, Name-Value, Name:Value or Name(Value).

• Using library assoc which represents the associations as a balanced binary tree.

This situation is unfortunate. Each of these have their advantages and disadvantages. E.g., com-
pound terms are compact and fast, but inflexible and using positional arguments quickly breaks down.
Library record fixes this, but the syntax is considered hard to use. Lists are flexible, but expensive
and the alternative key-value representations that are used complicate the matter even more. Library
assoc allows for efficient manipulation of changing associations, but the syntactical representation
of an assoc is complex, which makes them unsuitable for e.g., options lists as seen in predicates such
as open/4.

5.4.5 Implementation notes about dicts

Although dicts are designed as an abstract data type and we deliberately reserve the possibility to
change the representation and even use multiple representations, this section describes the current
implementation.

Dicts are currently represented as a compound term using the functor ‘dict‘. The first argument
is the tag. The remaining arguments create an array of sorted key-value pairs. This representation is
compact and guarantees good locality. Lookup is order logN , while adding values, deleting values
and merging with other dicts has order N . The main disadvantage is that changing values in large
dicts is costly, both in terms of memory and time.

Future versions may share keys in a separate structure or use a binary trees to allow for cheaper
updates. One of the issues is that the representation must either be kept canonical or unification must
be extended to compensate for alternate representations.

SWI-Prolog 9.3 Reference Manual

5.5. INTEGRATION OF STRINGS AND DICTS IN THE LIBRARIES 331

5.5 Integration of strings and dicts in the libraries

While lacking proper string support and dicts when designed, many predicates and libraries use inter-
faces that must be classified as suboptimal. Changing these interfaces is likely to break much more
code than the changes described in this chapter. This section discusses some of these issues. Roughly,
there are two cases. There where key-value associations or text is required as input, we can facilitate
the new features by overloading the accepted types. Interfaces that produce text or key-value associ-
ations as their output however must make a choice. We plan to resolve that using either options that
specify the desired output or provide an alternative library.

5.5.1 Dicts and option processing

System predicates and predicates based on library options process dicts as an alternative to tradi-
tional option lists.

5.5.2 Dicts in core data structures

Some predicates now produce structured data using compound terms and access predicates. We con-
sider migrating these to dicts. Below is a tentative list of candidates. Portable code should use the
provided access predicates and not rely on the term representation.

• Stream position terms

• Date and time records

5.5.3 Dicts, strings and XML

The XML representation could benefit significantly from the new features. In due time we plan to
provide an set of alternative predicates and options to existing predicates that can be used to exploit
the new types. We propose the following changes to the data representation:

• The attribute list of the element(Name, Attributes, Content) will become a dict.

• Attribute values will remain atoms

• CDATA in element content will be represented as strings

5.5.4 Dicts, strings and JSON

The JSON representation could benefit significantly from the new features. In due time we plan to
provide an set of alternative predicates and options to existing predicates that can be used to exploit
the new types. We propose the following changes to the data representation:

• Instead of using json(KeyValueList), the new interface will translate JSON objects to a dict.
The type of this dict will be json.

• String values in JSON will be mapped to strings.

• The values true, false and null will be represented as atoms.

SWI-Prolog 9.3 Reference Manual

332 CHAPTER 5. SWI-PROLOG EXTENSIONS

5.5.5 Dicts, strings and HTTP

The HTTP library and related data structures would profit from exploiting dicts. Below is a list of
data structures that might be affected by future changes. Code can be made more robust by using the
option library functions for extracting values from these structures.

• The HTTP request structure

• The HTTP parameter interface

• URI components

• Attributes to HTML elements

5.6 Single Sided Unification rules

For the execution of a normal Prolog clause, the goal term is unified with the head of the clause. This
allows us to write facts such as below and use this relation in all four possible modes. This is the basis
of SLD resolution that turns Prolog into a logic programming language.

parent(’Bob’, ’Susan’).

In practice though, Prolog is both a logic programming language and a language for expressing com-
putations in a near procedural style. The first is used to solve (notably) combinatorial problems while
the latter is used for I/O, data transformation and the many non-logical operations that are involved in
many applications.

Many Prolog programmers experience writing procedural style Prolog as fighting non-
determinism and dealing with hard to debug silent failures because no clause matches some goal.
Below are two typical queries on library predicates that have a procedural nature, i.e., are single
moded.

?- sum_list(a, X).
false.

?- sum_list([1|T], X).
T = [],
X = 1 ;
ERROR: Arguments are not sufficiently instantiated

The definition of sum list/2 is it appears in library(lists) is below. This implementation can be
considered elegant. Note that sum list/2 has only one meaningful mode: (+,-). A general (logical)
implementation would allow for a partial list or a list holding one or more variables, With a proper list
that holds a single variable we can still make a sound logical implementation. In all other cases the
number of solutions is infinite and even uncountable for a partial list, making the predicate useless as
a generator of solutions.

SWI-Prolog 9.3 Reference Manual

5.6. SINGLE SIDED UNIFICATION RULES 333

sum_list(Xs, Sum) :-
sum_list(Xs, 0, Sum).

sum_list([], Sum, Sum).
sum_list([X|Xs], Sum0, Sum) :-

Sum1 is Sum0 + X,
sum_list(Xs, Sum1, Sum).

If we want to avoid the above dubious behaviour we have two options. First, we can verify that the first
argument is a list before entering the recursion, changing the first clause as below. The disadvantage
is that we process the list twice.

sum_list(Xs, Sum) :-
must_be(list, Xs),
sum_list(Xs, 0, Sum).

Alternatively, we can rewrite the second clause to verify the list on the fly. That leads to the code
below. Most likely the overhead of this alternative compared to the above is even worse in many
Prolog implementations. Most people would also consider this code rather inelegant.

sum_list(Var, _, _) :-
var(Var),
instantiation_error(Var).

sum_list([], Sum, Sum) :-
!.

sum_list([X|Xs], Sum0, Sum) :-
!,
Sum1 is Sum0 + X,
sum_list(Xs, Sum1, Sum).

sum_list(NoList, _, _) :-
type_error(list, NoList).

Another example is a relation max/3, expressing the maximum of two numbers. A classical textbook
definition could be as below. This code has two drawbacks. First it leaves an open choice points in
most Prolog implementations if X is the largest and second it compares the two numbers twice. Some
Prolog systems detect this particular case, but in general it needs two know that one test is the strict
negation of the other.

max(X,Y,X) :- X >= Y.
max(X,Y,Y) :- Y > X.

As a result people use a cut and might come up with the wrong solution below. Consider the query
?- max(5,2,2). to see why this code is broken.

SWI-Prolog 9.3 Reference Manual

334 CHAPTER 5. SWI-PROLOG EXTENSIONS

max(X,Y,X) :- X >= Y, !.
max(_,Y,Y).

A correct solution is below, delaying binding the output until after the cut.

max(X,Y,M) :- X >= Y, !, M = X.
max(_,Y,Y).

Some people may prefer using if-then-else as below. This is arguable the cleanest efficient solution in
standard Prolog.

max(X,Y,M) :- (X >= Y -> M = X ; M = Y).

As we have seen from these examples, writing procedural code in Prolog requires us to follow the
two basic principles below. Both principles have been properly described in The Craft of Prolog
[O’Keefe, 1990].

• Structure every clause as Head :- Guard, !, Body. Every clause has the cut as early as
possible. Guard can be empty. The last clause often does not need a cut.

• Avoid that the head unification binds values in the goal term. We see this may lead to undesir-
able results such as sum list(L,S) binding L to ‘[]‘ and S to ‘0‘ as well as loss of steadfastness,
causing max(5,2,2) to succeed. The first requires additional var/1 or nonvar/1 tests. The
second requires delaying unification until after the cut.

Picat provides the =>/2 alternative for the Prolog neck (:-/2) to force the above practices. A
Picat rule has the following shape:

Head, Guard => Body.

This is semantically equivalent to the Prolog clause below. The subsumes term/2 guarantees the
clause head is more generic than the goal term and thus unifying the two does not affect any of the
arguments of the goal. This implies all output unification must be done after the head unification.

p(V1,V2,...,Vn) :-
Pattern = p(A1,A2,...,An),
Args = p(V1,V2,...,Vn),
subsumes_term(Pattern, Args),
Pattern = Args,
Guard,
!,
Body.

SWI-Prolog as of version 8.3.19 support =>/2 as an alternative to normal Prolog clauses. The con-
struct comes with the following properties.

SWI-Prolog 9.3 Reference Manual

http://picat-lang.org/

5.6. SINGLE SIDED UNIFICATION RULES 335

• A predicate either uses :-/2 for all its clauses or =>/2. Mixing is not allowed and raises a
permission error for a clause that does not use the same neck as the first clause.

• Unlike Picat, it is an error if no clause matches.

Given =>/2 rules, we can rewrite sum list/2 as below. The first clause can be written using
:-/2 or =>/2. As the head is the most general head and there is only one clause these are fully
equivalent. The sum list/3 helper needs a small modification: we need to delay the unification
against Sum to the body. The last clause is equivalent.

sum_list(Xs, Sum) =>
sum_list(Xs, 0, Sum).

sum_list([], Sum0, Sum) =>
Sum = Sum0.

sum_list([X|Xs], Sum0, Sum) =>
Sum1 is Sum0 + X,
sum_list(Xs, Sum1, Sum).

Given this definition, sum list(L,S) no longer matches a rule and neither does e.g.,
sum list(a,S). Both raise an error. Currently the error is defined as below.

existence_error(matching_rule, Head)

Should silent failure be desired if no rule matches, this is easily encoding by adding a rule at the end
using the most general head and fail/0 as body:

sum_list(_,_,_) => fail.

5.6.1 Single Sided Unification Guards

Using the construction Head, Guard => Body, the Guard is executed after the single sided head
unification. If the Guard succeeds the clause executes a cut (!/0) and proceeds normally. There are
no restrictions on the guard code. A well behaved guard is a test. Notably:

• Though not enforced12, guard code shall not instantiate variables in the Head because this
breaks the promise of SSU and may make the node non-steadfast.

• It is bad style (but again, not enforced) to have any type of side effects (output, database change,
etc.)

• Typically, guard calls are semidet. Non-deterministic calls are allowed. If the guard succeeds
with choicepoints these are pruned before the body is entered.

12We do not know about an efficient way to enforce unification against head arguments

SWI-Prolog 9.3 Reference Manual

336 CHAPTER 5. SWI-PROLOG EXTENSIONS

As a special exception, explicit unification against a variable in the head is moved into the head.
See section 2.17.3. In the example below, the X = f(I) is moved into the head and (thus) is executed
using single sided unification.

p(X), X = f(I), integer(I) => q(X).

Warning Moving the guard unification into the head changes the semantics of the unifi-
cation. This may be defended by the rules above that claim one should not unify against
the head arguments in the guard. Future versions may use a dedicated operator to indicate
that the unification may be moved into the head.

5.6.2 Consequences of => single sided unification rules

The =>/2 construct is handled by the low-level compiler if no guard is present. If a guard is present
it is currently compiled into the construct below. The Picat ?=>/2 neck operator is like =>/2, but
does not commit to this rule. We are not yet sure whether or not SWI-Prolog will remain supporting
?=>/2.13

Head ?=> Guard, !, Body.

The main consequence is that clause/2 cannot distinguish between a normal clause and a =>/2
clause. In the current implementation it operates on both without distinguishing the two. This implies
e.g., cross referencing still works. Meta interpretation however does not work. In future versions
clause/2 may fail on these rules. As an alternative we provide rule/2,3.

rule(:Head, -Rule)
rule(:Head, -Rule, -Ref)

True when Rule is a rule/clause that implements Head. Rule is a complete rule term. For a
normal clause this is a term Head :- Body and for a single sided unification rule it is a term
Head => Body.

5.6.3 Single sided unification for Definite Clause Grammars

Single sided unification is attractive for generative DCG rules, i.e., DCG rules that are used to seri-
alize some term. In that context they avoid unwanted matching on variables and provide better error
messages in case not all possible terms are described by the grammar. Single sided unification has no
practical use for parsing because the arguments are typically output arguments.

If the head of an SSU DCG rules is a term Head, Extra, Extra is interpreted as a push back
list if it is a list and as an SSU guard otherwise. The guard is not subject to DCG expansion, i.e., it is
interpreted as if enclosed by {}.

13?=>/2 is currently implemented but not defined as an operator.

SWI-Prolog 9.3 Reference Manual

5.7. REMAINING ISSUES 337

5.6.4 SSU: Future considerations

The current implementation is a rather simple. Single sided unification is achieved doing normal head
unification and backtrack if this unification bound variables in the goal term. Future versions are likely
to backtrack as soon as we find a variable in the goal that needs to be unified.

It is likely that in due time significant parts of the libraries will be migrated to use SSU rules,
turning many silent failures on type errors into errors.

5.7 Remaining issues

The changes and extensions described in this chapter resolve many limitations of the Prolog language
we have encountered. Still, there are remaining issues for which we seek solutions in the future.

Text representation Although strings resolve this issue for many applications, we are still faced
with the representation of text as lists of characters which we need for parsing using DCGs. The
ISO standard provides two representations, a list of character codes (‘codes’ for short) and a list
of one-character atoms (‘chars’ for short). There are two sets of predicates, named * code(s) and
* char(s) that provide the same functionality (e.g., atom codes/2 and atom chars/2) using
their own representation of characters. Codes can be used in arithmetic expressions, while chars are
more readable. Neither can unambiguously be interpreted as a representation for text because codes
can be interpreted as a list of integers and chars as a list of atoms.

We have not found a convincing way out. One of the options could be the introduction of a ‘char’
type. This type can be allowed in arithmetic and with the 0’⟨char⟩ syntax we have a concrete syntax
for it.

Arrays Although lists are generally a much cleaner alternative for Prolog, real arrays with direct
access to elements can be useful for particular tasks. The problem of integrating arrays is twofold.
First of all, there is no good one-size-fits-all data representation for arrays. Many tasks that involve
arrays require mutable arrays, while Prolog data is immutable by design. Second, standard Prolog
has no good syntax support for arrays. SWI-Prolog version 7 has ‘block operators’ (see section 5.3.3)
which can resolve the syntactic issues. Block operators have been adopted by YAP.

Lambda expressions Although many alternatives14 have been proposed, we still feel uneasy with
them.

Loops Many people have explored routes to avoid the need for recursion in Prolog for simple iter-
ations over data. ECLiPSe have proposed logical loops [Schimpf, 2002], while B-Prolog introduced
declarative loops and list comprehension [Zhou, 2010]. The above mentioned lambda expressions,
combined with maplist/2 can achieve similar results.

14See e.g., http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/ISO-Hiord

SWI-Prolog 9.3 Reference Manual

http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/ISO-Hiord

Modules 6
A Prolog module is a collection of predicates which defines a public interface by means of a set of
provided predicates and operators. Prolog modules are defined by an ISO standard. Unfortunately,
the standard is considered a failure and, as far as we are aware, not implemented by any concrete
Prolog implementation. The SWI-Prolog module system syntax is derived from the Quintus Prolog
module system. The Quintus module system has been the starting point for the module systems of
a number of mainstream Prolog systems, such as SICStus, Ciao and YAP. The underlying primitives
of the SWI-Prolog module system differ from the mentioned systems. These primitives allow for
multiple modules in a file, hierarchical modules, emulation of other modules interfaces, etc.

This chapter motivates and describes the SWI-Prolog module system. Novices can start using
the module system after reading section 6.2 and section 6.3. The primitives defined in these sections
suffice for basic usage until one needs to export predicates that call or manage other predicates dy-
namically (e.g., use call/1, assert/1, etc.). Such predicates are called meta predicates and are
discussed in section 6.5. Section 6.6 to section 6.9 describe more advanced issues. Starting with
section 6.10, we discuss more low-level aspects of the SWI-Prolog module system that are used to
implement the visible module system, and can be used to build other code reuse mechanisms.

6.1 Why Use Modules?

In classic Prolog systems, all predicates are organised in a single namespace and any predicate can
call any predicate. Because each predicate in a file can be called from anywhere in the program, it
becomes very hard to find the dependencies and enhance the implementation of a predicate without
risking to break the overall application. This is true for any language, but even worse for Prolog due
to its frequent need for ‘helper predicates’.

A Prolog module encapsulates a set of predicates and defines an interface. Modules can import
other modules, which makes the dependencies explicit. Given explicit dependencies and a well-
defined interface, it becomes much easier to change the internal organisation of a module without
breaking the overall application.

Explicit dependencies can also be used by the development environment. The SWI-Prolog library
prolog xref can be used to analyse completeness and consistency of modules. This library is used
by the built-in editor PceEmacs for syntax highlighting, jump-to-definition, etc.

6.2 Defining a Module

Modules are normally created by loading a module file. A module file is a file holding a module/2
directive as its first term. The module/2 directive declares the name and the public (i.e., externally
visible) predicates of the module. The rest of the file is loaded into the module. Below is an example

SWI-Prolog 9.3 Reference Manual

6.3. IMPORTING PREDICATES INTO A MODULE 339

of a module file, defining reverse/2 and hiding the helper predicate rev/3. A module can use all
built-in predicates and, by default, cannot redefine system predicates.

:- module(reverse, [reverse/2]).

reverse(List1, List2) :-
rev(List1, [], List2).

rev([], List, List).
rev([Head|List1], List2, List3) :-

rev(List1, [Head|List2], List3).

The module is named reverse. Typically, the name of a module is the same as the name of the file
by which it is defined without the filename extension, but this naming is not enforced. Modules are
organised in a single and flat namespace and therefore module names must be chosen with some care
to avoid conflicts. As we will see, typical applications of the module system rarely use the name of a
module explicitly in the source text.

:- module(+Module, +PublicList)
This directive can only be used as the first term of a source file. It declares the file to be
a module file, defining a module named Module. Note that a module name is an atom.
The module exports the predicates of PublicList. PublicList is a list of predicate indicators
(name/arity or name//arity pairs) or operator declarations using the format op(Precedence,
Type, Name). Operators defined in the export list are available inside the module as well as to
modules importing this module. See also section 4.25.

Compatible to Ciao Prolog, if Module is unbound, it is unified with the basename without
extension of the file being loaded.

:- module(+Module, +PublicList, +Dialect)
Same as module/2. The additional Dialect argument provides a list of language options.
Each atom in the list Dialect is mapped to a use module/1 goal as given below. See also
section C. The third argument is supported for compatibility with the Prolog Commons project.

:- use_module(library(dialect/LangOption)).

6.3 Importing Predicates into a Module

Predicates can be added to a module by importing them from another module. Importing adds pred-
icates to the namespace of a module. An imported predicate can be called exactly the same as a
locally defined predicate, although its implementation remains part of the module in which it has been
defined.

Importing the predicates from another module is achieved using the directives use module/1
or use module/2. Note that both directives take filename(s) as arguments. That is, modules are
imported based on their filename rather than their module name.

SWI-Prolog 9.3 Reference Manual

http://prolog-commons.org/

340 CHAPTER 6. MODULES

use module(+Files)
Load the file(s) specified with Files just like ensure loaded/1. The files must all be module
files. All exported predicates from the loaded files are imported into the module from which
this predicate is called. This predicate is equivalent to ensure loaded/1, except that it
raises an error if Files are not module files.

The imported predicates act as weak symbols in the module into which they are imported. This
implies that a local definition of a predicate overrides (clobbers) the imported definition. If the
flag warn override implicit import is true (default), a warning is printed. Below
is an example of a module that uses library(lists), but redefines flatten/2, giving it a totally
different meaning:

:- module(shapes, []).
:- use_module(library(lists)).

flatten(cube, square).
flatten(ball, circle).

Loading the above file prints the following message:

Warning: /home/janw/Bugs/Import/t.pl:5:
Local definition of shapes:flatten/2
overrides weak import from lists

This warning can be avoided by (1) using use module/2 to only import the
predicates from the lists library that are actually used in the ‘shapes’ mod-
ule, (2) using the except([flatten/2]) option of use module/2, (3)
use :- abolish(flatten/2). before the local definition or (4) setting
warn override implicit import to false. Globally disabling this warning is
only recommended if overriding imported predicates is common as a result of design choices
or the program is ported from a system that silently overrides imported predicates.

Note that it is always an error to import two modules with use module/1 that export the
same predicate. Such conflicts must be resolved with use module/2 as described above.

use module(+File, +ImportList)
Load File, which must be a module file, and import the predicates as specified by ImportList.
ImportList is a list of predicate indicators specifying the predicates that will be imported from
the loaded module. ImportList also allows for renaming or import-everything-except. See
also the import option of load files/2. The first example below loads member/2
from the lists library and append/2 under the name list concat, which is how this
predicate is named in YAP. The second example loads all exports from library option except
for meta options/3. These renaming facilities are generally used to deal with portability
issues with as few changes as possible to the actual code. See also section C and section 6.8.

:- use_module(library(lists), [member/2,
append/2 as list_concat

SWI-Prolog 9.3 Reference Manual

6.4. CONTROLLED AUTOLOADING FOR MODULES 341

]).
:- use_module(library(option), except([meta_options/3])).

In most cases a module is imported because some of its predicates are being used. However,
sometimes a module is imported for other reasons, e.g., for its declarations. In such cases it is best
practice to use use module/2 with empty ImportList. This distinguishes an imported module that
is used, although not for its predicates, from a module that is needlessly imported.

The module/2, use module/1 and use module/2 directives are sufficient to partition a
simple Prolog program into modules. The SWI-Prolog graphical cross-referencing tool gxref/0
can be used to analyse the dependencies between non-module files and propose module declarations
for each file.

6.4 Controlled autoloading for modules

SWI-Prolog by default support autoloading from its standard library. Autoloading implies that when
a predicate is found missing during execution the library is searched and the predicate is imported
lazily using use module/2. See section 2.14 for details.

The advantage of autoloading is that it requires less typing while it reduces the startup time and
reduces the memory footprint of an application. It also allows moving old predicates or emulation
thereof the module backcomp without affecting existing code. This procedure keeps the libraries
and system clean. We make sure that there are not two modules that provide the same predicate as
autoload predicate.

Nevertheless, a disadvantage of this autoloader is that the dependencies of a module on the li-
braries are not explicit and tooling such as PceEmacs or gxref/0 are required to find these depen-
dencies. Some users want explicit control over which library predicates are accessed from where,
preferably by using use module/2 which explicitly states which predicates are imported from
which library.1

Large applications typically contain source files that are not immediately needed and often are
not needed at all in many runs of the program. This can be solved by creating an application-specific
autoload library, but with multiple parties providing autoloadable predicates the maintenance becomes
fragile. For these two reasons we added autoload/1 and autoload/2 that behave similar to
use module/[1,2], but do not perform the actual loading. The generic autoloader now proceeds
as follows if a missing predicate is encountered:

1. Check autoload/2 declarations. If one specifies the predicate, import it using
use module/2.

2. Check autoload/1 declarations. If the specified file is loaded, check its export list. Other-
wise read the module declaration of the target file to find the exports. If the target predicate is
found, import it using use module/2.

3. Perform autoloading from the library if the autoload is true.

autoload(:File)
autoload(:File, +Imports)

1Note that built-in predicates still add predicates for general use to all name spaces.

SWI-Prolog 9.3 Reference Manual

342 CHAPTER 6. MODULES

Declare that possibly missing predicates in the module in which this declaration occurs are to
be resolved by using use module/2 on File to (possibly) load the file and make the target
predicate available. The autoload/2 variant is tried before autoload/1. It is not allowed
for two autoload/2 declarations to provide the same predicate and it is not allowed to
define a predicate provided in this way locally. See also require/1, which allows specifying
predicates for autoloading from their default location.

Predicates made available using autoload/2 behave as defined predicates, which im-
plies that any operation on them will perform autoloading if necessary. Notably
predicate property/2, current predicate/1 and clause/2 are supported.

Currently, neither the existence of File, nor whether it actually exports the given predicates
(autoload/2) is verified when the file is loaded. Instead, the declarations are verified when
searching for a missing predicate.

If the Prolog flag autoload is set to false, these declarations are interpreted as
use module/[1,2].

6.5 Defining a meta-predicate

A meta-predicate is a predicate that calls other predicates dynamically, modifies a predicate, or reasons
about properties of a predicate. Such predicates use either a compound term or a predicate indica-
tor to describe the predicate they address, e.g., assert(name(jan)) or abolish(name/1).
With modules, this simple schema no longer works as each module defines its own mapping
from name+arity to predicate. This is resolved by wrapping the original description in a term
⟨module⟩:⟨term⟩, e.g., assert(person:name(jan)) or abolish(person:name/1).

Of course, when calling assert/1 from inside a module, we expect to assert to a predicate
local to this module. In other words, we do not wish to provide this :/2 wrapper by hand. The
meta predicate/1 directive tells the compiler that certain arguments are terms that will be used
to look up a predicate and thus need to be wrapped (qualified) with ⟨module⟩:⟨term⟩, unless they are
already wrapped.

In the example below, we use this to define maplist/3 inside a module. The argument ‘2’ in the
meta predicate declaration means that the argument is module-sensitive and refers to a predicate with
an arity that is two more than the term that is passed in. The compiler only distinguishes the values
0..9 and :, which denote module-sensitive arguments, from +, - and ?, which denote modes. The
values 0..9 are used by the cross-referencer and syntax highlighting. Note that the helper predicate
maplist /3 does not need to be declared as a meta-predicate because the maplist/3 wrapper
already ensures that Goal is qualified as ⟨module⟩:Goal. See the description of meta predicate/1
for details.

:- module(maplist, [maplist/3]).
:- meta_predicate maplist(2, ?, ?).

%% maplist(:Goal, +List1, ?List2)
%
% True if Goal can successfully be applied to all
% successive pairs of elements from List1 and List2.

maplist(Goal, L1, L2) :-

SWI-Prolog 9.3 Reference Manual

6.5. DEFINING A META-PREDICATE 343

maplist_(L1, L2, Goal).

maplist_([], [], _).
maplist_([H0|T0], [H|T], Goal) :-

call(Goal, H0, H),
maplist_(T0, T, Goal).

meta predicate +Head, . . .
Define the predicates referenced by the comma-separated list Head as meta-predicates. Each
argument of each head is a meta argument specifier. Defined specifiers are given below. Only
0..9, :, ˆ and // are interpreted; the mode declarations +, -, * and ? are ignored.

0..9
The argument is a term that is used to reference a predicate with N more arguments than
the given argument term. For example: call(0) or maplist(1, +).

:
The argument is module-sensitive, but does not directly refer to a predicate. For example:
consult(:).

ˆ
This extension is used to denote the possibly ˆ-annotated goal of setof/3, bagof/3,
aggregate/3 and aggregate/4. It is processed similar to ‘0’, but leaving the ˆ/2
intact.

//
The argument is a DCG body. See phrase/3.

-

?

*

+
All these have the same semantics, declaring the argument to be not module sensitive.
The * notation is an alias for ? for compatibility with e.g., Logtalk. The specific mode
has merely documentation value. See section 4.1.1 for details.

Each argument that is module-sensitive (i.e., marked 0..9, : or ˆ) is qualified with the context
module of the caller if it is not already qualified. The implementation ensures that the argument
is passed as ⟨module⟩:⟨term⟩, where ⟨module⟩ is an atom denoting the name of a module and
⟨term⟩ itself is not a :/2 term where the first argument is an atom. Below is a simple declaration
and a number of queries.

:- meta_predicate
meta(0, +).

SWI-Prolog 9.3 Reference Manual

344 CHAPTER 6. MODULES

meta(Module:Term, _Arg) :-
format(’Module=˜w, Term = ˜q˜n’, [Module, Term]).

?- meta(test, x).
Module=user, Term = test
?- meta(m1:test, x).
Module=m1, Term = test
?- m2:meta(test, x).
Module=m2, Term = test
?- m1:meta(m2:test, x).
Module=m2, Term = test
?- meta(m1:m2:test, x).
Module=m2, Term = test
?- meta(m1:42:test, x).
Module=42, Term = test

The meta predicate/1 declaration is the portable mechanism for defining meta-predicates
and replaces the old SWI-Prolog specific mechanism provided by the deprecated predicates
module transparent/1, context module/1 and strip module/3. See also sec-
tion 6.16.

6.6 Overruling Module Boundaries

The module system described so far is sufficient to distribute programs over multiple modules. There
are, however, cases in which we would like to be able to overrule this schema and explicitly call
a predicate in some module or assert explicitly into some module. Calling in a particular module
is useful for debugging from the user’s top level or to access multiple implementations of the same
interface that reside in multiple modules. Accessing the same interface from multiple modules cannot
be achieved using importing because importing a predicate with the same name and arity from two
modules results in a name conflict. Asserting in a different module can be used to create models
dynamically in a new module. See section 6.13.

Direct addressing of modules is achieved using a :/2 explicitly in a program and relies on the
module qualification mechanism described in section 6.5. Here are a few examples:

?- assert(world:done). % asserts done/0 into module world
?- world:asserta(done). % the same
?- world:done. % calls done/0 in module world

Note that the second example is the same due to the Prolog flag colon sets calling context.
The system predicate asserta/1 is called in the module world, which is possible because system
predicates are visible in all modules. At the same time, the calling context is set to world. Because
meta arguments are qualified with the calling context, the resulting call is the same as the first example.

SWI-Prolog 9.3 Reference Manual

6.7. INTERACTING WITH MODULES FROM THE TOP LEVEL 345

6.6.1 Explicit manipulation of the calling context

Quintus’ derived module systems have no means to separate the lookup module (for finding predi-
cates) from the calling context (for qualifying meta arguments). Some other Prolog implementations
(e.g., ECLiPSe and IF/Prolog) distinguish these operations, using @/2 for setting the calling context
of a goal. This is provided by SWI-Prolog, currently mainly to support compatibility layers.

@(:Goal, +Module)
Execute Goal, setting the calling context to Module. Setting the calling context affects meta-
predicates, for which meta arguments are qualified with Module and transparent predicates (see
module transparent/1). It has no implications for other predicates.

For example, the code asserta(done)@world is the same as asserta(world:done).
Unlike in world:asserta(done), asserta/1 is resolved in the current module rather
than the module world. This makes no difference for system predicates, but usually does make
a difference for user predicates.

Not that SWI-Prolog does not define @ as an operator. Some systems define this construct using
op(900, xfx, @).

6.7 Interacting with modules from the top level

Debugging often requires interaction with predicates that reside in modules: running them, setting spy
points on them, etc. This can be achieved using the ⟨module⟩:⟨term⟩ construct explicitly as described
above. In SWI-Prolog, you may also wish to omit the module qualification. Setting a spy point
(spy/1) on a plain predicate sets a spy point on any predicate with that name in any module. Editing
(edit/1) or calling an unqualified predicate invokes the DWIM (Do What I Mean) mechanism,
which generally suggests the correct qualified query.

Mainly for compatibility, we provide module/1 to switch the module with which the interactive
top level interacts:

module(+Module)
The call module(Module) may be used to switch the default working module for the inter-
active top level (see prolog/0). This may be used when debugging a module. The example
below lists the clauses of file of label/2 in the module tex.

1 ?- module(tex).
true.
tex: 2 ?- listing(file_of_label/2).
...

6.8 Composing modules from other modules

The predicates in this section are intended to create new modules from the content of other mod-
ules. Below is an example to define a composite module. The example exports all public pred-
icates of module 1, module 2 and module 3, pred/1 from module 4, all predicates from
module 5 except do not use/1 and all predicates from module 6 while renaming pred/1
into mypred/1.

SWI-Prolog 9.3 Reference Manual

346 CHAPTER 6. MODULES

:- module(my_composite, []).
:- reexport([module_1,

module_2,
module_3

]).
:- reexport(module_4, [pred/1]).
:- reexport(module_5, except([do_not_use/1])).
:- reexport(module_6, except([pred/1 as mypred])).

reexport(+Files)
Load and import predicates as use module/1 and re-export all imported predicates. The
reexport declarations must immediately follow the module declaration.

reexport(+File, +Import)
Import from File as use module/2 and re-export the imported predicates. All formats ac-
cepted by use module/2 for Import are accepted. The reexport declarations must
immediately follow the module declaration.

6.9 Operators and modules

Operators (section 4.25) are local to modules, where the initial table behaves as if it is copied
from the module user (see section 6.11). A specific operator can be disabled inside a mod-
ule using :- op(0, Type, Name). Inheritance from the public table can be restored using
:- op(-1, Type, Name).

In addition to using the op/3 directive, operators can be declared in the module/2 directive as
shown below. Such operator declarations are visible inside the module, and importing such a module
makes the operators visible in the target module. Exporting operators is typically used by modules
that implement sub-languages such as chr (see chapter 9). The example below is copied from the
library clpfd.

:- module(clpfd,
[op(760, yfx, #<==>),

op(750, xfy, #==>),
op(750, yfx, #<==),
op(740, yfx, #\/),
...
(#<==>)/2,
(#==>)/2,
(#<==)/2,
(#\/)/2,
...

]).

SWI-Prolog 9.3 Reference Manual

6.10. DYNAMIC IMPORTING USING IMPORT MODULES 347

6.10 Dynamic importing using import modules

Until now we discussed the public module interface that is, at least to some extent, portable between
Prolog implementations with a module system that is derived from Quintus Prolog. The remainder of
this chapter describes the underlying mechanisms that can be used to emulate other module systems
or implement other code-reuse mechanisms.

In addition to built-in predicates, imported predicates and locally defined predicates, SWI-Prolog
modules can also call predicates from its import modules. Each module has a (possibly empty) list of
import modules. In the default setup, each new module has a single import module, which is user
for all normal user modules and system for all system library modules. Module user imports from
system where all built-in predicates reside. These special modules are described in more detail in
section 6.11.

In general, the import relations between modules form an acyclic directed graph. The import
relation affects the following mechanisms:

Predicate visibility When looking for a specific predicate definition the system starts in the target
module. If the predicate is undefined there it walks the module import relations depth-first left-
to-right searching for a module that defines the predicate. The first encountered definition is
used. Note that using the default setup this means it searches the user and system modules
(in that order).

Operators Operators are also searched through the import relations. System operators are defined in
the module system. The user may define operators in user to make them globally visible
for compatibility with e.g., SICStus Prolog that has no local operators. Normally operators are
defined in a module and, when applicable, exported using the module/2 module header.

The unknown flag This flag controls the response to encountering an undefined predicate in the
target module.

Term and goal expansion The hooks term expansion/2 and goal expansion/2 (see sec-
tion 4.3.1) are chained over the import modules that define these hooks. This implies we collect
all modules that provide definitions for these hook predicates by traversing the import module
relation depth-first and left-to-right. Next, we perform the transformations in a pipeline, starting
at the target module.

The list of import modules for a specific module can be manipulated and queried using the fol-
lowing predicates, as well as using set module/1.

import module(+Module, -Import) [nondet]

True if Module inherits directly from Import. All normal modules only import from
user, which imports from system. The predicates add import module/3 and
delete import module/2 can be used to manipulate the import list. See also
default module/2.

default module(+Module, -Default) [multi]

True if predicates and operators in Default are visible in Module. Modules are returned in
the same search order used for predicates and operators. That is, Default is first unified with
Module, followed by the depth-first transitive closure of import module/2.

SWI-Prolog 9.3 Reference Manual

348 CHAPTER 6. MODULES

add import module(+Module, +Import, +StartOrEnd)
If Import is not already an import module for Module, add it to this list at the start or end
depending on StartOrEnd. See also import module/2 and delete import module/2.

delete import module(+Module, +Import)
Delete Import from the list of import modules for Module. Fails silently if Import is not in the
list.

6.11 Reserved Modules and using the ‘user’ module

As mentioned above, SWI-Prolog contains two special modules. The first one is the module system.
This module contains all built-in predicates. Module system has no import module, i.e., is a root
of the module graph. The second special module is the module user. This module forms the initial
working space of the user. Initially it is empty.2. The import module of module user is system,
making all built-in predicates available.

All normal application modules import from the module user. This implies they can use all
predicates imported into user without explicitly importing them. If an application loads all modules
from the user module using use module/1, one achieves a scoping system similar to the C-
language, where every module can access all exported predicates without any special precautions.

All library modules (see module property/2) import directly from system. Library mod-
ules are modules loaded from the SWI-Prolog installation. As they import from system, the func-
tionality of a library is not affected by operator or predicate definitions in the user module.

6.12 An alternative import/export interface

The use module/1 predicate from section 6.3 defines import and export relations based on the
filename from which a module is loaded. If modules are created differently, such as by asserting
predicates into a new module as described in section 6.13, this interface cannot be used. The interface
below provides for import/export from modules that are not created using a module file.

export(+PredicateIndicator, . . .)
Add predicates to the public list of the context module. This implies the predicate will be
imported into another module if this module is imported with use module/[1,2]. Note
that predicates are normally exported using the directive module/2. export/1 is meant to
handle export from dynamically created modules.

import(+PredicateIndicator, . . .)
Import predicates PredicateIndicator into the current context module. PredicateIndicator must
specify the source module using the ⟨module⟩:⟨pi⟩ construct. Note that predicates are normally
imported using one of the directives use module/[1,2]. The import/1 alternative
is meant for handling imports into dynamically created modules. See also export/1 and
export list/2.

2Unfortunately some hooks are traditionally defined in the user module

SWI-Prolog 9.3 Reference Manual

6.13. DYNAMIC MODULES 349

6.13 Dynamic Modules

So far, we discussed modules that were created by loading a module file. These modules have been
introduced to facilitate the development of large applications. The modules are fully defined at load-
time of the application and normally will not change during execution. Having the notion of a set of
predicates as a self-contained world can be attractive for other purposes as well. For example, assume
an application that can reason about multiple worlds. It is attractive to store the data of a particular
world in a module, so we extract information from a world simply by invoking goals in this world.

Dynamic modules can easily be created. Any built-in predicate that tries to locate a predicate in a
specific module will create this module as a side-effect if it did not yet exist. For example:

?- assert(world_a:consistent),
set_prolog_flag(world_a:unknown, fail).

These calls create a module called ‘world a’ and make the call ‘world a:consistent’ succeed. Unde-
fined predicates will not raise an exception for this module (see unknown).

Import and export from a dynamically created world can be achieved using import/1 and
export/1 or by specifying the import module as described in section 6.10.

?- world_b:export(solve/2). % exports solve/2 from world_b
?- world_c:import(world_b:solve/2). % and import it to world_c

6.14 Transparent predicates: definition and context module

The ‘module-transparent’ mechanism is still underlying the actual implementation. Direct usage by
programmers is deprecated. Please use meta predicate/1 to deal with meta-predicates.

The qualification of module-sensitive arguments described in section 6.5 is realised using trans-
parent predicates. It is now deprecated to use this mechanism directly. However, studying the un-
derlying mechanism helps to understand SWI-Prolog’s modules. In some respect, the transparent
mechanism is more powerful than meta-predicate declarations.

Each predicate of the program is assigned a module, called its definition module. The definition
module of a predicate is always the module in which the predicate was originally defined. Each active
goal in the Prolog system has a context module assigned to it.

The context module is used to find predicates for a Prolog term. By default, the context module
is the definition module of the predicate running the goal. For transparent predicates, however, this
is the context module of the goal inherited from the parent goal. Below, we implement maplist/3
using the transparent mechanism. The code of maplist/3 and maplist /3 is the same as in
section 6.5, but now we must declare both the main predicate and the helper as transparent to avoid
changing the context module when calling the helper.

:- module(maplist, maplist/3).

:- module_transparent
maplist/3,
maplist_/3.

SWI-Prolog 9.3 Reference Manual

350 CHAPTER 6. MODULES

maplist(Goal, L1, L2) :-
maplist_(L1, L2, G).

maplist_([], [], _).
maplist_([H0|T0], [H|T], Goal) :-

call(Goal, H0, H),
maplist_(T0, T, Goal).

Note that any call that translates terms into predicates is subject to the transparent mechanism, not
just the terms passed to module-sensitive arguments. For example, the module below counts the
number of unique atoms returned as bindings for a variable. It works as expected. If we use the
directive :- module transparent count atom results/3. instead, atom result/2
is called wrongly in the module calling count atom results/3. This can be solved using
strip module/3 to create a qualified goal and a non-transparent helper predicate that is defined in
the same module.

:- module(count_atom_results,
[count_atom_results/3
]).

:- meta_predicate count_atom_results(-,0,-).

count_atom_results(A, Goal, Count) :-
setof(A, atom_result(A, Goal), As), !,
length(As, Count).

count_atom_results(_, _, 0).

atom_result(Var, Goal) :-
call(Goal),
atom(Var).

The following predicates support the module-transparent interface:

:- module transparent(+Preds)
Preds is a comma-separated list of name/arity pairs (like dynamic/1). Each goal associated
with a transparent-declared predicate will inherit the context module from its parent goal.

context module(-Module)
Unify Module with the context module of the current goal. context module/1 itself is, of
course, transparent.

strip module(+Term, -Module, -Plain)
Used in module-transparent predicates or meta-predicates to extract the referenced module and
plain term. If Term is a module-qualified term, i.e. of the format Module:Plain, Module and
Plain are unified to these values. Otherwise, Plain is unified to Term and Module to the context
module.

SWI-Prolog 9.3 Reference Manual

6.15. MODULE PROPERTIES 351

6.15 Module properties

The following predicates can be used to query the module system for reflexive programming:

current module(?Module) [nondet]

True if Module is a currently defined module. This predicate enumerates all modules, whether
loaded from a file or created dynamically. Note that modules cannot be destroyed in the current
version of SWI-Prolog.

module property(?Module, ?Property)
True if Property is a property of Module. Defined properties are:

class(-Class)
True when Class is the class of the module. Defined classes are

user
Default for user-defined modules.

system
Module system and modules from ⟨home⟩/boot.

library
Other modules from the system directories.

temporary
Module is temporary.

test
Modules that create tests.

development
Modules that only support the development environment.

file(?File)
True if Module was loaded from File.

line count(-Line)
True if Module was loaded from the N-th line of file.

exports(-ListOfPredicateIndicators)
True if Module exports the given predicates. Predicate indicators are in canonical form
(i.e., always using name/arity and never the DCG form name//arity). Future versions may
also use the DCG form. See also predicate property/2. Succeeds with an empty
list if the module exports no predicates.

exported operators(-ListOfOperators)
True if Module exports the given operators. Each exported operator is represented as
a term op(Pri,Assoc,Name). Succeeds with an empty list if the module exports no
operators.

size(-Bytes)
Total size in bytes used to represent the module. This includes the module itself, its
(hash) tables and the summed size of all predicates defined in this module. See also the
size(Bytes) property in predicate property/2.

program size(-Bytes)
Memory (in bytes) used for storing the predicates of this module. This figure includes the
predicate header and clauses.

SWI-Prolog 9.3 Reference Manual

352 CHAPTER 6. MODULES

program space(-Bytes)
If present, this number limits the program size. See set module/1.

last modified generation(-Generation)
Integer expression the last database generation where a clause was added or removed from
a predicate that is implemented in this module. See also predicate property/2.

set module(:Property)
Modify properties of the module. Currently, the following properties may be modified:

base(+Base)
Set the default import module of the current module to Module. Typically, Module is one
of user or system. See section 6.10.

class(+Class)
Set the class of the module. See module property/2.

program space(+Bytes)
Maximum amount of memory used to store the predicates defined inside the module.
Raises a permission error if the current usage is above the requested limit. Setting the
limit to 0 (zero) removes the limit. An attempt to assert clauses that causes the limit to
be exceeded causes a resource error(program space) exception. See assertz/1
and module property/2.

6.16 Compatibility of the Module System

The SWI-Prolog module system is largely derived from the Quintus Prolog module system, which
is also adopted by SICStus, Ciao and YAP. Originally, the mechanism for defining meta-predicates
in SWI-Prolog was based on the module transparent/1 directive and strip module/3.
Since 5.7.4 it supports the de-facto standard meta predicate/1 directive for implementing meta-
predicates, providing much better compatibility.

The support for the meta predicate/1 mechanism, however, is considerably different.
On most systems, the caller of a meta-predicate is compiled differently to provide the required
⟨module⟩:⟨term⟩ qualification. This implies that the meta-declaration must be available to the com-
piler when compiling code that calls a meta-predicate. In practice, this implies that other systems pose
the following restrictions on meta-predicates:

• Modules that provide meta-predicates for a module to be compiled must be loaded explicitly by
that module.

• The meta-predicate directives of exported predicates must follow the module/2 directive im-
mediately.

• After changing a meta-declaration, all modules that call the modified predicates need to be
recompiled.

In SWI-Prolog, meta-predicates are also module-transparent, and qualifying the module-sensitive
arguments is done inside the meta-predicate. As a result, the caller need not be aware that it is calling
a meta-predicate and none of the above restrictions hold for SWI-Prolog. However, code that aims at
portability must obey the above rules.

Other differences are listed below.

SWI-Prolog 9.3 Reference Manual

6.16. COMPATIBILITY OF THE MODULE SYSTEM 353

• If a module does not define a predicate, it is searched for in the import modules. By default, the
import module of any user-defined module is the user module. In turn, the user module im-
ports from the module system that provides all built-in predicates. The auto-import hierarchy
can be changed using add import module/3 and delete import module/2.

This mechanism can be used to realise a simple object-oriented system or a hierarchical module
system.

• Operator declarations are local to a module and may be exported. In Quintus and SICStus
all operators are global. YAP and Ciao also use local operators. SWI-Prolog provides global
operator declarations from within a module by explicitly qualifying the operator name with the
user module. I.e., operators are inherited from the import modules (see above).

:- op(precedence, type, user:(operatorname)).

SWI-Prolog 9.3 Reference Manual

Tabled execution (SLG
resolution) 7
This chapter describes SWI-Prolog’s support for Tabled execution for one or more Prolog predicates,
also called SLG resolution. Tabling a predicate provides two properties:

1. Re-evaluation of a tabled predicate is avoided by memoizing the answers. This can realise huge
performance enhancements as illustrated in section 7.1. It also comes with two downsides: the
memoized answers are not automatically updated or invalidated if the world (set of predicates
on which the answers depend) changes and the answer tables must be stored (in memory).

2. Left recursion, a goal calling a variant of itself recursively and thus looping under the normal
Prolog SLD resolution is avoided by suspending the variant call and resuming it with answers
from the table. This is illustrated in section 7.2.

Tabling is particularly suited to simplify inference over a highly entangled set of predicates that
express axioms and rules in a static (not changing) world. When using SLD resolution for such
problems, it is hard to ensure termination and avoid frequent recomputation of intermediate results. A
solution is to use Datalog style bottom-up evaluation, i.e., applying rules on the axioms and derived
facts until a fixed point is reached. However, bottom-up evaluation typically derives many facts that
are never used. Tabling provides a goal oriented resolution strategy for such problems and is enabled
simply by adding a table/1 directive to the program.

7.1 Example 1: using tabling for memoizing

As a first classical example we use tabling for memoizing intermediate results. We use Fibonacci
numbers to illustrate the approach. The Fibonacci number I is defined as the sum of the Fibonacci
numbers for I − 1 and I − 2, while the Fibonacci number of 0 and 1 are both defined to be 1. This
can be translated naturally into Prolog:

fib(0, 1) :- !.
fib(1, 1) :- !.
fib(N, F) :-

N > 1,
N1 is N-1,
N2 is N-2,
fib(N1, F1),
fib(N2, F2),
F is F1+F2.

The complexity of executing this using SLD resolution however is 2N and thus becomes prohibitively
slow rather quickly, e.g., the execution time for N = 30 is already 0.4 seconds. Using tabling,

SWI-Prolog 9.3 Reference Manual

7.1. EXAMPLE 1: USING TABLING FOR MEMOIZING 355

fib(N,F) for each value of N is computed only once and the algorithm becomes linear. Tabling
effectively inverts the execution order for this case: it suspends the final addition (F is F1+F2) until
the two preceding Fibonacci numbers have been added to the answer tables. Thus, we can reduce
the complexity from the show-stopping 2N to linear by adding a tabling directive and otherwise not
changing the algorithm. The code becomes:

:- table fib/2.

fib(0, 1) :- !.
fib(1, 1) :- !.
fib(N, F) :-

N > 1,
N1 is N-1,
N2 is N-2,
fib(N1, F1),
fib(N2, F2),
F is F1+F2.

The price that we pay is that a table fib(I,F) is created for each I in 0..N . The execution time for
N = 30 is now 1 millisecond and computing the Fibonacci number for N = 1000 is doable (output
edited for readability).

1 ?- time(fib(1000, X)).
% 52,991 inferences, 0.013 CPU in 0.013 seconds
X = 70330367711422815821835254877183549770181269836358

73274260490508715453711819693357974224949456261173
34877504492417659910881863632654502236471060120533
74121273867339111198139373125598767690091902245245
323403501.

In the case of Fibonacci numbers we can still rather easily achieve linear complexity using program
transformation, where we use bottom-up instead of top-down evaluation, i.e., we compute fib(N,F)
for growing N , where we pass the last two Fibonacci numbers to the next iteration. Not having to
create the tables and not having to suspend and resume goals makes this implementation about 25
times faster than the tabled one. However, even in this simple case the transformation is not obvious
and it is far more difficult to recognise the algorithm as an implementation of Fibonacci numbers.

fib(0, 1) :- !.
fib(1, 1) :- !.
fib(N, F) :-

fib(1,1,1,N,F).

fib(_F, F1, N, N, F1) :- !.
fib(F0, F1, I, N, F) :-

F2 is F0+F1,
I2 is I + 1,
fib(F1, F2, I2, N, F).

SWI-Prolog 9.3 Reference Manual

356 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

7.2 Example 2: avoiding non-termination

SLD resolution easily results in an infinite loop due to left recursion, a goal that (indirectly) calls a
variant of itself or cycles in the input data. Thus, if we have a series of connection/2 statements
that define railway connections between two cities, we cannot use the most natural logical definition
to express that we can travel between two cities:

% :- table connection/2.

connection(X, Y) :-
connection(X, Z),
connection(Z, Y).

connection(X, Y) :-
connection(Y, X).

connection(’Amsterdam’, ’Schiphol’).
connection(’Amsterdam’, ’Haarlem’).
connection(’Schiphol’, ’Leiden’).
connection(’Haarlem’, ’Leiden’).

After enabling tabling however, the above works just fine as illustrated in the session below.
Where is the magic and what is the price we paid? The magic is, again, the fact that new goals
to the tabled predicate suspend. So, all recursive goals are suspended. Eventually, a table for
connection(’Amsterdam’, X) is created with the two direct connections from Amsterdam. Now, it
resumes the first clause using the tabled solutions, continuing the last connection/2 subgoal with
connection(’Schiphol’, X) and connection(’Haarlem’, X). These two go through the same pro-
cess, creating new suspended recursive calls and creating tables for the connections from Schiphol and
Haarlem. Eventually, we end up with a set of tables for each call variant that is involved in computing
the transitive closure of the network starting in Amsterdam. However, if the Japanese rail network
would have been in our data as well, we would not have produced tables for that.

1 ?- connection(’Amsterdam’, X).
X = ’Haarlem’ ;
X = ’Schiphol’ ;
X = ’Amsterdam’ ;
X = ’Leiden’.

Again, the fact that a simple table/1 directive turns the pure logical specification into a fairly
efficient algorithm is a clear advantage. Without tabling the program needs to be stratified, introducing
a base layer with the raw connections, a second layer that introduces the commutative property of a
railway (if you can travel from A to B you can also travel from B to A and a final layer that realises
transitivity (if you can travel from A to B and from B to C you can also travel from A to C). The
third and final layer must keep track which cities you have already visited to avoid traveling in circles.
The transformed program however uses little memory (the list of already visited cities and the still
open choices) and does not need to deal with maintaining consistency between the tables and ground
facts.

SWI-Prolog 9.3 Reference Manual

7.3. ANSWER SUBSUMPTION OR MODE DIRECTED TABLING 357

7.3 Answer subsumption or mode directed tabling

Tabling as defined above has a serious limitation. Although the definition of connection/2 from
section section 7.2 can compute the transitive closure of connected cities, it cannot provide you with a
route to travel. The reason is that there are infinitely many routes if there are cycles in the network and
each new route found will be added to the answer table and cause the tabled execution’s completion
algorithm to search for more routes, eventually running out of memory.

The solution to this problem is called mode directed tabling or answer subsumption.1 In this
execution model one or more arguments are not added to the table. Instead, we remember a single
aggregated value for these arguments. The example below is derived from section 7.2 and returns the
connection as a list of cities. This argument is defined as a moded argument using the lattice(PI)
mode.2 This causes the tabling engine each time that it finds an new path to call shortest/3 and
keep the shortest route.

:- table
connection(_,_,lattice(shortest/3)).

shortest(P1, P2, P):-
length(P1, L1),
length(P2, L2),
(L1 < L2
-> P = P1
; P = P2
).

connection(X, Y, [X,Y]) :-
connection(X, Y).

connection(X, Y, P) :-
connection(X, Z, P0),
connection(Z, Y),
append(P0, [Y], P).

The mode declaration scheme is equivalent to XSB with partial compatibility support for YAP and
B-Prolog. The lattice(PI) mode is the most general mode. The YAP all (B-Prolog @) mode is
not yet supported. The list below describes the supported modes and indicates the portability.

Var
+
index

A variable (XSB), the atom index (YAP) or a + (B-Prolog, YAP) declare that the argument is
tabled normally.

lattice(Pred)
Pred denotes a predicate with arity 3. It may be specified as an predicate indicator (Name/3),

1The term answer subsumption is used by XSB and mode directed tabling by YAP and B-Prolog. The idea is that some
arguments are considered ‘outputs’, where multiple values for the same ‘input’ are combined. Possibly answer aggregation
would have been a better name.

2This mode is compatible to XSB Prolog.

SWI-Prolog 9.3 Reference Manual

358 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

plain predicate name (Name) or a head term Name(, ,). On each answer, PI is called with
three arguments: the current aggregated answer and the new answer are inputs. The last
argument must be unified with a term that represents the new aggregated answer.

po(PI)
Partial Ordering. The new answer is added iff call(PI, +Old, +Answer) succeeds. For
example, po(’<’/2) accumulates the smallest result. In SWI-Prolog the arity (2) may be
omitted, resulting in po(<).

-
first

The atom - (B-Prolog, YAP) and first (YAP) declare to keep the first answer for this
argument.

last
The atom last (YAP) declares to keep the last answer.

min
The atom min (YAP) declares to keep the smallest answer according to the standard order of
terms (see @</2). Note that in SWI-Prolog the standard order of terms orders numbers by
value.

max
The atom max (YAP) declares to keep the largest answer according to the standard order of
terms (see @>/2). Note that in SWI-Prolog the standard order of terms orders numbers by
value.

sum
The atom sum (YAP) declares to sum numeric answers.

7.4 Tabling for impure programs

Tabling guarantees logically correct results and termination provided the computation only involves
terms of bounded size on pure Prolog programs, i.e., Prolog programs without side effects or pruning
of choice points (cut, ->/2, etc.). Notably pruning choice points of an incomplete tabled goal may
cause an incomplete table and thus cause subsequent queries for the same goal to return an incomplete
set of answers. The current SWI-Prolog implementation provides several mechanisms to improve on
this situation.

• Dynamic Strongly Connected Components (SCC)
Tabled goals are completed as soon as possible. Each fresh tabled goal creates a scheduling
component which the system attempts to solve immediately. If a subgoal of the fresh goal refers
to an incomplete tabled goal the scheduling components for both goals are merged such that the
related goals are completed together. Dynamic rather than static determination of strongly con-
nected components guarantees that the components are minimal because only actually reached
code needs to be considered rather than maximally reachable code.

Minimal SCCs imply that goals are completed as early as possible. This implies that tabled
goals may be embedded in e.g., findall/3 or be used as a condition as long as there is no

SWI-Prolog 9.3 Reference Manual

7.5. VARIANT AND SUBSUMPTIVE TABLING 359

dependency (loop) with goals outside the findall/3 or condition. For example, the code
below misbehaves when called as p(X) because the argument of findall/3 calls a variant of
the goal that initiated the findall goal. A call p(1) however is ok as p(1) is not a variant of p(X).

p(X) :-
findall(Y, p(Y), Ys),
...

• Early completion
Ground goals, i.e., goals without variables, are subject to early completion. This implies they
are considered completed after the first solution.

7.5 Variant and subsumptive tabling

By default, SWI-Prolog (and other Prolog systems with tabling) create a table per call variant. A call
(term) is a variant of another call (term) if there is a renaming of variables that makes the two terms
equal. See =@=/2 for details. Consider the following program:

:- table p/1.

p(X) :- p(Y), Y < 10 000, X is Y+1.
p(1).

Calling p(X) creates a table for this variant with 10,000 answers. Calling p(42) creates a new table
where the recursive call (p(Y)) uses the previously created table to enumerate all values 1 . . . 41 before
deriving p(42) is true. Early completion (see section 7.4) in this case prevents enumerating all answers
for p(Y) (1 . . . 10, 000). As a result, the query below runs in quadratic time and creates a 10,000
additional tables.

?- time(forall(between(1, 10 000, X), p(X))).
% 150,370,553 inferences, 13.256 CPU in 13.256 seconds

Subsumptive tabling answers a query using answers from a more general table. In this case, this means
it uses basically trie gen/2 to get the answer p(42) from the table p(). This leads to the program
and results shown below.

:- table p/1 as subsumptive.

p(X) :- p(Y), Y < 10 000, X is Y+1.
p(1).

?- time(p(_)).
% 140,066 inferences, 0.015 CPU in 0.015 seconds
?- time(t).
% 170,005 inferences, 0.016 CPU in 0.016 seconds

SWI-Prolog 9.3 Reference Manual

360 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

Subsumptive tabling can be activated in two ways. Per table assign the ... as subsumptive
option and globally by setting the table subsumptive flag to true.

One may wonder why subsumptive tabling is not the default. There are also some drawbacks:

• Subsumptive tabling only provides correct support if instances (more specific) queries indeed
provides answers that are consistent with the more general query. This is true for pure programs,
but not guaranteed for arbitrary Prolog programs.

• Finding more generic tables is more complicated and expensive than finding the call variant
table and extracting the subset of answers that match the more specific query can be expensive.

• Using subsumptive tables can create more dependencies in the call graph which can slow down
the table completion process. Larger dependent components also negatively impact the issues
discussed in section 7.4.

7.6 Well Founded Semantics

According to Wikipedia, ”Well Founded Semantics is one definition of how we can make conclusions
from a set of logical rules”. Well Founded Semantics (WFS) defines a three valued logic representing
true, false and something that is neither true or false. This latter value is often referred to as bottom,
undefined or unknown. SWI-Prolog uses undefined/0.

Well Founded Semantics allows for reasoning about programs with contradictions or multiple
answer sets. It allows for obtaining true/false results for literals that do not depend on the sub pro-
gram that has no unambiguous solution, propagating the notion of undefined to literals that cannot
be resolved otherwise and obtaining the residual program that expresses why an answer is not unam-
biguous.

The notion of Well Founded Semantics is only relevant if the program uses negation as imple-
mented by tnot/1. The argument of tnot/1, as the name implies, must be a goal associated with a
tabled predicate (see table/1). In a nutshell, resolving a goal that implies tnot/1 is implemented
as follows:

Consider the following partial body term:

...,
tnot(p),
q.

1. If p has an unconditional answer in its table, fail.

2. Else, delay the negation. If an unconditional answer arrives at some time, resume with failure.

3. If at the end of the traditional tabled evaluation we can still not decide on p, execute the contin-
uation (q above) while maintaining the delay list set to tnot(p). If executing the continuation
results in an answer for some tabled predicate, record this answer as a conditional answer, in
this case with the condition tnot(p).

4. If a conditional answer is added to a table, it is propagated to its followers, say f , adding the
pair {f ,answer} to the delay list. If this leads to an answer, the answer is conditional on this
pair.

SWI-Prolog 9.3 Reference Manual

https://en.wikipedia.org/wiki/Well-founded_semantics

7.6. WELL FOUNDED SEMANTICS 361

5. After the continuations of all unresolved tnot/1 calls have been executed the various tables
may have conditional answers in addition to normal answers.

6. If there are negative literals that have neither conditional answers nor unconditional answers, the
condition tnot(g) is true. This conclusion is propagated by simplifying the conditions for all
answers that depend on tnot(g). This may result in a definite false condition, in which case the
answer is removed or a definite true condition in which case the answer is made unconditional.
Both events can make other conditional answers definitely true or false, etc.

7. At the end of the simplifying process some answers may still be conditional. A final answer
completion step analyses the graph of depending nodes, eliminating positive loops, e.g., “p :-
q. q :- p”. The answers in such a loop are removed, possibly leading to more simplification.
This process is executed until fixed point is reached, i.e., no further positive loops exist and no
further simplification is possible.

The above process may complete without any remaining conditional answers, in which case we
are back in the normal Prolog world. It is also possible that some answers remain conditional. The
most obvious case is represented by undefined/0. The toplevel responds with undefined instead
of true if an answer is conditional.

undefined
Unknown represents neither true nor false in the well formed model. It is implemented as

:- table undefined/0.

undefined :- tnot(undefined).

Solving a set of predicates under well formed semantics results in a residual program. This
program contains clauses for all tabled predicates with condition answers where each clause head rep-
resents and answer and each clause body its condition. The condition is a disjunction of conjunctions
where each literal is either a tabled goal or tnot/1 of a tabled goal. The remaining model has at least
a cycle through a negative literal (tnot/1) and has no single solution in the stable model semantics,
i.e., it either expresses a contradiction (as undefined/0, i.e., there is no stable model) or a multiple
stable models as in the program below, where both {p} and {q} are stable models.

:- table p/0, q/0.

p :- tnot(q).
q :- tnot(p).

Note that it is possible that some literals have the same truth value in all stable models but are still
undefined under the stable model semantics.

The residual program is an explanation of why an answer is undefined. SWI-Prolog offers the
following predicates to access the residual program.

call residual program(:Goal, -Program)
True when Goal is an answer according to the Well Founded Semantics. If Program is the
empty list, Goal is unconditionally true. Otherwise this is a program as described by
delays residual program/2.

SWI-Prolog 9.3 Reference Manual

362 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

call delays(:Goal, -Condition)
True when Goal is an answer that is true when Condition can be satisfied. If Condition is
true, Answer is unconditional. Otherwise it is a conjunction of goals, each of which is
associated with a tabled predicate.

delays residual program(:Condition, -Program)
Program is a list of clauses that represents the connected program associated with Condition.
Each clause head represents a conditional answer from a table and each corresponding clause
body is the condition that must hold for this answer to be true. The body is a disjunction of
conjunctions. Each leaf in this condition is either a term tnot(Goal) or a plain Goal. Each
Goal is associated with a tabled predicate. The program always contains at least one cycle that
involves tnot/1.

7.6.1 Well founded semantics and the toplevel

The toplevel supports two modes for reporting that it is undefined whether the current answer is true.
The mode is selected by the Prolog flag toplevel list wfs residual program. If true,
the toplevel uses call delays/2 and delays residual program/2 to find the conditional
answers used and the residual program associated with these answers. It then prints the residual
program, followed by the answer and the conditional answers. For undefined/0, this results in the
following output:

?- undefined.
% WFS residual program

undefined :-
tnot(undefined).

undefined.

If the toplevel list wfs residual program is false, any undefined answer is a conjunction
with undefined/0. See the program and output below.

:- table p/0, q/0.

p :- tnot(q).
q :- tnot(p).

?- p.
% WFS residual program

p :-
tnot(q).

q :-
tnot(p).

p.

?- set_prolog_flag(toplevel_list_wfs_residual_program, false).
true.

SWI-Prolog 9.3 Reference Manual

7.7. INCREMENTAL TABLING 363

?- p.
undefined.

7.7 Incremental tabling

Incremental tabling maintains the consistency of a set of tabled predicates that depend on a set of
dynamic predicates. Both the tabled and dynamic predicates must have the property incremental
set. See dynamic/1 and table/1.

Incremental tabling causes the engine to connect the answer tries and incremental dynamic
predicates in an Incremental Dependency Graph (IDG). Modifications (asserta/1, retract/1,
retractall/1 and friends) of an incremental dynamic predicate mark all depending tables as in-
valid. Subsequent usage of these tables forces re-evaluation.

Re-evaluation of invalidated tables happens on demand, i.e., on access to an invalid table. First
the dependency graph of invalid tables that lead to dynamic predicates is established. Next, tables are
re-evaluated in bottom-up order. For each re-evaluated table the system determines whether the new
table has changed. If the table has not changed, this event is propagated to the affected nodes of the
IDG and no further re-evaluation may be needed. Consider the following program:

:- table (p/1, q/1) as incremental.
:- dynamic([d/1], [incremental(true)]).

p(X) :- q(X).
q(X) :- d(X), X < 10.

d(1).

Executing this program creates tables for X = 1 for p/1 and q/1. After calling assert(d(100))
the tables for p/1 and q/1 have an invalid count of 1. Re-running p(X) first re-evaluates q/1
(bottom-up) which results to the same table as X = 100 does not lead to a new answer. Re-evaluation
clears the invalid count for q/1 and, because the q/1 tables is not changed, decrements the invalid
count of affected tables. This sets the invalid count for p/1 to zero, completing the re-evaluation.

Note that invalidating and re-evaluation is done at the level of tables. Notably asserting a clause
invalidates all affected tables and may lead to re-evaluating of all these tables. Incremental tabling au-
tomates manual abolishing of invalid tables in a changing world and avoids unnecessary re-evaluation
if indirectly affected tables prove unaffected because the answer set of dependent tables is unaffected
by the change. This is the same policy as implemented in XSB [Swift, 2014]. Future versions may
implement a more fine grained approach.

7.8 Monotonic tabling

Incremental tabling (section 7.7) maintains the consistency of tables that depend directly or indirectly
on (incremental) dynamic predicates. This is done by invalidating dependent tables on an assert or
retract and lazily re-evaluate invalid tables when their content is needed. Incremental tabling preserves

SWI-Prolog 9.3 Reference Manual

364 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

all normal tabling properties, including well founded semantics. The downside is that re-evaluation
recomputes the table from scratch. This section deals with monotonic tabling, a mechanism that
propagates the consequences of assert/1 and friends without recomputing the dependent tables
from scratch. Unlike incremental tabling though, monotonic tabling can only deal with monotonic
programs, in particular it does not deal with negation.

The example below defines the transitive closure of a bi-directional graph using monotonic tabling.
This program builds tables for the connected/2 and maintains these tables when new facts are
added for link/2.

:- table connected/2 as monotonic.
:- dynamic link/2 as monotonic.

connected(X, Y) :-
connected(Y, X).

connected(X, Z) :-
connected(X, Y),
connected(Y, Z).

connected(X, Y) :-
link(X, Y).

abolish monotonic tables
Abolish all monotonic tables and their dependencies.

The list below describes properties of monotonic tabling and relation to other tabling primitives:

• When using retract/1 on a dynamic monotonic predicate, all dependent tables and depen-
dency links are invalidated and marked for normal incremental update.

• abolish all tables/0 destroys all monotonic dependency relations.

• Dynamic predicates can be declared as both monotonic and incremental and it allowed to
have both incremental and monotonic tabled predicates that depend on such dynamic predicates.

• A tabled predicate that depends on a monotonic tabled predicate must be tabled monotonic or
incremental. If the dependent predicate is incremental a new answer invalidates the incremental
table.

7.8.1 Eager and lazy monotonic tabling

There are two types of monotonic tabling. The default is eager, which implies that an asserted clause
is immediately propagated through the dependency network. Possibly resulting new answers can be
tracked as described in section 7.8.2. The alternative is lazy. A predicate is marked for lazy using the
lazy option as shown below, or by setting the table monotonic flag to lazy.

:- table p/1 as (monotonic,lazy).

SWI-Prolog 9.3 Reference Manual

7.8. MONOTONIC TABLING 365

If a predicate is tabled as monotonic and lazy and an answer is added to one of the monotonic dynamic
predicates, all dependent monotonic or incremental tables are invalidated and the answer is queued to-
gether with the dependency. A subsequent call to one of the invalidated tabled predicates re-evaluates
the tables. For a monotonic table this implies pushing the queued answers through the dependencies.
Removing a clause from one of a monotonic dynamic predicates invalidates all dependent tables and
marks all these tables for forced re-evaluation, which implies they are re-evaluated using the same
algorithm as used for incremental tabling.

Lazy monotonic tables may depend on eager monotonic tables. There is no point in making an
eager monotonic table depend on a lazy monotonic table as one would have to re-evaluate the lazy
table to make the eager table consistent. Therefore, a dependency of an eager table on a lazy table is
silently converted into a lazy dependency.

7.8.2 Tracking new answers to monotonic tables

The prolog listen/2 interface allows for tracking new facts that are added to monotonic tables.
For example, we can print new possible connections from the above program using this code:

:- prolog_listen(connected/2, connection_change).

connection_change(new_answer, _:connected(From, To)) :-
format(’˜p and ˜p are now connected˜n’, [From, To]).

Currently, failure of the hook are ignored. If the hook throws an exception this is propagated. The
hook is executed outside the current tabling context.3

After loading the connected/2 program and the above declarations we can observe the inter-
action below. Note that query 1 establishes the dependencies and fills the tables using normal tabling.
In the current implementation, possibly discovered connections do not trigger the hook.4. Adding a
single link/2 fact links both locations to itself and to each other in both directions. Adding a second
fact extends the network.

1 ?- connected(_,_).
false.

2 ?- assert(link(’Amsterdam’, ’Haarlem’)).
’Amsterdam’ and ’Haarlem’ are now connected
’Amsterdam’ and ’Amsterdam’ are now connected
’Haarlem’ and ’Amsterdam’ are now connected
’Haarlem’ and ’Haarlem’ are now connected
true.

3 ?- assert(link(’Leiden’, ’Haarlem’)).
’Leiden’ and ’Haarlem’ are now connected
’Haarlem’ and ’Leiden’ are now connected
’Amsterdam’ and ’Leiden’ are now connected
’Leiden’ and ’Amsterdam’ are now connected

3The final behavior may be different in both aspects.
4This is likely to change in the future.

SWI-Prolog 9.3 Reference Manual

366 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

’Haarlem’ and ’Leiden’ are now connected
’Leiden’ and ’Haarlem’ are now connected
’Leiden’ and ’Amsterdam’ are now connected
’Leiden’ and ’Leiden’ are now connected
’Amsterdam’ and ’Leiden’ are now connected
true.

7.8.3 Monotonic tabling with external data

Monotonic tables depend on monotonic dynamic predicates. In some situations there is external
dynamic data such as a database. One solution is to maintain a shadow copy of all the external data in
a dynamic predicate. This wastes resources and introduces maintenance problems. The system allows
to use this information directly from the external source. To do this, create a dynamic and monotonic
predicate that accesses the data:

:- dynamic my_data/2 as monotonic.

my_data(X, Y) :-
<access external data>.

Any monotonic table that depends on my data/2will be populated correctly and build a dependency.
Next, if a new answer is added to the external data the user must call incr propagate calls/1
from the Prolog library increval. Similarly, when an answer is removed from the external
data we use incr invalidate calls/1. Both notification calls must be made after the
external data has been updated, i.e., my data/2 must reflect the new situation before calling
incr propagate calls/1 or incr invalidate calls/1.

:- use_module(library(increval)).

on_new_my_data(X, Y) :-
incr_propagate_calls(my_data(X, Y)).

on_removed_my_data(X,Y) :-
incr_invalidate_calls(my_data(X, Y)).

incr propagate calls(:Answer)
Activate the monotonic answer propagation similarly to when a new fact is asserted for a
monotonic dynamic predicate. The Answer term must match a monotonic dynamic predicate.
See section 7.8.3 for an example.

Status Monotonic tabling is experimental and incomplete. Notably support for answer subsump-
tion and call subsumption is probably possible and may greatly improve the application domain and
resource usage. Monotonic tabling should work with both shared and private tables. Concurrency
issues have not yet been tested though.

SWI-Prolog 9.3 Reference Manual

7.9. SHARED TABLING 367

7.9 Shared tabling

Tables can both be private to a thread or shared between all threads. Private tables are used only by
the calling threads and are discarded as the thread terminates. Shared tables are used by all threads
and can only be discarded explicitly. Tables are declared as shared using, e.g.,

:- table (p/1, q/2) as shared.

A thread may find a table for a particular variant of a shared tabled predicate in any of the following
states:

Complete If the table is complete we can simply use its answers.

Fresh/non-existent If the table is still fresh, claim ownership for it and start filling the table. When
completed, the ownership relation is terminated.

Incomplete If the table is incomplete and owned by the calling thread, simply continue. If it is
owned by another thread we wait for the table unless there is a cycle of threads waiting for each
others table. The latter situation would cause a deadlock and therefore we raise a deadlock
exception. This exception causes the current SCC to be abandoned and gives other threads the
opportunity to claim ownership of the tables that were owned by this thread. The thread that
raised the exception and abandoned the SCC simply restarts the leader goal of the SCC. As
other threads now have claimed more variants of the SCC it will, in most cases, wait for these
threads instead of creating a new deadlock.

A thread that waits for a table may be faced with three results. If the table is complete it can use
the answers. It is also possible that the thread that was filling the table raised an exception (either a
deadlock or any other exception), in which case we find a fresh table for which we will try to claim
ownership. Finally, some thread may have abolished the table. This situation is the same as when the
owning thread raised an exception.

7.9.1 Abolishing shared tables

This section briefly explains the interaction between deleting shared tables and running threads. The
core rule is that abolishing a shared table has no effect on the semantics of the tabled predicates. An
attempt to abolish an incomplete table results in the table to be marked for destruction on completion.
The thread that is completing the table continues to do so and continues execution with the computed
table answers. Any other thread blocks, waiting for the table to complete. Once completed, the table
is destroyed and the waiting threads see a fresh table5.

The current implementation never reclaims shared tables. Instead, they remain part of the global
variant table and only the answers of the shared table are reclaimed. Future versions may garbage
collect such tables. See also abolish shared tables/0.

5Future versions may avoid waiting by converting the abolished shared table to a private table.

SWI-Prolog 9.3 Reference Manual

368 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

7.9.2 Status and future of shared tabling

Currently, shared tabling has many restrictions. The implementation does not verify that the limita-
tions are met and violating these restrictions may cause incorrect results or crashes. Future versions
are expected to resolve these issues.

• Shared tabling currently only handles the basic scenario and cannot yet deal with well formed
semantics or incremental tabling.

• As described in section 7.9.1, abolishing shared tables may cause unnecessary waiting for
threads to complete the table.

• Only the answers of shared tables can be reclaimed, not the answer table itself.

SWI-Prolog’s continuation based tabling offers the opportunity to perform completion using mul-
tiple threads.

7.10 Tabling and constraints

Starting with version 9.3.24, SWI-Prolog offers some support for tabled execution with constraints
(attributed variables, see section 8.1) All relevant data structures support attributed variables, notably
tries (see section 4.14.4). The basic attributed variable and tabling with attributed variables tests from
XSB have been ported and integrated in SWI-Prolog’s test suite.6 Some remarks:

• The variant is defined by the attributes and their values. Note however that SWI-Prolog repre-
sents multiple attributes in a linked list where the ordering depends on the order in which the
attributes were added while, ideally, the order is not relevant for the semantics of attributes.

• Solving a goal with attributed variables may modify attributes. As a result, enumeration of
answers from the completed trie replaces attributes rather than unifying with the attributes. The
new set of attributes is always a copy of the original set of attributes. For example:

:- use_module(library(clpfd)).
:- table p/1.

p(X) :- X #>= 1, X #=< 6.
p(20).

?- X #> 0, p(X).
X in 1..6 ;
X = 20.

Note that this behaviour is unlike trie gen/2. If an attributed variable is inserted into a trie,
trie gen/2 unifies the stored attributed term with the second argument of the call.

6Thanks to Theresa Swift and David Warren.

SWI-Prolog 9.3 Reference Manual

7.11. TABLING RESTRAINTS: BOUNDED RATIONALITY AND TRIPWIRES 369

7.11 Tabling restraints: bounded rationality and tripwires

Tabling avoids non-termination due to self-recursion. As Prolog allows for infinitely nested compound
terms (function symbols in logic) and arbitrary numbers, the set of possible answers is not finite and
thus there is no guaranteed termination.

This section describes restraints [Grosof & Swift, 2013] that can be enforced to specific or all
tabled predicates. Currently there are three defined restraints, limiting (1) the size of (the arguments
to) goals, (2) the size of the answer substitution added to a table and (3) the number of answers allowed
in any table. If any of these events occurs we can specify the action taken. We distinguish two classes
of actions. First, these events can trap a tripwire which can be handled using a hook or a predefined
action such as raising an exception, printing a warning or enter a break level. This can be used for
limiting resources, be notified of suspicious events (debugging) or dynamically adjust the (tabling)
strategy of the program. Second, they may continue the computation that results in a partial answer
(bounded rationality). Unlike just not exploring part of the space though, we use the third truth value
of well founded semantics to keep track of answers that have not been affected by the restraints and
those that have been affected.

The tripwire actions apply for all restraints. If a tripwire action is triggered, the system takes the
steps below.

1. Call the prolog:tripwire/2 hook.

2. If prolog:tripwire/2 fails, take one of the predefined actions:

warning
Print a message indicating the trapped tripwire and continue execution as normal, i.e., the
final answer is the same as if no restraint was active.

error
Throw an exception error(resource_error(tripwire(Wire,Context))).

suspend
Print a message and start a break level (see break/0).

prolog:tripwire(Wire, Context) [multifile]

Called when tripwire Wire is trapped. Context provides additional context for interpreting the
tripwire. The hook can take one of three actions:

• Succeed. In this case the tripwire is considered handled and execution proceeds as if there
was no tripwire. Note that tripwires only trigger at the exact value, which implies that
a wire on a count will be triggered only once. The hook can install a new tripwire at a
higher count.

• Fail. In this case the default action is taken.

• Throw an exception. Exceptions are propagated normally.

Radial restraints limit the sizes of subgoals or answers. Abstraction of a term according to the
size limit is implemented by size abstract term/3.

size abstract term(+Size, +Term, -Abstract) [det]

The size of a term is defined as the number of compound subterms (function symbols) that

SWI-Prolog 9.3 Reference Manual

370 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

appear in term. Abstract is an abstract copy of Term where each argument is abstracted by
copying only the first Size function symbols and constants. Excess function symbols are
replaced by fresh variables.

This predicate is a helper for tabling where Term is the ret/N answer skeleton that is added to
the answer table. Examples:

Size Term Abstract
0 ret(f(x), a) ret(, a)
1 ret(f(x), a) ret(f(x), a)
1 ret(f(A), a) ret(f(A), a)
1 ret(f(x), x(y(Z))) ret(f(x), x())

radial restraint [undefined]

This predicate is undefined in the sense of well founded semantics (see section 7.6 and
undefined/0). Any answer that depends on this condition is undefined because either the
restraint on the subgoal size or answer size was violated.

7.11.1 Restraint subgoal size

Using the subgoal abstract(Size) attribute, a tabled subgoal that that is too large is abstracted
by replacing compound subterms of the goal with variables. In a nutshell, a goal p(s(s(s(s(s(0)))))) is
converted into the semantically equivalent subgoal if the subgoal size is limited to 3.

...,
p(s(s(s(X)))), X = s(s(0)),
...,

As a result of this, terms stored in the variant trie that maps goal variants into answer tables is limited.
Note that does not limit the number of answer tables as atomic values are never abstracted and there
are, for example, an infinite number of integers. Note that restraining the subgoal size does not affect
the semantics, provided more general queries on the predicate include all answers that more specific
queries do. See also call substitution as described in section 7.5. In addition to the tripwire actions,
the max table subgoal size action can be set to the value abstract:

abstract
Abstract the goal as described above and provide correctness by adding the required unification
instructions after the goal.

7.11.2 Restraint answer size

Using the answer abstract(Size) attribute, a tabled subgoal that produces answer substitutions
(instances of the variables in the goal) whose size exceed Size are trapped. In addition to the tripwire
actions, answer abstraction defines two additional modes for dealing with too large answers as defines
by the Prolog flag max table answer size action:

fail
Ignore the too large answer. Note that this is semantically incorrect.

SWI-Prolog 9.3 Reference Manual

7.11. TABLING RESTRAINTS: BOUNDED RATIONALITY AND TRIPWIRES 371

bounded rationality
In this mode, the large answer is abstracted in the same way as subgoals are abstracted (see
section 7.11.1). This is semantically incorrect, but our third truth value undefined is used to
remedy this problem. In other words, the abstracted value is added to the table as undefined
and all conclusions that depend on usage of this abstracted value are thus undefined unless they
can also be proved some other way.

7.11.3 Restraint answer count

Finally, using “as max answers(Count)” or the Prolog flag max answers for subgoal, the
number of answers in a table is restrained. In addition to the tripwire actions this restraint supports
the action bounded rationality7. If the restraint is reached in the bounded rationality mode the
system takes the following actions:

• Ignore the answer that triggered the restraint.

• Prune the choice points of the tabled goal to avoid more answers.

• Add an new answer to the table that does not bind any variables, i.e., an empty answer substi-
tution. This answer is conditional on answer count restraint/0.

answer count restraint [undefined]

This predicate is undefined in the sense of well founded semantics (see section 7.6 and
undefined/0). Any answer that depends on this condition is undefined because the
max answers restraint on some table was violated.

The program and subsequent query below illustrate the behavior.

:- table p/2 as max_answers(3).

p(M,N) :-
between(1,M,N).

?- p(1 000 000, X).
X = 3 ;
X = 2 ;
X = 1 ;
% WFS residual program

p(1000000, X) :-
answer_count_restraint.

p(1000000, X).

7The action complete soundly is supported as a synonym for XSB compatibility

SWI-Prolog 9.3 Reference Manual

372 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

7.12 Tabling predicate reference

:- table(:Specification)
Prepare the predicates specified by Specification for tabled execution. Specification is a
comma-list, each member specifying tabled execution for a specific predicate. The individual
specification is either a predicate indicator (name/arity or name//arity) or head specifying
tabling with answer subsumption.

Although table/1 is normally used as a directive, SWI-Prolog allows calling it as a runtime
predicate to prepare an existing predicate for tabled execution. The predicate untable/1 can
be used to remove the tabling instrumentation from a predicate.

The example below prepares the predicate edge/2 and the non-terminal statement//1 for tabled
execution.

:- table edge/2, statement//1.

Below is an example declaring a predicate to use tabling with answer subsumption. Answer
subsumption or mode directed tabling is discussed in section 7.3.

:- table connection(_,_,min).

Additional tabling options can be provided using a term as/2, which can be applied to a single
specification or a comma list of specifications. The options themselves are a comma-list of one
or more of the following atoms:

variant
Default. Create a table for each call variant.

subsumptive
Instead of creating a new table for each call variant, check whether there is a completed
table for a more general goal and if this is the case extract the answers from this table.
See section 7.5.

shared
Declare that the table shall be shared between threads. See section 7.9

private
Declare that the table shall be local to the calling thread. See section 7.9

incremental
Declare that the table depends on other tables and incremental dynamic predicates. See
section 7.7.

dynamic
Declare that the predicate is dynamic. Often used together with incremental.

This syntax is closely related to the table declarations used in XSB Prolog. Where in XSB
as is an operator with priority above the priority of the comma, it is an operator with priority
below the comma in SWI-Prolog. Therefore, multiple predicates or options must be enclosed
in parenthesis. For example:

SWI-Prolog 9.3 Reference Manual

7.12. TABLING PREDICATE REFERENCE 373

:- table p/1 as subsumptive.
:- table (q/1, r/2) as subsumptive.

tnot(:Goal)
The tnot/1 predicate implements tabled negation. This predicate realises Well Founded
Semantics. See section 7.6 for details.

not exists(:Goal)
Handles tabled negation for non-ground (floundering) Goal as well as non tabled goals. If Goal
is ground and tabled not exists/1 calls tnot/1. Otherwise it used tabled call(Goal)
to create a table and subsequently uses tnot/1 on the created table.

Logically, not exists(p(X)) is defined as tnot(∃X(p(X)))

Note that each Goal variant populates a table for tabled call/1. Applications may need to
abolish such tables to limit memory usage or guarantee consistency ‘after the world changed’.

tabled call(:Goal)
Helper predicate for not exists/1. Defined as below. The helper is public because appli-
cation may need to abolish its tables.

:- table tabled_call/1 as variant.
tabled_call(Goal) :- call(Goal).

current table(:Variant, -Trie)
True when Trie is the answer table for Variant.

untable(:Specification)
Remove the tables and tabling instrumentation for the specified predicates. Specification is
compatible with table/1, although tabling with answer subsumption may be removed using
a name/arity specification. The untable/1 predicate is first of all intended for examining the
effect of various tabling scenarios on a particular program interactively from the toplevel.

Note that although using untable/1 followed by table/1 may be used to flush all
tables associated with the given predicate(s), flushing tables should be done using one of
the table abolish predicates both for better performance and compatibility with other Pro-
log implementations: abolish all tables/0, abolish private tables/0,
abolish shared tables/0, abolish module tables/1 or
abolish table subgoals/1. For example, to remove all tables for p/3, run the
goal below. The predicate functor/3 may be used to create a head term from a given name
and arity.

?- abolish_table_subgoals(p(_,_,_)).

SWI-Prolog 9.3 Reference Manual

374 CHAPTER 7. TABLED EXECUTION (SLG RESOLUTION)

abolish all tables
Remove all tables, both private and shared (see section 7.9). Since the introduction of incremen-
tal tabling (see section 7.7) abolishing tables is rarely required to maintain consistency of the ta-
bles with a changed environment. Tables may be abolished regardless of the current state of the
table. Incomplete tables are flagged for destruction when they are completed. See section 7.9.1
for the semantics of destroying shared tables and the following predicates for destroying a
subset of the tables: abolish private tables/0, abolish shared tables/0,
abolish table subgoals/1 and abolish module tables/1.

abolish private tables
Abolish all tables that are private to this thread.

abolish shared tables
Abolish all tables that are shared between threads. See also section 7.9.1

abolish table subgoals(:Subgoal)
Abolish all tables that unify with SubGoal. Tables that have undefined answers that depend of
the abolished table are abolished as well (recursively). For example, given the program below,
abolish table subgoals(und) will also abolish the table for p/0 because its answer
refers to und/0.

p :- und.
und :- tnot(und).

abolish module tables(+Module)
Remove all tables that belong to predicates in Module.

abolish nonincremental tables
abolish nonincremental tables(+Options)

Similar to abolish all tables/0, but does not abolish incremental tables as their
consistency is maintained by the system. Options:

on incomplete(Action)
Action is one of skip or error. If Action is skip, do not delete the table.8

7.13 About the tabling implementation

The SWI-Prolog implementation uses Delimited continuations (see section 4.9 to realise sus-
pension of variant calls. The initial version was written by Benoit Desouter and described in
[Desouter et al., 2015]. We moved the main data structures required for tabling, the answer tables
(see section 4.14.4) and the worklist to SWI-Prolog’s C core. Mode directed tabling (section 7.3) is
based on a prototype implementation by Fabrizio Riguzzi.

The implementation of dynamic SCCs, dynamically stratified negation and Well Founded Seman-
tics was initiated by Benjamin Grosof from Kyndi and was realised with a lot of help by Theresa Swift,
David Warren and Fabrizio Riguzzi, as well as publications about XSB [Sagonas & Swift, 1998,
Sagonas et al., 2000].

8BUG: XSB marks such tables for deletion after completion. That is not yet implemented.

SWI-Prolog 9.3 Reference Manual

7.13. ABOUT THE TABLING IMPLEMENTATION 375

The table/1 directive causes the creation of a wrapper calling the renamed original predicate.
For example, the program in section 7.2 is translated into the following program. We give this in-
formation to improve your understanding of the current tabling implementation. Future versions are
likely to use a more low-level translation that is not based on wrappers.

connection(A, B) :-
start_tabling(user:connection(A, B),

’connection tabled’(A, B)).

’connection tabled’(X, Y) :-
connection(X, Z),
connection(Z, Y).

’connection tabled’(X, Y) :-
connection(Y, X).

’connection tabled’(’Amsterdam’, ’Schiphol’).
’connection tabled’(’Amsterdam’, ’Haarlem’).
’connection tabled’(’Schiphol’, ’Leiden’).
’connection tabled’(’Haarlem’, ’Leiden’).

Status of tabling

The current implementation is merely a first prototype. It needs several enhancements before we
can consider it a serious competitor to Prolog systems with mature tabling such as XSB, YAP and
B-Prolog. In particular,

• The performance needs to be improved.

• Memory usage needs to be reduced.

• Tables must be shared between threads, both to reduce space and avoid recomputation.

• Tables must be invalidated and reclaimed automatically.

• Notably XSB supports incremental tabling and well-founded semantics under negation.

SWI-Prolog 9.3 Reference Manual

Constraint Logic Programming 8
This chapter describes the extensions primarily designed to support constraint logic program-
ming (CLP), an important declarative programming paradigm with countless practical applications.

CLP(X) stands for constraint logic programming over the domain X . Plain Prolog can be re-
garded as CLP(H), where H stands for Herbrand terms. Over this domain, =/2 and dif/2 are
the most important constraints that express, respectively, equality and disequality of terms. Plain
Prolog can thus be regarded as a special case of CLP.

There are dedicated constraint solvers for several important domains:

• CLP(FD) for integers (section A.9)

• CLP(B) for Boolean variables (section A.8)

• CLP(Q) for rational numbers (section A.10)

• CLP(R) for floating point numbers (section A.10).

In addition, CHR (chapter 9) provides a general purpose constraint handling language to reason
over user-defined constraints.

Constraints blend in naturally into Prolog programs, and behave exactly like plain Prolog pred-
icates in those cases that can also be expressed without constraints. However, there are two key
differences between constraints and plain Prolog predicates:

• Constraints can delay checks until their truth can be safely decided. This feature can signifi-
cantly increase the generality of your programs, and preserves their relational nature.

• Constraints can take into account everything you state about the entities you reason about,
independent of the order in which you state it, both before and also during any search for
concrete solutions. Using available information to prune parts of the search space is called
constraint propagation, and it is performed automatically by the available constraint solvers
for their respective domains. This feature can significantly increase the performance of your
programs.

Due to these two key advantages over plain Prolog, CLP has become an extremely important
declarative programming paradigm in practice.

Among its most important and typical instances is CLP(FD), constraint logic programming
over integers. For example, using constraints, you can state in the most general way that a vari-
able X is an integer greater than 0. If, later, X is bound to a concrete integer, the constraint solver
automatically ensures this. If you in addition constrain X to integers less than 3, the constraint solver
combines the existing knowledge to infer that X is either 1 or 2 (see below). To obtain concrete values
for X, you can ask the solver to label X and produce 1 and 2 on backtracking. See section A.9.

SWI-Prolog 9.3 Reference Manual

8.1. ATTRIBUTED VARIABLES 377

?- use_module(library(clpfd)).
...
true.

?- X #> 0, X #< 3.
X in 1..2.

?- X #> 0, X #< 3, indomain(X).
X = 1 ;
X = 2.

Contrast this with plain Prolog, which has no efficient means to deal with (integer) X > 0 and X < 3.
At best it could translate X > 0 to between(1, infinite, X) and a similar primitive for X < 3. If the
two are combined it has no choice but to generate and test over this infinite two-dimensional space.

Using constraints therefore makes your program more declarative in that it frees you from some
procedural aspects and limitations of Prolog.

When working with constraints, keep in mind the following:

• As with plain Prolog, !/0 also destroys the declarative semantics of constraints. A cut after
a goal that is delayed may prematurely prune the search space, because the truth of delayed
goals is not yet established. There are several ways to avoid cuts in constraint logic programs,
retaining both generality and determinism of your programs. See for example zcompare/3.

• Term-copying operations (assertz/1, retract/1, findall/3, copy term/2, etc.)
generally also copy constraints. The effect varies from ok, silent copying of huge constraint
networks to violations of the internal consistency of constraint networks. As a rule of thumb,
copying terms holding attributes must be deprecated. If you need to reason about a term that is
involved in constraints, use copy term/3 to obtain the constraints as Prolog goals, and use
these goals for further processing.

All of the mentioned constraint solvers are implemented using the attributed variables interface
described in section 8.1. These are lower-level predicates that are mainly intended for library authors,
not for typical Prolog programmers.

8.1 Attributed variables

Attributed variables provide a technique for extending the Prolog unification algorithm
[Holzbaur, 1992] by hooking the binding of attributed variables. There is no consensus in the Pro-
log community on the exact definition and interface to attributed variables. The SWI-Prolog interface
is identical to the one realised by Bart Demoen for hProlog [Demoen, 2002]. This interface is sim-
ple and available on all Prolog systems that can run the Leuven CHR system (see chapter 9 and the
Leuven CHR page).

Binding an attributed variable schedules a goal to be executed at the first possible opportunity.
In the current implementation the hooks are executed immediately after a successful unification of
the clause-head or successful completion of a foreign language (built-in) predicate. Each attribute
is associated to a module, and the hook (attr unify hook/2) is executed in this module. The
example below realises a very simple and incomplete finite domain reasoner:

SWI-Prolog 9.3 Reference Manual

https://dtai.cs.kuleuven.be/CHR/

378 CHAPTER 8. CONSTRAINT LOGIC PROGRAMMING

:- module(domain,
[domain/2 % Var, ?Domain
]).

:- use_module(library(ordsets)).

domain(X, Dom) :-
var(Dom), !,
get_attr(X, domain, Dom).

domain(X, List) :-
list_to_ord_set(List, Domain),
put_attr(Y, domain, Domain),
X = Y.

% An attributed variable with attribute value Domain has been
% assigned the value Y

attr_unify_hook(Domain, Y) :-
(get_attr(Y, domain, Dom2)
-> ord_intersection(Domain, Dom2, NewDomain),

(NewDomain == []
-> fail
; NewDomain = [Value]
-> Y = Value
; put_attr(Y, domain, NewDomain)
)

; var(Y)
-> put_attr(Y, domain, Domain)
; ord_memberchk(Y, Domain)
).

% Translate attributes from this module to residual goals

attribute_goals(X) -->
{ get_attr(X, domain, List) },
[domain(X, List)].

Before explaining the code we give some example queries:

?- domain(X, [a,b]), X = c fail
?- domain(X, [a,b]), domain(X, [a,c]). X = a
?- domain(X, [a,b,c]), domain(X, [a,c]). domain(X, [a, c])

The predicate domain/2 fetches (first clause) or assigns (second clause) the variable a domain,
a set of values the variable can be unified with. In the second clause, domain/2 first associates the
domain with a fresh variable (Y) and then unifies X to this variable to deal with the possibility that
X already has a domain. The predicate attr unify hook/2 (see below) is a hook called after a

SWI-Prolog 9.3 Reference Manual

8.1. ATTRIBUTED VARIABLES 379

variable with a domain is assigned a value. In the simple case where the variable is bound to a concrete
value, we simply check whether this value is in the domain. Otherwise we take the intersection of the
domains and either fail if the intersection is empty (first example), assign the value if there is only one
value in the intersection (second example), or assign the intersection as the new domain of the variable
(third example). The nonterminal attribute goals//1 is used to translate remaining attributes to user-
readable goals that, when called, reinstate these attributes or attributes that correspond to equivalent
constraints.

Implementing constraint solvers (chapter 8) is the most common, but not the only use case for
attributed variables: If you implement algorithms that require efficient destructive modifications, then
using attributed variables is often a more convenient and somewhat more declarative alternative for
setarg/3 and related predicates whose sharing semantics are harder to understand. In particular,
attributed variables make it easy to express graph networks and graph-oriented algorithms, since each
variable can store pointers to further variables in its attributes. In such cases, the use of attributed vari-
ables should be confined within a module that exposes its functionality via more declarative interface
predicates.

8.1.1 Attribute manipulation predicates

attvar(@Term)
Succeeds if Term is an attributed variable. Note that var/1 also succeeds on attributed vari-
ables. Attributed variables are created with put attr/3.

put attr(+Var, +Module, +Value)
If Var is a variable or attributed variable, set the value for the attribute named Module to Value.
If an attribute with this name is already associated with Var, the old value is replaced. Back-
tracking will restore the old value (i.e., an attribute is a mutable term; see also setarg/3).
This predicate raises an uninstantiation error if Var is not a variable, and a type error if Module
is not an atom.

get attr(+Var, +Module, -Value)
Request the current value for the attribute named Module. If Var is not an attributed variable
or the named attribute is not associated to Var this predicate fails silently. If Module is not an
atom, a type error is raised.

del attr(+Var, +Module)
Delete the named attribute. If Var loses its last attribute it is transformed back into a traditional
Prolog variable. If Module is not an atom, a type error is raised. In all other cases this predicate
succeeds regardless of whether or not the named attribute is present.

8.1.2 Attributed variable hooks

Attribute names are linked to modules. This means that certain operations on attributed variables
cause hooks to be called in the module whose name matches the attribute name.

attr unify hook(+AttValue, +VarValue)
A hook that must be defined in the module to which an attributed variable refers. It is called
after the attributed variable has been unified with a non-var term, possibly another attributed
variable. AttValue is the attribute that was associated to the variable in this module and VarValue

SWI-Prolog 9.3 Reference Manual

380 CHAPTER 8. CONSTRAINT LOGIC PROGRAMMING

is the new value of the variable. If this predicate fails, the unification fails. If VarValue is
another attributed variable the hook often combines the two attributes and associates the
combined attribute with VarValue using put attr/3.

To be done The way in which this hook currently works makes the implementation of important
classes of constraint solvers impossible or at least extremely impractical. For increased gen-
erality and convenience, simultaneous unifications as in [X,Y]=[0,1] should be processed
sequentially by the Prolog engine, or a more general hook should be provided in the future. See
[Triska, 2016] for more information.

attribute goals(+Var) //
This nonterminal is the main mechanism in which residual constraints are obtained. It is called
in every module where it is defined, and Var has an attribute. Its argument is that variable.
In each module, attribute goals//1 must describe a list of Prolog goals that are declaratively
equivalent to the goals that caused the attributes of that module to be present and in their
current state. It is always possible to do this (since these attributes stem from such goals), and
it is the responsibility of constraint library authors to provide this mapping without exposing
any library internals. Ideally and typically, remaining relevant attributes are mapped to pure
and potentially simplified Prolog goals that satisfy both of the following:

• They are declaratively equivalent to the constraints that were originally posted.

• They use only predicates that are themselves exported and documented in the modules
they stem from.

The latter property ensures that users can reason about residual goals, and see for themselves
whether a constraint library behaves correctly. It is this property that makes it possible to
thoroughly test constraint solvers by contrasting obtained residual goals with expected answers.

This nonterminal is used by copy term/3, on which the Prolog top level relies to ensure the
basic invariant of pure Prolog programs: The answer is declaratively equivalent to the query.

The copy term/3 primitive uses attribute goals//1 inside a findall/3 call. This implies
that attribute goals//1 can unify variables and modify attributes, for example, to tell other
hooks that some attribute has already been taken care of. This nonterminal is also used by
frozen/2 which does not create a copy. Ideally attribute goals//1 should not modify any-
thing to allow direct application in frozen/2. In the current implementation frozen/2
backtracks over attribute goals//1 to tolerate the current behavior. This work-around harms the
performance of frozen/2. New implementations of attribute goals//1 should avoid relying
on backtracking when feasible. Future versions of frozen/2 and copy term/3may require
attribute goals//1 not to modify any variables or attributes.

Note that instead of defaulty representations, a Prolog list is used to represent residual goals.
This simplifies processing and reasoning about residual goals throughout all programs that need
this functionality.

project attributes(+QueryVars, +ResidualVars)
A hook that can be defined in each module to project constraints on newly introduced variables
back to the query variables. QueryVars is the list of variables occurring in the query and
ResidualVars is a list of variables that have attributes attached. There may be variables that
occur in both lists. If possible, project attributes/2 should change the attributes so

SWI-Prolog 9.3 Reference Manual

8.1. ATTRIBUTED VARIABLES 381

that all constraints are expressed as residual goals that refer only to QueryVars, while other
variables are existentially quantified.

attr portray hook(+AttValue, +Var) [deprecated]

Called by write term/2 and friends for each attribute if the option attributes(portray)
is in effect. If the hook succeeds the attribute is considered printed. Otherwise
Module = ... is printed to indicate the existence of a variable. This predicate is
deprecated because it cannot work with pure interface predicates like copy term/3. Use
attribute goals//1 instead to map attributes to residual goals.

8.1.3 Operations on terms with attributed variables

copy term(+Term, -Copy, -Gs)
Create a regular term Copy as a copy of Term (without any attributes), and a list Gs of goals
that represents the attributes. The goal maplist(call, Gs) recreates the attributes for
Copy. The nonterminal attribute goals//1, as defined in the modules the attributes stem from, is
used to convert attributes to lists of goals.

This building block is used by the top level to report pending attributes in a portable and under-
standable fashion. This predicate is the preferred way to reason about and communicate terms
with constraints.

The form copy term(Term, Term, Gs) can be used to reason about the constraints in
which Term is involved.

copy term nat(+Term, -Copy)
As copy term/2. Attributes, however, are not copied but replaced by fresh variables.

term attvars(+Term, -AttVars)
AttVars is a list of all attributed variables in Term and its attributes. That is,
term attvars/2 works recursively through attributes. This predicate is cycle-safe.
The goal term attvars(Term, []) is an efficient test that Term has no attributes; scanning
the term is aborted after the first attributed variable is found.

8.1.4 Special purpose predicates for attributes

Normal user code should deal with put attr/3, get attr/3 and del attr/2. The routines in
this section fetch or set the entire attribute list of a variable. Use of these predicates is anticipated to
be restricted to printing and other special purpose operations.

get attrs(+Var, -Attributes)
Get all attributes of Var. Attributes is a term of the form att(Module, Value, MoreAttributes),
where MoreAttributes is [] for the last attribute.

put attrs(+Var, -Attributes)
Set all attributes of Var. See get attrs/2 for a description of Attributes.

del attrs(+Var)
If Var is an attributed variable, delete all its attributes. In all other cases, this predicate succeeds
without side-effects.

SWI-Prolog 9.3 Reference Manual

382 CHAPTER 8. CONSTRAINT LOGIC PROGRAMMING

8.2 Coroutining

Coroutining allows us to delay the execution of Prolog goals until their truth can be safely decided.
Among the most important coroutining predicates is dif/2, which expresses disequality of terms

in a sound way. The actual test is delayed until the terms are sufficiently different, or have become
identical. For example:

?- dif(X, Y), X = a, Y = b.
X = a,
Y = b.

?- dif(X, Y), X = a, Y = a.
false.

There are also lower-level coroutining predicates that are intended as building blocks for higher-level
constraints. For example, we can use freeze/2 to define a variable that can only be assigned an
atom:

?- freeze(X, atom(X)), X = a.
X = a.

In this case, calling atom/1 earlier causes the whole query to fail:

?- atom(X), X = a.
false.

If available, domain-specific constraints should be used in such cases. For example, to state that a
variable can only assume even integers, use the CLP(FD) constraint #=/2:

?- X mod 2 #= 0.
X mod 2#=0.

Importantly, domain-specific constraints can apply stronger propagation by exploiting logical proper-
ties of their respective domains. For example:

?- X mod 2 #= 0, X in 1..3.
X = 2.

Remaining constraints, such as X mod 2#=0 in the example above, are called residual goals. They
are said to flounder, because their truth is not yet decided. Declaratively, the query is only true if all
residual goals are satisfiable. Use call residue vars/2 to collect all variables that are involved
in constraints.

dif(@A, @B)
The dif/2 predicate is a constraint that is true if and only if A and B are different terms. If
A and B can never unify, dif/2 succeeds deterministically. If A and B are identical, it fails

SWI-Prolog 9.3 Reference Manual

8.2. COROUTINING 383

immediately. Finally, if A and B can unify, goals are delayed that prevent A and B to become
equal. It is this last property that makes dif/2 a more general and more declarative alternative
for \=/2 and related predicates.

This predicate behaves as if defined by dif(X, Y) :- when(?=(X,Y), X \== Y).
See also ?=/2. The implementation can deal with cyclic terms.

The dif/2 predicate is realised using attributed variables associated with the module dif. It
is an autoloaded predicate that is defined in the library dif.

freeze(+Var, :Goal)
Delay the execution of Goal until Var is bound (i.e., is not a variable or attributed variable).
If Var is bound on entry freeze/2 is equivalent to call/1. The freeze/2 predicate is
realised using an attributed variable associated with the module freeze. See also frozen/2.

frozen(@Term, -Goal) [det]

Unify Goal with the goal or conjunction of goals delayed on some attributed variable in Term.
If Term is free of attributed variables, Goal is unified to true. Note that frozen/2 reports
all delayed goals, not only those delayed due to freeze/2. The goals are extracted using
copy term/3.1 See also term attvars/2 and call residue vars/2.

when(@Condition, :Goal)
Execute Goal when Condition becomes true. Condition is one of ?=(X, Y), nonvar(X),
ground(X), ,(Cond1, Cond2) or ;(Cond1, Cond2). See also freeze/2 and dif/2. The
implementation can deal with cyclic terms in X and Y.

The when/2 predicate is realised using attributed variables associated with the module when.
It is defined in the autoload library when.

call residue vars(:Goal, -Vars)
Find residual attributed variables left by Goal. This predicate is intended for reasoning about
and debugging programs that use coroutining or constraints. To see why this predicate is
necessary, consider a predicate that poses contradicting constraints on a variable, and where
that variable does not appear in any argument of the predicate and hence does not yield any
residual goals on the toplevel when the predicate is invoked. Such programs should fail,
but sometimes succeed because the constraint solver is too weak to detect the contradiction.
Ideally, delayed goals and constraints are all executed at the end of the computation. The
meta predicate call residue vars/2 finds variables that are given attributes or whose
attributes are modified by Goal, regardless of whether or not these variables are reachable from
the arguments of Goal.2.

1Versions prior to 8.3.7 only report goals delayed using freeze/2 on a plain variable. The new behaviour is compatible
with SICStus.

2The implementation of call residue vars/2 is completely redone in version 7.3.2 (7.2.1) after discussion with
Bart Demoen. The current implementation no longer performs full scans of the stacks. The overhead is proportional to the
number of attributed variables on the stack, dead or alive.

SWI-Prolog 9.3 Reference Manual

CHR: Constraint Handling
Rules 9
This chapter is written by Tom Schrijvers, K.U. Leuven, and adjustments by Jan Wielemaker.

The CHR system of SWI-Prolog is the K.U.Leuven CHR system. The runtime environment is
written by Christian Holzbaur and Tom Schrijvers while the compiler is written by Tom Schrijvers.
Both are integrated with SWI-Prolog and licensed under compatible conditions with permission from
the authors.

The main reference for the K.U.Leuven CHR system is:

• T. Schrijvers, and B. Demoen, The K.U.Leuven CHR System: Implementation and Applica-
tion, First Workshop on Constraint Handling Rules: Selected Contributions (Frühwirth, T. and
Meister, M., eds.), pp. 1–5, 2004.

On the K.U.Leuven CHR website (http://dtai.cs.kuleuven.be/CHR/) you can find
more related papers, references and example programs.

9.1 Introduction to CHR

Constraint Handling Rules (CHR) is a committed-choice rule-based language embedded in Prolog. It
is designed for writing constraint solvers and is particularly useful for providing application-specific
constraints. It has been used in many kinds of applications, like scheduling, model checking, abduc-
tion, and type checking, among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap), Haskell
and Java. This CHR system is based on the compilation scheme and runtime environment of CHR in
SICStus.

In this documentation we restrict ourselves to giving a short overview of CHR in general and
mainly focus on elements specific to this implementation. For a more thorough review of CHR we
refer the reader to [Frühwirth, 2009]. More background on CHR can be found at [Frühwirth,].

In section 9.2 we present the syntax of CHR in Prolog and explain informally its operational se-
mantics. Next, section 9.3 deals with practical issues of writing and compiling Prolog programs con-
taining CHR. Section 9.4 explains the (currently primitive) CHR debugging facilities. Section 9.4.3
provides a few useful predicates to inspect the constraint store, and section 9.5 illustrates CHR with
two example programs. Section 9.6 describes some compatibility issues with older versions of this
system and SICStus’ CHR system. Finally, section 9.7 concludes with a few practical guidelines for
using CHR.

SWI-Prolog 9.3 Reference Manual

http://dtai.cs.kuleuven.be/CHR/

9.2. CHR SYNTAX AND SEMANTICS 385

9.2 CHR Syntax and Semantics

9.2.1 Syntax of CHR rules

rules --> rule, rules ; [].

rule --> name, actual_rule, pragma, [atom(’.’)].

name --> atom, [atom(’@’)] ; [].

actual_rule --> simplification_rule.
actual_rule --> propagation_rule.
actual_rule --> simpagation_rule.

simplification_rule --> head, [atom(’<=>’)], guard, body.
propagation_rule --> head, [atom(’==>’)], guard, body.
simpagation_rule --> head, [atom(’\’)], head, [atom(’<=>’)],

guard, body.

head --> constraints.

constraints --> constraint, constraint_id.
constraints --> constraint, constraint_id,

[atom(’,’)], constraints.

constraint --> compound_term.

constraint_id --> [].
constraint_id --> [atom(’#’)], variable.
constraint_id --> [atom(’#’)], [atom(’passive’)] .

guard --> [] ; goal, [atom(’|’)].

body --> goal.

pragma --> [].
pragma --> [atom(’pragma’)], actual_pragmas.

actual_pragmas --> actual_pragma.
actual_pragmas --> actual_pragma, [atom(’,’)], actual_pragmas.

actual_pragma --> [atom(’passive(’)], variable, [atom(’)’)].

Note that the guard of a rule may not contain any goal that binds a variable in the head of the rule with
a non-variable or with another variable in the head of the rule. It may, however, bind variables that do
not appear in the head of the rule, e.g. an auxiliary variable introduced in the guard.

SWI-Prolog 9.3 Reference Manual

386 CHAPTER 9. CHR: CONSTRAINT HANDLING RULES

9.2.2 Semantics of CHR

In this subsection the operational semantics of CHR in Prolog are presented informally. They do not
differ essentially from other CHR systems.

When a constraint is called, it is considered an active constraint and the system will try to apply
the rules to it. Rules are tried and executed sequentially in the order they are written.

A rule is conceptually tried for an active constraint in the following way. The active constraint
is matched with a constraint in the head of the rule. If more constraints appear in the head, they are
looked for among the suspended constraints, which are called passive constraints in this context. If
the necessary passive constraints can be found and all match with the head of the rule and the guard of
the rule succeeds, then the rule is committed and the body of the rule executed. If not all the necessary
passive constraints can be found, or the matching or the guard fails, then the body is not executed and
the process of trying and executing simply continues with the following rules. If for a rule there are
multiple constraints in the head, the active constraint will try the rule sequentially multiple times, each
time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by some rule, or
after the last rule has been processed. In the latter case the active constraint becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The other way
it may interact again with the rules is when a variable appearing in the constraint becomes bound to
either a non-variable or another variable involved in one or more constraints. In that case the constraint
is triggered, i.e. it becomes an active constraint and all the rules are tried.

Rule Types There are three different kinds of rules, each with its specific semantics:

• simplification
The simplification rule removes the constraints in its head and calls its body.

• propagation
The propagation rule calls its body exactly once for the constraints in its head.

• simpagation
The simpagation rule removes the constraints in its head after the \ and then calls its body. It is
an optimization of simplification rules of the form:

constraints1, constraints2 <=> constraints1, body

Namely, in the simpagation form:

constraints1\constraints2 <=> body

The constraints1 constraints are not called in the body.

Rule Names Naming a rule is optional and has no semantic meaning. It only functions as documen-
tation for the programmer.

Pragmas The semantics of the pragmas are:

passive(Identifier)
The constraint in the head of a rule Identifier can only match a passive constraint in that rule.
There is an abbreviated syntax for this pragma. Instead of:

SWI-Prolog 9.3 Reference Manual

9.3. CHR IN SWI-PROLOG PROGRAMS 387

..., c # Id, ... <=> ... pragma passive(Id)

you can also write

..., c # passive, ... <=> ...

Additional pragmas may be released in the future.

:- chr option(+Option, +Value)
It is possible to specify options that apply to all the CHR rules in the module. Options are
specified with the chr option/2 declaration:

:- chr_option(Option,Value).

and may appear in the file anywhere after the first constraints declaration.

Available options are:

check guard bindings
This option controls whether guards should be checked for (illegal) variable bindings or
not. Possible values for this option are on to enable the checks, and off to disable the
checks. If this option is on, any guard fails when it binds a variable that appears in the
head of the rule. When the option is off (default), the behaviour of a binding in the guard
is undefined.

optimize
This option controls the degree of optimization. Possible values are full to enable
all available optimizations, and off (default) to disable all optimizations. The default
is derived from the SWI-Prolog flag optimise, where true is mapped to full.
Therefore the command line option -O provides full CHR optimization. If optimization
is enabled, debugging must be disabled.

debug
This option enables or disables the possibility to debug the CHR code. Possible values
are on (default) and off. See section 9.4 for more details on debugging. The default is
derived from the Prolog flag generate debug info, which is true by default. See
--no-debug. If debugging is enabled, optimization must be disabled.

9.3 CHR in SWI-Prolog Programs

9.3.1 Embedding CHR in Prolog Programs

The CHR constraints defined in a .pl file are associated with a module. The default module is user.
One should never load different .pl files with the same CHR module name.

SWI-Prolog 9.3 Reference Manual

388 CHAPTER 9. CHR: CONSTRAINT HANDLING RULES

9.3.2 CHR Constraint declaration

:- chr constraint(+Specifier)
Every constraint used in CHR rules has to be declared with a chr constraint/1 decla-
ration by the constraint specifier. For convenience multiple constraints may be declared at
once with the same chr constraint/1 declaration followed by a comma-separated list of
constraint specifiers.

A constraint specifier is, in its compact form, F/A where F and A are respectively the functor
name and arity of the constraint, e.g.:

:- chr_constraint foo/1.
:- chr_constraint bar/2, baz/3.

In its extended form, a constraint specifier is c(A1,...,An) where c is the constraint’s func-
tor, n its arity and the Ai are argument specifiers. An argument specifier is a mode, optionally
followed by a type. Example:

:- chr_constraint get_value(+,?).
:- chr_constraint domain(?int, +list(int)),

alldifferent(?list(int)).

Modes A mode is one of:

-
The corresponding argument of every occurrence of the constraint is always unbound.

+
The corresponding argument of every occurrence of the constraint is always ground.

?
The corresponding argument of every occurrence of the constraint can have any instantiation,
which may change over time. This is the default value.

Types A type can be a user-defined type or one of the built-in types. A type comprises a (possibly
infinite) set of values. The type declaration for a constraint argument means that for every instance of
that constraint the corresponding argument is only ever bound to values in that set. It does not state
that the argument necessarily has to be bound to a value.

The built-in types are:

int
The corresponding argument of every occurrence of the constraint is an integer number.

dense int
The corresponding argument of every occurrence of the constraint is an integer that can be used
as an array index. Note that if this argument takes values in [0, n], the array takes O(n) space.

SWI-Prolog 9.3 Reference Manual

9.3. CHR IN SWI-PROLOG PROGRAMS 389

float
. . . a floating point number.

number
. . . a number.

natural
. . . a positive integer.

any
The corresponding argument of every occurrence of the constraint can have any type. This is
the default value.

:- chr type(+TypeDeclaration)
User-defined types are algebraic data types, similar to those in Haskell or the discriminated
unions in Mercury. An algebraic data type is defined using chr type/1:

:- chr_type type ---> body.

If the type term is a functor of arity zero (i.e. one having zero arguments), it names a monomor-
phic type. Otherwise, it names a polymorphic type; the arguments of the functor must be distinct
type variables. The body term is defined as a sequence of constructor definitions separated by
semi-colons.

Each constructor definition must be a functor whose arguments (if any) are types. Discriminated
union definitions must be transparent: all type variables occurring in the body must also occur
in the type.

Here are some examples of algebraic data type definitions:

:- chr_type color ---> red ; blue ; yellow ; green.

:- chr_type tree ---> empty ; leaf(int) ; branch(tree, tree).

:- chr_type list(T) ---> [] ; [T | list(T)].

:- chr_type pair(T1, T2) ---> (T1 - T2).

Each algebraic data type definition introduces a distinct type. Two algebraic data types that
have the same bodies are considered to be distinct types (name equivalence).

Constructors may be overloaded among different types: there may be any number of construc-
tors with a given name and arity, so long as they all have different types.

Aliases can be defined using ==. For example, if your program uses lists of lists of integers,
you can define an alias as follows:

:- chr_type lli == list(list(int)).

SWI-Prolog 9.3 Reference Manual

390 CHAPTER 9. CHR: CONSTRAINT HANDLING RULES

Type Checking Currently two complementary forms of type checking are performed:

1. Static type checking is always performed by the compiler. It is limited to CHR rule heads and
CHR constraint calls in rule bodies.

Two kinds of type error are detected. The first is where a variable has to belong to two types.
For example, in the program:

:-chr_type foo ---> foo.
:-chr_type bar ---> bar.

:-chr_constraint abc(?foo).
:-chr_constraint def(?bar).

foobar @ abc(X) <=> def(X).

the variable X has to be of both type foo and bar. This is reported as a type clash error:

CHR compiler ERROR:
‘--> Type clash for variable _ in rule foobar:

expected type foo in body goal def(_, _)
expected type bar in head def(_, _)

The second kind of error is where a functor is used that does not belong to the declared type.
For example in:

:- chr_type foo ---> foo.
:- chr_type bar ---> bar.

:- chr_constraint abc(?foo).

foo @ abc(bar) <=> true.

bar appears in the head of the rule where something of type foo is expected. This is reported
as:

CHR compiler ERROR:
‘--> Invalid functor in head abc(bar) of rule foo:

found ‘bar’,
expected type ‘foo’!

No runtime overhead is incurred in static type checking.

2. Dynamic type checking checks at runtime, during program execution, whether the arguments of
CHR constraints respect their declared types. The when/2 coroutining library is used to delay
dynamic type checks until variables are instantiated.

The kind of error detected by dynamic type checking is where a functor is used that does not
belong to the declared type. For example, for the program:

SWI-Prolog 9.3 Reference Manual

9.4. DEBUGGING CHR PROGRAMS 391

:-chr_type foo ---> foo.

:-chr_constraint abc(?foo).

we get the following error in an erroneous query:

?- abc(bar).
ERROR: Type error: ‘foo’ expected, found ‘bar’

(CHR Runtime Type Error)

Dynamic type checking is weaker than static type checking in the sense that it only checks the
particular program execution at hand rather than all possible executions. It is stronger in the
sense that it tracks types throughout the whole program.

Note that it is enabled only in debug mode, as it incurs some (minor) runtime overhead.

9.3.3 CHR Compilation

The SWI-Prolog CHR compiler exploits term expansion/2 rules to translate the constraint han-
dling rules to plain Prolog. These rules are loaded from the library chr. They are activated if the
compiled file has the .chr extension or after finding a declaration in the following format:

:- chr_constraint ...

It is advised to define CHR rules in a module file, where the module declaration is immediately
followed by including the library(chr) library as exemplified below:

:- module(zebra, [zebra/0]).
:- use_module(library(chr)).

:- chr_constraint ...

Using this style, CHR rules can be defined in ordinary Prolog .pl files and the operator definitions
required by CHR do not leak into modules where they might cause conflicts.

9.4 Debugging CHR programs

The CHR debugging facilities are currently rather limited. Only tracing is currently available. To use
the CHR debugging facilities for a CHR file it must be compiled for debugging. Generating debug
info is controlled by the CHR option debug, whose default is derived from the SWI-Prolog flag
generate debug info. Therefore debug info is provided unless the --no-debug is used.

SWI-Prolog 9.3 Reference Manual

392 CHAPTER 9. CHR: CONSTRAINT HANDLING RULES

9.4.1 CHR debug ports

For CHR constraints the four standard ports are defined:

call
A new constraint is called and becomes active.

exit
An active constraint exits: it has either been inserted in the store after trying all rules or has
been removed from the constraint store.

fail
An active constraint fails.

redo
An active constraint starts looking for an alternative solution.

In addition to the above ports, CHR constraints have five additional ports:

wake
A suspended constraint is woken and becomes active.

insert
An active constraint has tried all rules and is suspended in the constraint store.

remove
An active or passive constraint is removed from the constraint store.

try
An active constraint tries a rule with possibly some passive constraints. The try port is entered
just before committing to the rule.

apply
An active constraint commits to a rule with possibly some passive constraints. The apply port
is entered just after committing to the rule.

9.4.2 Tracing CHR programs

Tracing is enabled with the chr trace/0 predicate and disabled with the chr notrace/0 pred-
icate.

When enabled the tracer will step through the call, exit, fail, wake and apply ports,
accepting debug commands, and simply write out the other ports.

The following debug commands are currently supported:

CHR debug options:

<cr> creep c creep
s skip
g ancestors
n nodebug
b break

SWI-Prolog 9.3 Reference Manual

9.4. DEBUGGING CHR PROGRAMS 393

a abort
f fail
? help h help

Their meaning is:

creep
Step to the next port.

skip
Skip to exit port of this call or wake port.

ancestors
Print list of ancestor call and wake ports.

nodebug
Disable the tracer.

break
Enter a recursive Prolog top level. See break/0.

abort
Exit to the top level. See abort/0.

fail
Insert failure in execution.

help
Print the above available debug options.

9.4.3 CHR Debugging Predicates

The chr module contains several predicates that allow inspecting and printing the content of the
constraint store.

chr trace
Activate the CHR tracer. By default the CHR tracer is activated and deactivated automatically
by the Prolog predicates trace/0 and notrace/0.

chr notrace
Deactivate the CHR tracer. By default the CHR tracer is activated and deactivated automatically
by the Prolog predicates trace/0 and notrace/0.

chr leash(+Spec)
Define the set of CHR ports on which the CHR tracer asks for user intervention (i.e. stops).
Spec is either a list of ports as defined in section 9.4.1 or a predefined ‘alias’. Defined aliases
are: full to stop at all ports, none or off to never stop, and default to stop at the call,
exit, fail, wake and apply ports. See also leash/1.

SWI-Prolog 9.3 Reference Manual

394 CHAPTER 9. CHR: CONSTRAINT HANDLING RULES

chr show store(+Mod)
Prints all suspended constraints of module Mod to the standard output. This predicate is auto-
matically called by the SWI-Prolog top level at the end of each query for every CHR module
currently loaded. The Prolog flag chr toplevel show store controls whether the top
level shows the constraint stores. The value true enables it. Any other value disables it.

find chr constraint(-Constraint)
Returns a constraint in the constraint store. Via backtracking, all constraints in the store can be
enumerated.

9.5 CHR Examples

Here are two example constraint solvers written in CHR.

• The program below defines a solver with one constraint, leq/2, which is a less-than-or-equal
constraint, also known as a partial order constraint.

:- module(leq,[leq/2]).
:- use_module(library(chr)).

:- chr_constraint leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

When the above program is saved in a file and loaded in SWI-Prolog, you can call the leq/2
constraints in a query, e.g.:

?- leq(X,Y), leq(Y,Z).
leq(_G23837, _G23841)
leq(_G23838, _G23841)
leq(_G23837, _G23838)
true .

When the query succeeds, the SWI-Prolog top level prints the content of the CHR constraint
store and displays the bindings generated during the query. Some of the query variables may
have been bound to attributed variables, as you see in the above example.

• The program below implements a simple finite domain constraint solver.

:- module(dom,[dom/2]).
:- use_module(library(chr)).

:- chr_constraint dom(?int,+list(int)).
:- chr_type list(T) ---> [] ; [T|list(T)].

SWI-Prolog 9.3 Reference Manual

9.6. CHR COMPATIBILITY 395

dom(X,[]) <=> fail.
dom(X,[Y]) <=> X = Y.
dom(X,L) <=> nonvar(X) | memberchk(X,L).
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).

When the above program is saved in a file and loaded in SWI-Prolog, you can call the dom/2
constraints in a query, e.g.:

?- dom(A,[1,2,3]), dom(A,[3,4,5]).
A = 3.

9.6 CHR compatibility

9.6.1 The Old SICStus CHR implementation

There are small differences between the current K.U.Leuven CHR system in SWI-Prolog, older ver-
sions of the same system, and SICStus’ CHR system.

The current system maps old syntactic elements onto new ones and ignores a number of no longer
required elements. However, for each a deprecated warning is issued. You are strongly urged to
replace or remove deprecated features.

Besides differences in available options and pragmas, the following differences should be noted:

• The constraints/1 declaration
This declaration is deprecated. It has been replaced with the chr constraint/1 declara-
tion.

• The option/2 declaration
This declaration is deprecated. It has been replaced with the chr option/2 declaration.

• The handler/1 declaration
In SICStus every CHR module requires a handler/1 declaration declaring a unique handler
name. This declaration is valid syntax in SWI-Prolog, but will have no effect. A warning will
be given during compilation.

• The rules/1 declaration
In SICStus, for every CHR module it is possible to only enable a subset of the available rules
through the rules/1 declaration. The declaration is valid syntax in SWI-Prolog, but has no
effect. A warning is given during compilation.

• Guard bindings
The check guard bindings option only turns invalid calls to unification into failure. In
SICStus this option does more: it intercepts instantiation errors from Prolog built-ins such as
is/2 and turns them into failure. In SWI-Prolog, we do not go this far, as we like to separate
concerns more. The CHR compiler is aware of the CHR code, the Prolog system, and the
programmer should be aware of the appropriate meaning of the Prolog goals used in guards and
bodies of CHR rules.

SWI-Prolog 9.3 Reference Manual

396 CHAPTER 9. CHR: CONSTRAINT HANDLING RULES

9.6.2 The Old ECLiPSe CHR implementation

The old ECLiPSe CHR implementation features a label with/1 construct for labeling variables
in CHR constraints. This feature has long since been abandoned. However, a simple transformation
is all that is required to port the functionality.

label_with Constraint1 if Condition1.
...
label_with ConstraintN if ConditionN.
Constraint1 :- Body1.
...
ConstraintN :- BodyN.

is transformed into

:- chr_constraint my_labeling/0.

my_labeling \ Constraint1 <=> Condition1 | Body1.
...
my_labeling \ ConstraintN <=> ConditionN | BodyN.
my_labeling <=> true.

Be sure to put this code after all other rules in your program! With my labeling/0 (or another
predicate name of your choosing) the labeling is initiated, rather than ECLiPSe’s chr labeling/0.

9.7 CHR Programming Tips and Tricks

In this section we cover several guidelines on how to use CHR to write constraint solvers and how to
do so efficiently.

• Check guard bindings yourself
It is considered bad practice to write guards that bind variables of the head and to rely on the
system to detect this at runtime. It is inefficient and obscures the working of the program.

• Set semantics
The CHR system allows the presence of identical constraints, i.e. multiple constraints with the
same functor, arity and arguments. For most constraint solvers, this is not desirable: it affects
efficiency and possibly termination. Hence appropriate simpagation rules should be added of
the form:

constraint\constraint <=> true

• Multi-headed rules
Multi-headed rules are executed more efficiently when the constraints share one or more vari-
ables.

• Mode and type declarations
Provide mode and type declarations to get more efficient program execution. Make sure to
disable debug (--no-debug) and enable optimization (-O).

SWI-Prolog 9.3 Reference Manual

9.8. CHR COMPILER ERRORS AND WARNINGS 397

• Compile once, run many times
Does consulting your CHR program take a long time in SWI-Prolog? Probably it takes the
CHR compiler a long time to compile the CHR rules into Prolog code. When you disable opti-
mizations the CHR compiler will be a lot quicker, but you may lose performance. Alternatively,
you can just use SWI-Prolog’s qcompile/1 to generate a .qlf file once from your .pl file.
This .qlf contains the generated code of the CHR compiler (be it in a binary format). When
you consult the .qlf file, the CHR compiler is not invoked and consultation is much faster.

• Finding Constraints
The find chr constraint/1 predicate is fairly expensive. Avoid it, if possible. If you
must use it, try to use it with an instantiated top-level constraint symbol.

9.8 CHR Compiler Errors and Warnings

In this section we summarize the most important error and warning messages of the CHR compiler.

9.8.1 CHR Compiler Errors

Type clash for variable ... in rule ...

This error indicates an inconsistency between declared types; a variable can not belong to two
types. See static type checking.

Invalid functor in head ... of rule ...

This error indicates an inconsistency between a declared type and the use of a functor in a rule.
See static type checking.

Cyclic alias definition: ... == ...

You have defined a type alias in terms of itself, either directly or indirectly.

Ambiguous type aliases You have defined two overlapping type aliases.

Multiple definitions for type

You have defined the same type multiple times.

Non-ground type in constraint definition: ...

You have declared a non-ground type for a constraint argument.

Could not find type definition for ...

You have used an undefined type in a type declaration.

Illegal mode/type declaration You have used invalid syntax in a constraint declaration.

Constraint multiply defined There is more than one declaration for the same constraint.

Undeclared constraint ... in head of ...

You have used an undeclared constraint in the head of a rule. This often indicates a misspelled
constraint name or wrong number of arguments.

SWI-Prolog 9.3 Reference Manual

398 CHAPTER 9. CHR: CONSTRAINT HANDLING RULES

Invalid pragma ... in ... Pragma should not be a variable.

You have used a variable as a pragma in a rule. This is not allowed.

Invalid identifier ... in pragma passive in ...

You have used an identifier in a passive pragma that does not correspond to an identifier in the
head of the rule. Likely the identifier name is misspelled.

Unknown pragma ... in ...

You have used an unknown pragma in a rule. Likely the pragma is misspelled or not supported.

Something unexpected happened in the CHR compiler

You have most likely bumped into a bug in the CHR compiler. Please contact Tom Schrijvers
to notify him of this error.

SWI-Prolog 9.3 Reference Manual

Multithreaded applications 10
SWI-Prolog multithreading is based on standard C language multithreading support. It is not like
ParLog or other parallel implementations of the Prolog language. Prolog threads have their own
stacks and only share the Prolog heap: predicates, records, flags and other global non-backtrackable
data. SWI-Prolog thread support is designed with the following goals in mind.

• Multithreaded server applications
Today’s computing services often focus on (internet) server applications. Such applications
often have need for communication between services and/or fast non-blocking service to mul-
tiple concurrent clients. The shared heap provides fast communication, and thread creation is
relatively cheap.1

• Interactive applications
Interactive applications often need to perform extensive computation. If such computations are
executed in a new thread, the main thread can process events and allow the user to cancel the
ongoing computation. User interfaces can also use multiple threads, each thread dealing with
input from a distinct group of windows. See also section 10.7.

• Natural integration with foreign code
Each Prolog thread runs in a native thread of the operating system, automatically making them
cooperate with MT-safe foreign code. In addition, any foreign thread can create its own Prolog
engine for dealing with calling Prolog from C code.

SWI-Prolog multithreading is based on the POSIX thread standard [Butenhof, 1997] used on most
popular systems except for MS-Windows. On Windows it uses the pthread-win32 emulation of POSIX
threads mixed with the Windows native API for smoother and faster operation. The SWI-Prolog thread
implementation has been discussed in the ISO WG17 working group and is largely adopted by YAP
and XSB Prolog.2

10.1 Creating and destroying Prolog threads

thread create(:Goal, -Id)
Shorthand for thread create(Goal, Id, []). See thread create/3.

thread create(:Goal, -Id, +Options)
Create a new Prolog thread (and underlying operating system thread) and start it by executing

1On an Intel i7-2600K, running Ubuntu Linux 12.04, SWI-Prolog 6.2 creates and joins 32,000 threads per second elapsed
time.

2The latest version of the ISO draft can be found at http://logtalk.org/plstd/threads.pdf. It appears to
have dropped from the ISO WG17 agenda.

SWI-Prolog 9.3 Reference Manual

http://sources.redhat.com/pthreads-win32/
http://logtalk.org/plstd/threads.pdf

400 CHAPTER 10. MULTITHREADED APPLICATIONS

Goal. If the thread is created successfully, the thread identifier of the created thread is unified
to Id.

Id is the alias name if the option alias(name) is given. Otherwise it is a blob of type
thread. The anonymous blobs are subject to atom garbage collection. If a thread handle
is garbage collected and the thread is not detached, it is joined if it has already terminated (see
thread join/2) and detached otherwise (see thread detach/1).3 The thread identi-
fier blobs are printed as <thread>(I,Ptr), where I is the internal thread identifier and Ptr
is the unique address of the identifier. The I is accepted as input argument for all thread
APIs that accept a thread identifier for convenient interaction from the toplevel. See also
thread property/2.

Options is a list of options. The currently defined options are below. Stack size options can also
take the value inf or infinite, which is mapped to the maximum stack size supported by
the platform.

affinity(+CpuSet)
Specify that the thread should only run on the specified CPUs (cores). CpuSet is a list of
integers between 0 (zero) and the known number of CPUs (see cpu count). If CpuSet
is empty a domain error is raised. Referring to CPUs equal to or higher than the
known number of CPUs returns an existence error.
This option is currently implemented for systems that provide
pthread attr setaffinity np(). The option is silently ignored on other
systems.4

alias(AliasName)
Associate an ‘alias name’ with the thread. This name may be used to refer to the thread
and remains valid until the thread is joined (see thread join/2). If the OS supports it
(e.g., Linux), the operating system thread is named as well.

at exit(:AtExit)
Register AtExit as using thread at exit/1 before entering the thread goal. Unlike
calling thread at exit/1 as part of the normal Goal, this ensures the AtExit is called.
Using thread at exit/1, the thread may be signalled or run out of resources before
thread at exit/1 is reached. See thread at exit/1 for details.

debug(+Bool)
Enable/disable debugging the new thread. If false (default true), the new thread is
created with the property debug(false) and debugging is disabled before the new thread
is started. The thread debugging predicates such as tspy/1 and tdebug/0 do not
signal threads with the debug property set to false.5

detached(Bool)
If false (default), the thread can be waited for using thread join/2.
thread join/2 must be called on this thread to reclaim all resources associated

3Up to version 7.3.23, anonymous thread handles were integers. Using integers did not allow for safe checking of the
thread’s status as the thread may have died and the handle may have been reused and did not allow for garbage collection to
take care of forgotten threads.

4BUG: There is currently no way to discover whether this option is supported.
5Currently, the flag is only used as a hint for the various debugging primitives, i.e., the system does not really enforce

that the target thread stays in nodebug mode.

SWI-Prolog 9.3 Reference Manual

10.1. CREATING AND DESTROYING PROLOG THREADS 401

with the thread. If true, the system will reclaim all associated resources automatically
after the thread finishes. Please note that thread identifiers are freed for reuse after a
detached thread finishes or a normal thread has been joined. See also thread join/2
and thread detach/1.
If a detached thread dies due to failure or exception of the initial goal, the thread prints a
message using print message/2. If such termination is considered normal, the code
must be wrapped using ignore/1 and/or catch/3 to ensure successful completion.

inherit from(+ThreadId)
Inherit defaults from the given ThreadId instead of the calling thread.
This option was added to ensure that the thread pool manager (see
thread create in pool/4), which is created lazily, has a predictable state.
The following properties are inherited:

• The prompt (see prompt/2)
• The typein module (see module/1)
• The standard streams (user input, etc.).
• current input and current output are bound to user input and
user output.

• The default encoding (see encoding)
• The default locale (see set locale/1)
• All prolog flags
• The stack limit (see Prolog flag stack limit).

queue max size(Size)
Enforces a maximum to the number of terms in the input queue. See
message queue create/2 with the max size(o)ption for details.

stack limit(Bytes)
Set the size limit for the Prolog stacks. See the Prolog flag stack limit. The default is
inherited from the calling thread or the thread specified using inherit from(ThreadId).

c stack(Bytes)
Set the limit to which the C stack of this thread may grow. The default, minimum and
maximum values are system-dependent. The value is rounded up to the system page size
and SWI-Prolog enforces a minimum of 64 K-bytes.

The Goal argument is copied to the new Prolog engine. This implies that further instantiation
of this term in either thread does not have consequences for the other thread: Prolog threads do
not share data from their stacks.

thread self(-Id)
Get the Prolog thread identifier of the running thread. If the thread has an alias, the alias name
is returned.

thread join(+Id)
Calls thread join/2 and succeeds if thread Id terminated with success. Otherwise the
exception error(thread error(Id, Status),) is raised, where Status is the status as
returned by thread join/2.

SWI-Prolog 9.3 Reference Manual

402 CHAPTER 10. MULTITHREADED APPLICATIONS

thread join(+Id, -Status)
Wait for the termination of the thread with the given Id. Then unify the result status of the
thread with Status. After this call, Id becomes invalid and all resources associated with the
thread are reclaimed. It is not allowed for two threads to join the same thread and the thread
being joined cannot be detached (see the detached(true) option for thread create/3
and thread detach/1).

A thread that has been completed without thread join/2 being called on it is partly re-
claimed: the Prolog stacks are released and the C thread is destroyed. A small data structure
representing the exit status of the thread is retained until thread join/2 is called on the
thread. Defined values for Status are:

true
The goal has been proven successfully.

false
The goal has failed.

exception(Term)
The thread is terminated on an exception. See print message/2 to turn system
exceptions into readable messages.

exited(Term)
The thread is terminated on thread exit/1 using the argument Term.

Note that the pthread primitive pthread join() cannot be interrupted. Some systems pro-
vide pthread timedjoin np(). If this is provided thread join/2 is implemented as
a loop of timed joins with a 0.25 sec timeout while signals are being tested after each timeout.
Such systems allow combining thread join/2 with call with time limit/2 as well
as signalling threads blocked in thread join/2 using thread signal/2.

thread alias(+Alias)
Set the alias name of the calling thread to Alias. An error is raised if the calling thread already
has an alias or Alias is in use for a thread or message queue.

thread detach(+Id)
Switch thread into detached state (see detached(Bool) option at thread create/3) at
runtime. Id is the identifier of the thread placed in detached state. This may be the result of
thread self/1.

One of the possible applications is to simplify debugging. Threads that are created as de-
tached leave no traces if they crash. For non-detached threads the status can be inspected using
thread property/2. Threads nobody is waiting for may be created normally and detach
themselves just before completion. This way they leave no traces on normal completion and
their reason for failure can be inspected.

thread exit(+Term)
Terminates the thread immediately, leaving exited(Term) as result state for
thread join/2. If the thread has the attribute detached(true) it terminates, but its
exit status cannot be retrieved using thread join/2, making the value of Term irrelevant.
The Prolog stacks and C thread are reclaimed.

SWI-Prolog 9.3 Reference Manual

10.1. CREATING AND DESTROYING PROLOG THREADS 403

The current implementation is based on the reserved unwind(thread exit(Term)) ex-
ception. This implies that, unlike the previous implementation that was based on the C
pthread exit() function, the implementation is safe from the Prolog point of view. How-
ever, it is limited by the semantics of the unwind exceptions. See section 4.10.1 for details.

This predicate raises a permission error if it is known that the thread cannot handle this
case.

thread initialization(:Goal)
Run Goal when thread is started. This predicate is similar to initialization/1, but is
intended for initialization operations of the runtime stacks, such as setting global variables as
described in section 4.33. Goal is run on four occasions: at the call to this predicate, after
loading a saved state, on starting a new thread and on creating a Prolog engine through the C
interface. On loading a saved state, Goal is executed after running the initialization/1
hooks.

thread at exit(:Goal)
Run Goal just before releasing the thread resources. This is to be compared to at halt/1, but
only for the current thread. These hooks are run regardless of why the execution of the thread
has been completed. When these hooks are run, the return code is already available through
thread property/2 using the result of thread self/1 as thread identifier. Note that
there are two scenarios for using exit hooks. Using thread at exit/1 is typically used
if the thread creates a side-effect that must be reverted if the thread dies. Another scenario is
where the creator of the thread wants to be informed when the thread ends. That cannot be
guaranteed by means of thread at exit/1 because it is possible that the thread cannot be
created or dies almost instantly due to a signal or resource error. The at exit(Goal) option
of thread create/3 is designed to deal with this scenario.

The Goal is executed with signal processing disabled. This avoids that e.g.,
thread signal(Thread, abort) kills the exit handler rather than the thread in the case
the body of Thread has just finished when the signal arrives.

thread setconcurrency(-Old, +New)
Determine the concurrency of the process, which is defined as the maximum number of con-
currently active threads. ‘Active’ here means they are using CPU time. This option is provided
if the thread implementation provides pthread setconcurrency(). Solaris is a typical
example of this family. On other systems this predicate unifies Old to 0 (zero) and succeeds
silently.

thread affinity(+ThreadID, -Current, +New)
True when Current is unified with the current thread affinity and the thread affinity is suc-
cessfully set to New. The thread affinity specifies the set of CPUs on which this thread is
allowed to run. The affinity is represented as a list of non-negative integers. See also the option
affinity(+Affinity) of thread create/3.

This predicate is only present if this functionality can be supported and has been ported to the
target operating system. Currently, only Linux support is provided.

SWI-Prolog 9.3 Reference Manual

404 CHAPTER 10. MULTITHREADED APPLICATIONS

10.2 Monitoring threads

Normal multithreaded applications should not need the predicates from this section because almost
any usage of these predicates is unsafe. For example checking the existence of a thread before sig-
nalling it is of no use as it may vanish between the two calls. Catching exceptions using catch/3 is
the only safe way to deal with thread-existence errors.

These predicates are provided for diagnosis and monitoring tasks. See also section 10.5, describ-
ing more high-level primitives.

is thread(@Term)
True if Term is a handle to an existing thread.

thread property(?Id, ?Property)
True if thread Id has Property. Either or both arguments may be unbound, enumerating all
relations on backtracking. Calling thread property/2 does not influence any thread. See
also thread join/2. For threads that have an alias name, this name is returned in Id instead
of the opaque thread identifier. Defined properties are:

alias(Alias)
Alias is the alias name of thread Id.

detached(Boolean)
Current detached status of the thread.

id(Integer)
Integer identifier for the thread. Can be used as argument to the thread predicates, but
applications must be aware that these references are reused.

status(Status)
Current status of the thread. Status is one of:
running

The thread is running. This is the initial status of a thread. Please note that threads
waiting for something are considered running too.

suspended
Only if the thread is an engine (see section 11). Indicates that the engine is currently
not associated with an OS thread.

false
The Goal of the thread has been completed and failed.

true
The Goal of the thread has been completed and succeeded.

exited(Term)
The Goal of the thread has been terminated using thread exit/1 with Term as
argument. If the underlying native thread has exited (using pthread exit())
Term is unbound.

exception(Term)
The Goal of the thread has been terminated due to an uncaught exception (see
throw/1 and catch/3).

engine(Boolean)
If the thread is an engine (see chapter 11), Boolean is true. Otherwise the property is
not present.

SWI-Prolog 9.3 Reference Manual

10.3. THREAD COMMUNICATION 405

thread(ThreadId)
If the thread is an engine that is currently attached to a thread, ThreadId is the thread that
executes the engine.

size(Bytes)
The amount of memory associated with this thread. This includes the thread structure, its
stacks, its default message queue, its clauses in its thread local dynamic predicates (see
thread local/1) and memory used for representing thread-local answer tries (see
section 7).

system thread id(Integer)
Thread identifier used by the operating system for the calling thread. Not available on all
OSes. This is the same as the Prolog flag system thread id for the calling thread.
Access to the system thread identifier can, on some systems, be used to gain additional
control over or information about Prolog threads.

See also thread statistics/3 to obtain resource usage information and
message queue property/2 to get the number of queued messages for a thread.

thread statistics(+Id, +Key, -Value)
Obtains statistical information on thread Id as statistics/2 does in single-threaded appli-
cations. This call supports all keys of statistics/2, although only stack sizes, cputime,
inferences, epoch, errors and warnings yield different values for each thread. For
errors and warnings statistics/2 gives the global process count and this predicate
gives the counts for the calling thread.6

mutex statistics
Print usage statistics on internal mutexes and mutexes associated with dynamic predicates. For
each mutex two numbers are printed: the number of times the mutex was acquired and the num-
ber of collisions: the number of times the calling thread has to wait for the mutex. The output
is written to current output and can thus be redirected using with output to/2.

10.3 Thread communication

10.3.1 Message queues

Prolog threads can exchange data using dynamic predicates, database records, and other globally
shared data. These provide no suitable means to wait for data or a condition as they can only be
checked in an expensive polling loop. Message queues provide a means for threads to wait for data or
conditions without using the CPU.

Each thread has a message queue attached to it that is identified by the thread. Additional queues
are created using message queue create/1. Explicitly created queues come in two flavours.
When given an alias, they must be destroyed by the user. Anonymous message queues are identified
by a blob (see section 12.4.10) and subject to garbage collection.

6There is no portable interface to obtain thread-specific CPU time and some operating systems provide no access to this
information at all. On such systems the total process CPU is returned. Thread CPU time is supported on MS-Windows,
Linux and MacOSX.

SWI-Prolog 9.3 Reference Manual

406 CHAPTER 10. MULTITHREADED APPLICATIONS

thread send message(+QueueOrThreadId, +Term)
Place Term in the given queue or default queue of the indicated thread (which can even be the
message queue of itself, see thread self/1). Any term can be placed in a message queue,
but note that the term is copied to the receiving thread and variable bindings are thus lost. This
call returns immediately.

If more than one thread is waiting for messages on the given queue and at least one of these
is waiting with a partially instantiated Term, the waiting threads are all sent a wake-up signal,
starting a rush for the available messages in the queue. This behaviour can seriously harm
performance with many threads waiting on the same queue as all-but-the-winner perform a
useless scan of the queue. If there is only one waiting thread or all waiting threads wait with an
unbound variable, an arbitrary thread is restarted to scan the queue.7

thread send message(+Queue, +Term, +Options) [semidet]

As thread send message/2, but providing additional Options. These are to
deal with the case that the queue has a finite maximum size and is full: whereas
thread send message/2 will block until the queue has drained sufficiently to accept a
new message, thread send message/3 can accept a time-out or deadline analogously to
thread get message/3. The options are:

deadline(+AbsTime)
The call fails (silently) if no space has become available before AbsTime. See
get time/1 for the representation of absolute time. If AbsTime is earlier then the
current time, thread send message/3 fails immediately. Both resolution and
maximum wait time is platform-dependent.8

timeout(+Time)
Time is a float or integer and specifies the maximum time to wait in seconds. This is a
relative-time version of the deadline option. If both options are provided, the earlier
time is effective.
If Time is 0 or 0.0, thread send message/3 examines the queue and sends the mes-
sage if space is available, but does not suspend if no space is available, failing immediately
instead.
If Time < 0, thread send message/3 fails immediately without sending the mes-
sage.

signals(+BoolOrTime)
Whether or not signals (see thread signal/2) are processed while waiting. As
the underlying implementation does not handle signals on most platforms, the imple-
mentation by default (true) times out every 0.25 seconds and checks for signals. If
false, signals are not checked. If a number is specified, we check for signals every
Time seconds. Smaller times may be used to improved responsiveness to signals. Larger
times may be used to reduce CPU usage.

thread get message(?Term)
Examines the thread message queue and if necessary blocks execution until a term that unifies

7See the documentation for the POSIX thread functions pthread cond signal() v.s.
pthread cond broadcast() for background information.

8The implementation uses MsgWaitForMultipleObjects() on MS-Windows and
pthread cond timedwait() on other systems.

SWI-Prolog 9.3 Reference Manual

10.3. THREAD COMMUNICATION 407

to Term arrives in the queue. After a term from the queue has been unified to Term, the term is
deleted from the queue.

Please note that non-unifying messages remain in the queue. After the following has been
executed, thread 1 has the term b(gnu) in its queue and continues execution using A = gnat.

<thread 1>
thread_get_message(a(A)),

<thread 2>
thread_send_message(Thread_1, b(gnu)),
thread_send_message(Thread_1, a(gnat)),

Term may contain attributed variables (see section 8), in which case only terms for which the
constraints successfully execute are returned. Handle constraints applies for all predicates that
extract terms from message queues. For example, we can get the even numbers from a queue
using this code:

get_matching_messages(Queue, Pattern, [H|T]) :-
copy_term(Pattern, H),
thread_get_message(Queue, H, [timeout(0)]),
!,
get_matching_messages(Queue, Pattern, T).

get_matching_messages(_, _, []).

even_numbers(Q, List) :-
freeze(Even, Even mod 2 =:= 0),
get_matching_messages(Q, Even, List).

See also thread peek message/1.

thread peek message(?Term)
Examines the thread message queue and compares the queued terms with Term until
one unifies or the end of the queue has been reached. In the first case the call suc-
ceeds, possibly instantiating Term. If no term from the queue unifies, this call fails. I.e.,
thread peek message/1 never waits and does not remove any term from the queue. See
also thread get message/3.

message queue create(?Queue)
Equivalent to message queue create(Queue,[]). For compatibility, calling
message queue create(+Atom) is equivalent to message queue create(Queue,
[alias(Atom)]). New code should use message queue create/2 to create a named queue.

message queue create(-Queue, +Options)
Create a message queue from Options. Defined options are:

alias(+Alias)
Create a message queue that is identified by the atom Alias. Message queues created this

SWI-Prolog 9.3 Reference Manual

408 CHAPTER 10. MULTITHREADED APPLICATIONS

way must be explicitly destroyed by the user. If the alias option is omitted, an Anonymous
queue is created that is identified by a blob (see section 12.4.10) and subject to garbage
collection.9

max size(+Size)
Maximum number of terms in the queue. If this number is reached,
thread send message/2 will suspend until the queue is drained. The option
can be used if the source, sending messages to the queue, is faster than the drain,
consuming the messages.

message queue destroy(+Queue) [det]

Destroy a message queue created with message queue create/1. A permission error
is raised if Queue refers to (the default queue of) a thread. Other threads that are waiting for
Queue using thread get message/2 receive an existence error.

is message queue(@Term) [semidet]

True if Term refers to an existing message queue. This predicate can not block and has no error
conditions. Note that message queues may be destroyed asynchronously by another thread and
anonymous message queues may be garbage collected asynchronously.

thread get message(+Queue, ?Term) [det]

As thread get message/1, operating on a given queue. It is allowed (but not advised)
to get messages from the queue of other threads. This predicate raises an existence error
exception if Queue doesn’t exist or is destroyed using message queue destroy/1 while
this predicate is waiting.

thread get message(+Queue, ?Term, +Options) [semidet]

As thread get message/2, but providing additional Options:

deadline(+AbsTime)
The call fails (silently) if no message has arrived before AbsTime. See get time/1
for the representation of absolute time. If AbsTime is earlier then the current time,
thread get message/3 fails immediately. Both resolution and maximum wait time
is platform-dependent.10

timeout(+Time)
Time is a float or integer and specifies the maximum time to wait in seconds. This is a
relative-time version of the deadline option. If both options are provided, the earlier
time is effective.
If Time is 0 or 0.0, thread get message/3 examines the queue but does not sus-
pend if no matching term is available. Note that unlike thread peek message/2, a
matching term is removed from the queue.
If Time < 0, thread get message/3 fails immediately without removing any mes-
sage from the queue.

9Garbage collecting anonymous message queues is not part of the ISO proposal and most likely not a widely imple-
mented feature.

10The implementation uses MsgWaitForMultipleObjects() on MS-Windows and
pthread cond timedwait() on other systems.

SWI-Prolog 9.3 Reference Manual

10.3. THREAD COMMUNICATION 409

signals(+BoolOrTime)
Whether or not signals (see thread signal/2) are processed while waiting. As
the underlying implementation does not handle signals on most platforms, the imple-
mentation by default (true) times out every 0.25 seconds and checks for signals. If
false, signals are not checked. If a number is specified, we check for signals every
Time seconds. Smaller times may be used to improved responsiveness to signals. Larger
times may be used to reduce CPU usage.

thread peek message(+Queue, ?Term) [semidet]

As thread peek message/1, operating on a given queue. It is allowed to peek into an-
other thread’s message queue, an operation that can be used to check whether a thread has
swallowed a message sent to it.

message queue property(?Queue, ?Property)
True if Property is a property of Queue. Defined properties are:

alias(Alias)
Queue has the given alias name.

max size(Size)
Maximum number of terms that can be in the queue. See message queue create/2.
This property is not present if there is no limit (default).

size(Size)
Queue currently contains Size terms. Note that due to concurrent access the returned
value may be outdated before it is returned. It can be used for debugging purposes as well
as work distribution purposes.

waiting(-Count)
Number of threads waiting for this queue. This property is not present if no threads waits
for this queue.

The size(Size) property is always present and may be used to enumerate the created message
queues. Note that this predicate does not enumerate threads, but can be used to query the
properties of the default queue of a thread.

message queue set(+Queue, +Property)
Set a property on the queue. Supported properties are:

max size(+Size)
Change the number of terms that may appear in the message queue before the next
thread send message/[2,3] blocks on it. If the value is higher then the current
maximum and the queue has writers waiting, wakeup the writers. The value can be lower
than the current number of terms in the queue. In that case writers will block until the
queue is drained below the new maximum.

Explicit message queues are designed with the worker-pool model in mind, where multiple threads
wait on a single queue and pick up the first goal to execute. Below is a simple implementation where
the workers execute arbitrary Prolog goals. Note that this example provides no means to tell when all
work is done. This must be realised using additional synchronisation.

SWI-Prolog 9.3 Reference Manual

410 CHAPTER 10. MULTITHREADED APPLICATIONS

%% create_workers(?Id, +N)
%
% Create a pool with Id and number of workers.
% After the pool is created, post_job/1 can be used to
% send jobs to the pool.

create_workers(Id, N) :-
message_queue_create(Id),
forall(between(1, N, _),

thread_create(do_work(Id), _, [])).

do_work(Id) :-
repeat,
thread_get_message(Id, Goal),
(catch(Goal, E, print_message(error, E))
-> true
; print_message(error, goal_failed(Goal, worker(Id)))
),

fail.

%% post_job(+Id, +Goal)
%
% Post a job to be executed by one of the pool’s workers.

post_job(Id, Goal) :-
thread_send_message(Id, Goal).

10.3.2 Waiting for events

While message queues realizes communicating agents sharing the same program and optionally dy-
namic data, the predicate thread wait/2 facilitates agents that communicate based on a shared
blackboard. An important difference is were message queues require the sender and receiver to know
about the queue used to communicate and every message can wakeup at most one thread, the black-
board model allows any number (including zero) of threads to listen to changes on the blackboard.
Any module can act as a blackboard. The blackboard can be updated using the standard Prolog
database update predicates (assert/1, retract/1 and friends).

Waiting is implemented using a POSIX condition variable and matching mutex. On a matching
database change the condition variable is signalled using a broadcast, waking up all threads waiting
in thread wait/2. Multiple database updates can be grouped and cause a single wakeup using
thread update/2. This predicate also allows signalling the module condition variable without
updating the database and controlling whether all or a single thread is activated.

The blackboard architecture is a good match for an intelligent agent system that has to react on a
changing world. Input threads gather sensor data from the world and update a shared world view in a
set of dynamic predicates in one or more modules. Agent threads listen to this data or a subset thereof

SWI-Prolog 9.3 Reference Manual

10.3. THREAD COMMUNICATION 411

and trigger actions. This is notably a good match with tabling, in particular incremental tabling (see
section 7.7) and Well Founded Semantics (see section 7.6).11

thread wait(:Goal, :Options)
Block execution of the calling thread until Goal becomes true. The application must be pre-
pared to handle spurious calls to Goal, i.e., more calls than asked for based on the Options list.
A possible exception in Goal is propagated and thus terminates thread wait/2.

The wait is associated with a module. This module is derived from the Options argument.

The Options list specifies when Goal is re-evaluated and optionally when the call terminates
due to a timeout.

deadline(+AbsTime)
timeout(+Time)

Timeout and deadline handling. See thread get message/3 for details. This
predicate fails when it terminates due to one of these options.

retry every(+Time)
Retry goal every Time seconds regardless of whether an event happened. The default
is 1 second. This ensures that signals (see thread signal/2) and time limits are
respected with an optional delay.12

db(+Boolean)
Wakeup on arbitrary changes to any dynamic predicate that is defined in the associated
module. This is the default if wait preds(+Preds) is not provided.

wait preds(+List)
Only call Goal if at least one of the predicates in List has been modified. Each element of
List is a predicate indicator (Name/Arity or Name//Arity that is resolved to a predicate in
the module this wait is associated with. If the element is +(PI)13, Goal is only triggered
if a clause was added (assert/1). If the element is -(PI), Goal is only triggered if a
clause was retracted (retract/1 or erase/1). Default is to wakeup on both assert
and retract.

modified(-List)
The List variable normally also appears in Goal and is unified with a list of predicates
from the wait preds option that have been modified. List must be unbound at entry.

module(+Module)
Specifies the module to act on explicitly.

The execution of Goal is synchronized between all threads calling this predicate on the same
module, changes to dynamic predicates in this module and calls to thread update/2 on the
same module.

This predicate raises a permision error exception when called recursively or called from
inside a transaction. See section 4.14.1 for details about interaction with transactions.

11Future versions may provide additional triggers, for example to learn about invalidated tables. Please share your
experience.

12Some operating systems process such signals immediately, while others only check for such events synchronously.
13Note that +p/1 is read as /(+(p),1).

SWI-Prolog 9.3 Reference Manual

412 CHAPTER 10. MULTITHREADED APPLICATIONS

thread update(:Goal, :Options)
Update a module (typically using assert/1 and/or retract/1 and friends) and on com-
pletion signal threads waiting for this module using thread wait/2 to reevaluate their
Goal. Goal is synchronized between updating and waiting threads. Options:

module(+Module)
Determines the module to operate on. Default is the context module associated with the
Options argument.

notify(+Atom)
Determines whether all waiting threads are activated (broadcast, default) or a single
thread (signal).

Compatibility The thread wait/2 predicate is modelled after the Qu-Prolog predicate
thread wait on goal/2. It is largely compatible. Our current implementation does not sup-
port predicate time stamps.14 We made this predicate act on a specific module rather than the entire
database. The timeout specification follows that of the other thread waiting predicates and may be
combined with the retry every option. The default retry-time is also 1 second rather than infinite.

10.3.3 Signalling threads

The predicates in this section provide signalling between threads. A thread signal inserts any goal as
an interrupt into the control flow of any target thread. The target thread processes the goal at the first
safe opportunity. The mechanism was introduced with two goals in mind: (1) running a goal inside
a thread for debugging purposes such as enabling the status or get access thread-specific data and (2)
force a thread to abort its current goal by inserting an exception into its control flow.

Over time, more complicated use cases have been identified that may result in multiple signals that
occur (nearly) simultaneous. As of version 8.5.1 the interface has been extended and the interaction
with other built-in predicates has been specified in much more detail.

thread signal(+ThreadId, :Goal) [det]

Make thread ThreadId execute Goal at the first opportunity. The predicate
thread signal/2 itself places Goal into the signalled thread’s signal queue and re-
turns immediately.

ThreadId executes Goal as an interrupt at the first opportunity. Defined opportunities are:

• At the call port of any predicate except for predicates with the property sig atomic.
Currently this only applies to sig atomic/1.

• Before retrying a foreign predicate.

• Before backtracking to the next clause of a Prolog predicate.

• When a foreign predicate calls PL handle signals(). Foreign predicates that take
long to complete should call PL handle signals() regularly and return with FALSE
after PL handle signals() returned -1, indicating an exception was raised.

• Foreign predicates calling blocking system calls should attempt to make these system calls
interruptible. To enable this on POSIX systems, SWI-Prolog sends a SIGUSR2 to the sig-
nalled thread while the handler is an empty function. This causes most blocking system

14See predicate property/2, property generation.

SWI-Prolog 9.3 Reference Manual

http://staff.itee.uq.edu.au/pjr/HomePages/QuPrologHome.html

10.3. THREAD COMMUNICATION 413

calls to return with EINTR. See also the commandline option --sig-alert. On Win-
dows, PL handle signals() is called when the user processes Windows messages.

• For some blocking (thread) APIs we use a timed version with a 0.25 sec timeout to achieve
a polling loop.

If one or more signals are queued, the queue is processed. Processing the queue skips sig-
nals blocked due to sig block/1 and stops after the queue does not contain any more non-
blocked signals or processing a signal results in an exception. After an exception, other signals
remain in the queue and will be processed after unwinding to the matching catch/3. Typi-
cally these queued signals will be processed during the Recover goal of the catch/3. Note
that sig atomic/1 may be used to protect the recovery goal.

The thread signal/2mechanism is primarily used by the system to insert debugging goals
into the target thread (tspy/1, tbacktrace/1, etc.) or to interrupt a thread using e.g.,
thread signal(Thread, abort). Predicates from library thread use signals to stop
workers for e.g. concurrent maplist/2 if some call fails. Applications may use it, typ-
ically for similar purposes such as asynchronously stopping tasks or inspecting the status of a
task. Below we describe the behaviour of thread signalling in more detail. The following notes
apply for Goal executing in ThreadId

• The execution is protected by sig atomic/1 and thus signal execution is not nested.

• If Goal succeeds, possible choice points are discarded. Changes to the Prolog stacks such
as changes to backtrackable global variables remain.

• If Goal fails, no action is taken, i.e., failure is not considered a special condition.

• If Goal raises an exception the exception is propagated into the environment. This allows
for forcefully stopping the target thread. The system uses this to implement abort/0
and call with time limit/2.

• Code into which signals may be injected must make sure to use
setup call cleanup/3 and friends to ensure proper cleanup in the case of an
exception. This is good practice anyway to guard against unpredictable exceptions such
as resource exhaustion.

• Goal may use stack inspection such as prolog frame attribute/3 to determine
what the thread is doing.

sig pending(-List) [det]

True when List contains all signals submitted using thread signal/2 that are not yet
processed. This includes signals blocked by sig block/1.

sig remove(:Pattern, -List) [det]

Remove all signals that unify with Pattern from the signal queue and make the removed signals
available in List

sig block(:Pattern) [det]

Block thread signals queued using thread signal/2 that match Pattern.

sig unblock(:Pattern) [det]

Remove any effect of sig block/1 for patterns that are more specific (see

SWI-Prolog 9.3 Reference Manual

414 CHAPTER 10. MULTITHREADED APPLICATIONS

subsumes term/2). If any patterns are removed, reschedule blocked signals. Note
that sig unblock/1 normally causes all unblocked signals to be executed immediately.

sig atomic(:Goal) [semidet]

Execute Goal as once/1 while blocking both thread signals (see thread signal/2) and
OS signals (see on signal/3). The system executes some goals while blocking signals.
These are:

• The goal injected using thread signal/2, i.e., signals do not interrupt a running sig-
nal handler.

• The Setup call of setup call cleanup/3 and friends.

• The Cleanup call of call cleanup/2 and friends.

• Compiling a file or loading a quick load file.

The call port of sig atomic/1 does not handle signals. This may notably be used to prevent
interruption of the catch/3 Recover goal. For example, we may ensure the recovery goal
of a timeout is called using the code below. Without this precaution another signal may run
before writeln/1 and raise an exception to prevent its execution. Note that catch/3 should
generally not be used for cleanup of resources in case of an exception and thus it is typically
fine if its Recover goal is interrupted. Use setup call cleanup/3 or one of the other
predicates from the call cleanup/2 family for cleanup.

...,
catch(call_with_time_limit(Time, Goal),

time_limit_exceeded,
sig_atomic(writeln(’Time limit exceeded’))).

10.3.4 Threads and dynamic predicates

Besides queues (section 10.3.1) threads can share and exchange data using dynamic predicates. The
multithreaded version knows about two types of dynamic predicates. By default, a predicate declared
dynamic (see dynamic/1) is shared by all threads. Each thread may assert, retract and run the dy-
namic predicate. Synchronisation inside Prolog guarantees the consistency of the predicate. Updates
are logical: visible clauses are not affected by assert/retract after a query started on the predicate. In
many cases primitives from section 10.4 should be used to ensure that application invariants on the
predicate are maintained.

Besides shared predicates, dynamic predicates can be declared with the thread local/1 di-
rective. Such predicates share their attributes, but the clause list is different in each thread.

thread local +Functor/+Arity, . . .
This directive is related to the dynamic/1 directive. It tells the system that the predicate may
be modified using assert/1, retract/1, etc., during execution of the program. Unlike
normal shared dynamic data, however, each thread has its own clause list for the predicate. As
a thread starts, this clause list is empty. If there are still clauses when the thread terminates,
these are automatically reclaimed by the system (see also volatile/1). The thread local
property implies the properties dynamic and volatile.

SWI-Prolog 9.3 Reference Manual

10.4. THREAD SYNCHRONISATION 415

Thread-local dynamic predicates are intended for maintaining thread-specific state or interme-
diate results of a computation.

It is not recommended to put clauses for a thread-local predicate into a file, as in the example
below, because the clause is only visible from the thread that loaded the source file. All other
threads start with an empty clause list.

:- thread_local
foo/1.

foo(gnat).

DISCLAIMER Whether or not this declaration is appropriate in the sense of the proper mech-
anism to reach the goal is still debated. If you have strong feelings in favour or against, please
share them in the SWI-Prolog mailing list.

10.4 Thread synchronisation

All internal Prolog operations are thread-safe. This implies that two Prolog threads can operate on the
same dynamic predicate without corrupting the consistency of the predicate. This section deals with
user-level mutexes (called monitors in ADA or critical sections by Microsoft). A mutex is a MUTual
EXclusive device, which implies that at most one thread can hold a mutex.

Mutexes are used to realise related updates to the Prolog database. With ‘related’, we refer to
the situation where a ‘transaction’ implies two or more changes to the Prolog database. For example,
we have a predicate address/2, representing the address of a person and we want to change the
address by retracting the old and asserting the new address. Between these two operations the database
is invalid: this person has either no address or two addresses, depending on the assert/retract order.

The code below provides a solution to this problem based on with mutex/2. It also il-
lustrates the problem of mutexes. The predicate with mutex/2 behaves as once/1 with re-
spect to the guarded goal. This means that our predicate address/2 is no longer a nice logical
non-deterministic relation. This could be solved by explicit locking and unlocking a mutex using
setup call cleanup/3, but at the risk of deadlocking the program if the choice point is left
open by accident.

change_address(Id, Address) :-
with_mutex(addressbook,

(retractall(address_db(Id, _)),
asserta(address_db(Id, Address))

)).

address(Id, Address) :-
with_mutex(addressbook,

address_db(Id, Address)).

Message queues (see message queue create/2) often provide simpler and more robust ways
for threads to communicate. Still, mutexes can be a sensible solution and are therefore provided.

SWI-Prolog 9.3 Reference Manual

416 CHAPTER 10. MULTITHREADED APPLICATIONS

mutex create(?MutexId)
Create a mutex. If MutexId is an atom, a named mutex is created. If it is a variable, an anony-
mous mutex reference is returned. Anonymous mutexes are subject to (atom) garbage
collection.

mutex create(-MutexId, +Options)
Create a mutex using options. Defined options are:

alias(Alias)
Set the alias name. Using mutex create(X, [alias(name)]) is preferred over the equiv-
alent mutex create(name).

mutex destroy(+MutexId)
Destroy a mutex. If the mutex is not locked, it is destroyed and further access yields an
existence error exception. As of version 7.1.19, this behaviour is reliable. If the mutex
is locked, the mutex is scheduled for delayed destruction: it will be destroyed when it becomes
unlocked.

with mutex(+MutexId, :Goal)
Execute Goal while holding MutexId. If Goal leaves choice points, these are destroyed (as
in once/1). The mutex is unlocked regardless of whether Goal succeeds, fails or raises an
exception. An exception thrown by Goal is re-thrown after the mutex has been successfully
unlocked. See also mutex create/1 and setup call cleanup/3.

Although described in the thread section, this predicate is also available in the single-threaded
version, where it behaves simply as once/1.

mutex lock(+MutexId)
Lock the mutex. Prolog mutexes are recursive mutexes: they can be locked multiple times by
the same thread. Only after unlocking it as many times as it is locked does the mutex become
available for locking by other threads. If another thread has locked the mutex the calling thread
is suspended until the mutex is unlocked.

If MutexId is an atom, and there is no current mutex with that name, the mutex is created
automatically using mutex create/1. This implies named mutexes need not be declared
explicitly.

Please note that locking and unlocking mutexes should be paired carefully. Especially make
sure to unlock mutexes even if the protected code fails or raises an exception. For most common
cases, use with mutex/2, which provides a safer way for handling Prolog-level mutexes. The
predicate setup call cleanup/3 is another way to guarantee that the mutex is unlocked
while retaining non-determinism.

mutex trylock(+MutexId)
As mutex lock/1, but if the mutex is held by another thread, this predicates fails immedi-
ately.

mutex unlock(+MutexId)
Unlock the mutex. This can only be called if the mutex is held by the calling thread. If this is
not the case, a permission error exception is raised.

SWI-Prolog 9.3 Reference Manual

10.5. THREAD SUPPORT LIBRARY(THREADUTIL) 417

mutex unlock all [deprecated]

Unlock all mutexes held by the current thread. This predicate should not be needed if mutex
unlocking is guaranteed with with mutex/2 or setup call cleanup/3.15

mutex property(?MutexId, ?Property)
True if Property is a property of MutexId. Defined properties are:

alias(Alias)
Mutex has the defined alias name. See mutex create/2 using the ‘alias’ option.

status(Status)
Current status of the mutex. One of unlocked if the mutex is currently not locked,
or locked(Owner, Count) if mutex is locked Count times by thread Owner. Note that
unless Owner is the calling thread, the locked status can change at any time. There is no
useful application of this property, except for diagnostic purposes.16

10.5 Thread support library(threadutil)

This library defines a couple of useful predicates for demonstrating and debugging multithreaded
applications. This library is certainly not complete.

threads
Lists all current threads and their status.

join threads
Join all terminated threads. For normal applications, dealing with terminated threads must be
part of the application logic, either detaching the thread before termination or making sure it
will be joined. The predicate join threads/0 is intended for interactive sessions to reclaim
resources from threads that died unexpectedly during development.

interactor
Create a new console and run the Prolog top level in this new console. See also
attach console/0. In the Windows version a new interactor can also be created
from the Run/New thread menu.

10.5.1 Debugging threads

Support for debugging threads is still very limited. Debug and trace mode are flags that are local
to each thread. Individual threads can be debugged either using the graphical debugger described
in section 3.5 (see tspy/1 and friends) or by attaching a console to the thread and running the
traditional command line debugger (see attach console/0). When using the graphical debugger,
the debugger must be loaded from the main thread (for example using guitracer) before gtrace/0
can be called from a thread.

attach console
If the current thread has no console attached yet, attach one and redirect the user streams (input,

15The also deprecated thread exit/1 bypasses the automatic cleanup.
16BUG: As Owner and Count are fetched separately from the mutex, the values may be inconsistent.

SWI-Prolog 9.3 Reference Manual

418 CHAPTER 10. MULTITHREADED APPLICATIONS

output, and error) to the new console window. On Unix systems the console is an xterm
application. On Windows systems this requires the GUI version swipl-win.exe rather than
the console-based swipl.exe.

This predicate has a couple of useful applications. One is to separate (debugging) I/O of differ-
ent threads. Another is to start debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this thread:

?- thread_signal(10, (attach_console, trace)).

tdebug(+ThreadId)
Prepare ThreadId for debugging using the graphical tracer. This implies installing the tracer
hooks in the thread and switching the thread to debug mode using debug/0. The call is
injected into the thread using thread signal/2. We refer to the documentation of this
predicate for asynchronous interaction with threads. New threads created inherit their debug
mode from the thread that created them.

tdebug
Call tdebug/1 in all running threads.

tnodebug(+ThreadId)
Disable debugging thread ThreadId.

tnodebug
Disable debugging in all threads.

tspy(:Spec, +ThreadId)
Set a spy point as spy/1 and enable the thread for debugging using tdebug/1. Note that a
spy point is a global flag on a predicate that is visible from all threads. Spy points are honoured
in all threads that are in debug mode and ignored in threads that are in nodebug mode.

tspy(:Spec)
Set a spy point as spy/1 and enable debugging in all threads using tdebug/0. Note that
removing spy points can be done using nospy/1. Disabling spy points in a specific thread is
achieved by tnodebug/1.

10.5.2 Profiling threads

In the current implementation, at most one thread can be profiled at any moment. Any thread can call
profile/1 to profile the execution of some part of its code. The predicate tprofile/1 allows
for profiling the execution of another thread until the user stops collecting profile data.

tprofile(+ThreadId)
Start collecting profile data in ThreadId and ask the user to hit ⟨return⟩ to stop the profiler. See
section 4.42 for details on the execution profiler.

SWI-Prolog 9.3 Reference Manual

10.6. MULTITHREADED MIXED C AND PROLOG APPLICATIONS 419

10.6 Multithreaded mixed C and Prolog applications

All foreign code linked to the multithreading version of SWI-Prolog should be thread-safe (reentrant)
or guarded in Prolog using with mutex/2 from simultaneous access from multiple Prolog threads.
If you want to write mixed multithreaded C and Prolog applications you should first familiarise your-
self with writing multithreaded applications in C (C++).

If you are using SWI-Prolog as an embedded engine in a multithreaded application you can access
the Prolog engine from multiple threads by creating an engine in each thread from which you call
Prolog. Without creating an engine, a thread can only use functions that do not use the term t type
(for example PL new atom()).

The system supports two models. Section 10.6.1 describes the original one-to-one mapping. In
this schema a native thread attaches a Prolog thread if it needs to call Prolog and detaches it when
finished, as opposed to the model from section 10.6.2, where threads temporarily use a Prolog engine.

10.6.1 A Prolog thread for each native thread (one-to-one)

In the one-to-one model, the thread that called PL initialise() has a Prolog engine at-
tached. If another C thread in the system wishes to call Prolog it must first attach an engine us-
ing PL thread attach engine() and call PL thread destroy engine() after all Prolog
work is finished. This model is especially suitable with long running threads that need to do Prolog
work regularly. See section 10.6.2 for the alternative many-to-many model.

int PL thread self()
Returns the integer Prolog identifier of the engine or -1 if the calling thread has no Prolog
engine. This function is also provided in the single-threaded version of SWI-Prolog, where it
returns -2.

int PL unify thread id(term t t, int i)
Unify t with the Prolog thread identifier for thread i. Thread identifiers are normally returned
from PL thread self(). Returns -1 if the thread does not exist or the unification fails.

int PL thread attach engine(const PL thread attr t *attr)
Creates a new Prolog engine in the calling thread. If the calling thread already has an engine
the reference count of the engine is incremented. The attr argument can be NULL to create a
thread with default attributes. Otherwise it is a pointer to a structure with the definition below.
For any field with value ‘0’, the default is used. The cancel field may be filled with a pointer
to a function that is called when PL cleanup() terminates the running Prolog engines. If
this function is not present or returns FALSE pthread cancel() is used. The new thread
inherits is properties from Prolog’s main thread. The flags field defines the following flags:

PL THREAD NO DEBUG
If this flag is present, the thread starts in normal no-debug status. By default, the debug
status is inherited from the main thread.

PL THREAD NOT DETACHED
By default the new thread is created in detached mode. With this flag it is created normally,
allowing Prolog to join the thread.

PL THREAD CUR STREAMS
By default the current input and current output are set to user input and

SWI-Prolog 9.3 Reference Manual

420 CHAPTER 10. MULTITHREADED APPLICATIONS

user output of the main thread. Using this flag, these streams are copied from the
main thread. See also the inherited from option of thread create/3.

typedef struct
{ size_t stack_limit; /* Total stack limit (bytes) */

size_t table_space; /* Total tabling space limit (bytes) */
char * alias; /* alias name */
int (*cancel)(int thread); /* cancel function */
intptr_t flags; /* PL_THREAD_* flags */
size_t max_queue_size; /* Max size of associated queue */

} PL_thread_attr_t;

The structure may be destroyed after PL thread attach engine() has returned. On suc-
cess it returns the Prolog identifier for the thread (as returned by PL thread self()). If an
error occurs, -1 is returned. If this Prolog is not compiled for multithreading, -2 is returned.

bool PL thread destroy engine()
Destroy the Prolog engine in the calling thread. Only takes ef-
fect if PL thread destroy engine() is called as many times as
PL thread attach engine() in this thread. Returns TRUE on success and FALSE
if the calling thread has no engine or this Prolog does not support threads.

Please note that construction and destruction of engines are relatively expensive operations.
Only destroy an engine if performance is not critical and memory is a critical resource.

int PL thread at exit(void (*function)(void *), void *closure, int global)
Register a handle to be called as the Prolog engine is destroyed. The handler function is called
with one void * argument holding closure. If global is TRUE, the handler is installed for all
threads. Globally installed handlers are executed after the thread-local handlers. If the handler
is installed local for the current thread only (global == FALSE) it is stored in the same FIFO
queue as used by thread at exit/1.

10.6.2 Using Prolog engines from C

Prolog engines live as entities that are independent from threads. They are always supported
in the multi-threaded version and may be enabled in the single threaded version by providing
-DENGINES=ON during the cmake configuration. Multiple threads may use a pool of engines for
handling calls to Prolog. A single thread may use multiple engines to achieve coroutining. Engines
are suitable in the following identified cases:

• Many native threads with infrequent Prolog work
Prolog threads are expensive in terms of memory and time to create and destroy them. For
systems that use a large number of threads that only infrequently need to call Prolog, it is better
to take an engine from a pool and return it there.

• Prolog status must be handed to another thread
This situation has been identified by Uwe Lesta when creating a .NET interface for SWI-Prolog.
.NET distributes work for an active internet connection over a pool of threads. If a Prolog engine

SWI-Prolog 9.3 Reference Manual

10.7. MULTITHREADING AND THE XPCE GRAPHICS SYSTEM 421

contains the state for a connection, it must be possible to detach the engine from a thread and
re-attach it to another thread handling the same connection.

• Achieving coroutines
A single thread may use engines to implement coroutining. This is notably interesting when
combined with yielding as described in section 12.4.1.

PL engine t PL current engine()
Returns the current engine of the calling thread or NULL if the thread has no Prolog engine.

PL engine t PL create engine(PL thread attr t *attributes)
Create a new Prolog engine. attributes is described with PL thread attach engine().
Any thread can make this call after PL initialise() returns success. The returned engine
is not attached to any thread and lives until PL destroy engine() is used on the returned
handle.

In the single-threaded version this call always returns NULL, indicating failure.

bool PL destroy engine(PL engine t e)
Destroy the given engine. Destroying an engine is only allowed if the engine is not attached to
any thread or attached to the calling thread. On success this function returns TRUE, on failure
the return value is FALSE.

int PL set engine(PL engine t engine, PL engine t *old)
Make the calling thread ready to use engine. If old is non-NULL the current engine associated
with the calling thread is stored at the given location. If engine equals PL ENGINE MAIN the
initial engine is attached to the calling thread. If engine is PL ENGINE CURRENT the engine is
not changed. This can be used to query the current engine. This call returns PL ENGINE SET
if the engine was switched successfully, PL ENGINE INVAL if engine is not a valid engine
handle and PL ENGINE INUSE if the engine is currently in use by another thread.

Engines can be changed at any time. For example, it is allowed to select an engine to initiate
a Prolog goal, detach it and at a later moment execute the goal from another thread. Note,
however, that the term t, qid t and fid t types are interpreted relative to the engine for
which they are created. Behaviour when passing one of these types from one engine to another is
undefined. The engine to which a query belongs can be requested using PL query engine()

In versions that do not support engines this call only succeeds if engine refers to the main
engine.

void PL WITH ENGINE(PL engine t e)
This macro implements a C for-loop where the body is executed with the engine e as current
engine. The body is executed exactly once. After completion of the body the current engine of
the calling thread is restored to old state (either the old current engine or no engine). The user
may use break to terminate the body early. The user may not use return. Using return
does not reset the old engine.

10.7 Multithreading and the XPCE graphics system

GUI applications written in XPCE can benefit from Prolog threads if they need to do expensive com-
putations that would otherwise block the UI. The XPCE message passing system is guarded with a

SWI-Prolog 9.3 Reference Manual

422 CHAPTER 10. MULTITHREADED APPLICATIONS

single mutex, which synchronises both access from Prolog and activation through the GUI. In MS-
Windows, GUI events are processed by the thread that created the window in which the event occurred,
whereas in Unix/X11 they are processed by the thread that dispatches messages. In practice, the most
feasible approach to graphical Prolog implementations is to control XPCE from a single thread and
deploy other threads for (long) computations.

Traditionally, XPCE runs in the foreground (main) thread. We are working towards a situation
where XPCE can run comfortably in a separate thread. A separate XPCE thread can be created using
pce dispatch/1. It is also possible to create this thread as the (pce) is loaded by setting the
xpce threaded to true.

Threads other than the thread in which XPCE runs are provided with two predicates to communi-
cate with XPCE.

in pce thread(:Goal) [det]

Assuming XPCE is running in the foreground thread, this call gives background threads the
opportunity to make calls to the XPCE thread. A call to in pce thread/1 succeeds
immediately, copying Goal to the XPCE thread. Goal is added to the XPCE event queue and
executed synchronous to normal user events like typing and clicking.

in pce thread sync(:Goal) [semidet]

Same as in pce thread/1, but wait for Goal to be completed. Success depends on the suc-
cess of executing Goal. Variable bindings inside Goal are visible to the caller, but it should be
noted that the values are being copied. If Goal throws an exception, this exception is re-thrown
by in pce thread/1. If the calling thread is the ‘pce thread’, in pce thread sync/1
executes a direct meta-call. See also in pce thread/1.

Note that in pce thread sync/1 is expensive because it requires copying and thread com-
munication. For example, in pce thread synctrue runs at approximately 50,000 calls
per second (AMD Phenom 9600B, Ubuntu 11.04).

pce dispatch(+Options)
Create a Prolog thread with the alias name pce for XPCE event handling. In the X11 version
this call creates a thread that executes the X11 event-dispatch loop. In MS-Windows it creates
a thread that executes a windows event-dispatch loop. The XPCE event-handling thread has
the alias pce. Options specifies the thread attributes as thread create/3.

SWI-Prolog 9.3 Reference Manual

Coroutining using Prolog
engines 11
Where the term coroutine in Prolog typically refer to hooks triggered by attributed variables (sec-
tion 8.1), SWI-Prolog provides two other forms of coroutines. Delimited continuations (see sec-
tion 4.9) allow creating coroutines that run in the same Prolog engine by capturing and restarting the
continuation. This section discusses engines, also known as interactors. The idea was developed by
Paul Tarau [Tarau, 2011]. The API described in this chapter has been established together with Paul
Tarau and Paulo Moura.

Engines are closely related to threads (section 10). An engine is a Prolog virtual machine
that has its own stacks and (virtual) machine state. Unlike normal Prolog threads though, they
are not associated with an operating system thread. Instead, you ask an engine for a next answer
(engine next/2). Asking an engine for the next answer attaches the engine to the calling operat-
ing system thread and cause it to run until the engine calls engine yield/1 or its associated goal
completes with an answer, failure or an exception. After the engine yields or completes, it is detached
from the operating system thread and the answer term is made available to the calling thread. Com-
municating with an engine is similar to communicating with a Prolog system though the terminal. In
this sense engines are related to Pengines as provided by library pengines, but where Pengines aim
primarily at accessing Prolog engines through the network, engines are in-process entities.

11.1 Examples using engines

We introduce engines by describing application areas and providing simple example programs. The
predicates are defined in section 11.3. We identify the following application areas for engines.

1. Aggregating solutions from one or more goals. See section 11.1.1.

2. Access the terms produced in forward execution through backtracking without collecting all of
them first. Section 11.1.1 illustrates this as well.

3. State accumulation and sharing. See section 11.1.2.

4. Scalable many-agent applications. See section 11.1.3.

11.1.1 Aggregation using engines

Engines can be used to reason about solutions produced by a goal through backtracking. In this sce-
nario we create an engine with the goal we wish to backtrack over and we enumerate all its solution us-
ing engine next/2. This usage scenario competes with the all solution predicates (findall/3,
bagof/3, etc.) and the predicates from library aggregate. Below we implement findall/3
using engines.

SWI-Prolog 9.3 Reference Manual

424 CHAPTER 11. COROUTINING USING PROLOG ENGINES

findall(Templ, Goal, List) :-
setup_call_cleanup(

engine_create(Templ, Goal, E),
get_answers(E, List),
engine_destroy(E)).

get_answers(E, [H|T]) :-
engine_next(E, H), !,
get_answers(E, T).

get_answers(_, []).

The above is not a particularly attractive alternative for the built-in findall/3. It is mostly slower
due to time required to create and destroy the engine as well as the (currently1) higher overhead of
copying terms between engines than the overhead required by the dedicated representation used by
findall/3.

It gets more interesting if we wish to combine answers from multiple backtracking predicates.
Assume we have two predicates that, on backtracking, return ordered solutions and we wish to merge
the two answer streams into a single ordered stream of answers. The solution in classical Prolog is
below. It collects both answer sets, merges them using ordered set merging and extract the answers.
The code is clean and short, but it doesn’t produce any answers before both generators are fully
enumerated and it uses memory that is proportional to the combined set of answers.

:- meta_predicate merge(?,0, ?,0, -).

merge_answers(T1,G1, T2,G2, A) :-
findall(T1, G1, L1),
findall(T2, G2, L2),
ord_union(L1, L2, Ordered),
member(A, Ordered).

We can achieve the same using engines. We create two engines to generate the solutions to both our
generators. Now, we can ask both for an answer, put the smallest in the answer set and ask the engine
that created the smallest for its next answer, etc. This way we can create an ordered list of answers
as above, but now without creating intermediate lists. We can avoid creating the intermediate list by
introducing a third engine that controls the two generators and yields the answers rather than putting
them in a list. This is a general example of turning a predicate that builds a set of terms into a non-
deterministic predicate that produces the results on backtracking. The full code is below. Merging the
answers of two generators, each generating a set of 10,000 integers is currently about 20% slower than
the code above, but the engine-based solution runs in constant space and generates the first solution
immediately after both our generators have produced their first solution.

:- meta_predicate merge(?,0, ?,0, -).

1The current implementation of engines is built on top of primitives that are not optimal for the engine use case. There
is considerable opportunity to reduce the overhead.

SWI-Prolog 9.3 Reference Manual

11.1. EXAMPLES USING ENGINES 425

merge(T1,G1, T2,G2, A) :-
engine_create(A, merge(T1,G1, T2,G2), E),
repeat,

(engine_next(E, A)
-> true
; !, fail
).

merge(T1,G1, T2,G2) :-
engine_create(T1, G1, E1),
engine_create(T2, G2, E2),
(engine_next(E1, S1)
-> (engine_next(E2, S2)

-> order_solutions(S1, S2, E1, E2)
; yield_remaining(S1, E1)
)

; engine_next(E2, S2),
yield_remaining(S2, E2)

).

order_solutions(S1, S2, E1, E2) :- !,
(S1 @=< S2
-> engine_yield(S1),

(engine_next(E1, S11)
-> order_solutions(S11, S2, E1, E2)
; yield_remaining(S2, E2)
)

; engine_yield(S2),
(engine_next(E2, S21)
-> order_solutions(S1, S21, E1, E2)
; yield_remaining(S1, E1)
)

).

yield_remaining(S, E) :-
engine_yield(S),
engine_next(E, S1),
yield_remaining(S1, E).

11.1.2 State accumulation using engines

Applications that need to manage a state can do so by passing the state around in an additional ar-
gument, storing it in a global variable or update it in the dynamic database using assertz/1 and
retract/1. Both using an additional argument and a global variable (see b setval/2), make the
state subject to backtracking. This may or may not be desirable. If having a state is that subject to

SWI-Prolog 9.3 Reference Manual

426 CHAPTER 11. COROUTINING USING PROLOG ENGINES

backtracking is required, using an additional argument or backtrackable global variable is the right ap-
proach. Otherwise, non-backtrackable global variables (nb setval/2) and dynamic database come
into the picture, where global variables are always local to a thread and the dynamic database may or
may not be shared between threads (see thread local/1).

Engines bring an alternative that packages a state inside the engine where it is typically represented
in a (threaded) Prolog variable. The state may be updated, while controlled backtracking to a previous
state belongs to the possibilities. It can be accessed and updated by anyone with access to the engines’
handle. Using an engine to represent state has the following advantages:

• The programming style needed inside the engine is much more ‘Prolog friendly’, using
engine fetch/1 to read a request and engine yield/1 to reply to it.

• The state is packaged and subject to (atom) garbage collection.

• The state may be accessed from multiple threads. Access to the state is synchronized without
the need for explicit locks.

The example below implements a shared priority heap based on library heaps. The predicate
update heap/1 shows the typical update loop for maintaining state inside an engine: fetch a com-
mand, update the state, yield with the reply and call the updater recursively. The update step is guarded
against failure. For robustness one may also guard it against exceptions using catch/3. Note that
heap get/3 passes the Priority and Key it wishes to delete from the heap such that if the unification
fails, the heap remains unchanged.

The resulting heap is a global object with either a named or anonymous handle that evolves inde-
pendently from the Prolog thread(s) that access it. If the heap is anonymous, it is subject to (atom)
garbage collection.

:- use_module(library(heaps)).

create_heap(E) :-
empty_heap(H),
engine_create(_, update_heap(H), E).

update_heap(H) :-
engine_fetch(Command),
(update_heap(Command, Reply, H, H1)
-> true
; H1 = H,

Reply = false
),
engine_yield(Reply),
update_heap(H1).

update_heap(add(Priority, Key), true, H0, H) :-
add_to_heap(H0, Priority, Key, H).

update_heap(get(Priority, Key), Priority-Key, H0, H) :-
get_from_heap(H0, Priority, Key, H).

SWI-Prolog 9.3 Reference Manual

11.2. ENGINE RESOURCE USAGE 427

heap_add(Priority, Key, E) :-
engine_post(E, add(Priority, Key), true).

heap_get(Priority, Key, E) :-
engine_post(E, get(Priority, Key), Priority-Key).

11.1.3 Scalable many-agent applications

The final application area we touch are agent systems were we wish to capture an agent in
a Prolog goal. Such systems can be implemented using threads (see section 10) that use
thread send message/2 and thread get message/1 to communicate. The main problem
is that each thread is associated by an operating system thread. OS threads are, depending on the
OS, relatively expensive. Scalability of this design typically ends, depending on OS and hardware,
somewhere between 1,000 and 100,000 agents.

Engines provide an alternative. A detached Prolog engine currently requires approximately
20 Kbytes memory on 64 bit hardware, growing with the size of the Prolog stacks. The Prolog stacks
may be minimised by calling garbage collect/0 followed by trim stacks/0, providing a
deep sleep mode. The set of agents, each represented by an engine can be controlled by a static or
dynamic pool of threads. Scheduling the execution of agents and their communication is completely
open and can be optimised to satisfy the requirements of the application.

This section needs an example. Preferably something that fits on one page and would
not scale using threads. Engines might work nice to implement Antrank: An ant colony
algorithm for ranking web pages.2

11.2 Engine resource usage

A Prolog engine consists of a virtual machine state that includes the Prolog stacks. An
‘empty’ engine requires about 20 KBytes of memory. This grows when the engine re-
quires additional stack space. Anonymous engines are subject to atom garbage collec-
tion (see garbage collect atoms/0). Engines may be reclaimed immediately using
engine destroy/1. Calling engine destroy/1 destroys the virtual machine state, while the
handle itself is left to atom garbage collection. The virtual machine is reclaimed as soon as an engine
produced its last result, failed or raised an exception. This implies that it is only advantageous to call
engine destroy/1 explicitly if you are not interested in further answers.

Engines that are expected to be left in inactive state for a prolonged time can be mini-
mized by calling garbage collect/0 and trim stacks/0 (in that order) before calling
engine yield/1 or succeeding.

11.3 Engine predicate reference

This section documents the built-in predicates that deal with engines. In addition to these, most
predicates dealing with threads and message queue can be used to access engines.

2http://www.ijettcs.org/Volume3Issue2/IJETTCS-2014-04-23-113.pdf

SWI-Prolog 9.3 Reference Manual

http://www.ijettcs.org/Volume3Issue2/IJETTCS-2014-04-23-113.pdf

428 CHAPTER 11. COROUTINING USING PROLOG ENGINES

engine create(+Template, :Goal, ?Engine) [det]

engine create(+Template, :Goal, -Engine, +Options) [det]

Create a new engine and unify Engine with a handle to it. Template and Goal form a pair similar
to findall/3: the instantiation of Template becomes available through engine next/2
after Goal succeeds. Options is a list of the following options. See thread create/3 for
details.

alias(+Name)
Give the engine a name. Name must be an atom. If this option is provided, Engine is
unified with Name. The name space for engines is shared with threads and mutexes.

stack(+Bytes)
Set the stack limit for the engine. The default is inherited from the calling thread.

The Engine argument of engine create/3 may be instantiated to an atom, creating an
engine with the given alias.

engine destroy(+Engine) [det]

Destroy Engine.

engine next(+Engine, -Term) [semidet]

Ask the engine Engine to produce a next answer. On this first call on a specific engine, the
Goal of the engine is started. If a previous call returned an answer through completion, this
causes the engine to backtrack and finally, if the engine produces a previous result using
engine yield/1, execution proceeds after the engine yield/1 call.

engine next reified(+Engine, -Term) [det]

Similar to engine next/2, but instead of success, failure or or raising an exception, Term is
unified with one of terms below. This predicate is provided primarily for compatibility with
Lean Prolog.

the(Answer)
Goal succeeded with Template bound to Answer or Goal yielded with a term Answer.

no
Goal failed.

throw(Exception)
Goal raised Exception.

engine post(+Engine, +Term) [det]

Make Term available to engine fetch/1 inside the Engine. This call must be followed by
a call to engine next/2 and the engine must call engine fetch/1.

engine post(+Engine, +Term, -Reply) [det]

Combines engine post/2 and engine next/2.

engine yield(+Term) [det]

Called from within the engine, causing engine next/2 in the caller to return with Term. A
subsequent call to engine next/2 causes engine yield/1 to ‘return’. This predicate
can only be called if the engine is not involved in a callback from C, i.e., when the engine calls
a predicate defined in C that calls back Prolog it is not possible to use this predicate. Trying to
do so results in a permission error exception.

SWI-Prolog 9.3 Reference Manual

11.3. ENGINE PREDICATE REFERENCE 429

engine fetch(-Term) [det]

Called from within the engine to fetch the term made available through engine post/2 or
engine post/3. If no term is available an existence error exception is raised.

engine self(-Engine) [det]

Called from within the engine to get access to the handle to the engine itself.

is engine(@Term) [semidet]

True if Term is a reference to or the alias name of an existing engine.

current engine(-Engine) [nondet]

True when Engine is an existing engine.

SWI-Prolog 9.3 Reference Manual

Foreign Language Interface 12
SWI-Prolog offers a powerful interface to C [Kernighan & Ritchie, 1978]. The main design objectives
of the foreign language interface are flexibility and performance. A foreign predicate is a C function
that has the same number of arguments as the predicate represented. C functions are provided to
analyse the passed terms, convert them to basic C types as well as to instantiate arguments using
unification. Non-deterministic foreign predicates are supported, providing the foreign function with a
handle to control backtracking.

C can call Prolog predicates, providing both a query interface and an interface to extract multiple
solutions from a non-deterministic Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. It is also possible to write the ‘main’ in C and use Prolog as an embedded
logical engine.

12.1 Overview of the Interface

The include file SWI-Prolog.h should be included with each C source file that is to be loaded
via the foreign interface. The installation process installs this file in the directory include in the
SWI-Prolog home directory (?- current prolog flag(home, Home).). This C header file
defines various data types, macros and functions that can be used to communicate with SWI-Prolog.
Functions and macros can be divided into the following categories:

• Analysing Prolog terms

• Constructing new terms

• Unifying terms

• Returning control information to Prolog

• Registering foreign predicates with Prolog

• Calling Prolog from C

• Recorded database interactions

• Global actions on Prolog (halt, break, abort, etc.)

12.2 Linking Foreign Modules

Foreign modules may be linked to Prolog in two ways. Using static linking, the extensions, a (short)
file defining main() which attaches the extension calls to Prolog, and the SWI-Prolog kernel dis-
tributed as a C library, are linked together to form a new executable. Using dynamic linking, the

SWI-Prolog 9.3 Reference Manual

12.2. LINKING FOREIGN MODULES 431

extensions are linked to a shared library (.so file on most Unix systems) or dynamic link library
(.DLL file on Microsoft platforms) and loaded into the running Prolog process.1

12.2.1 What linking is provided?

The static linking schema can be used on all versions of SWI-Prolog. Whether or not dy-
namic linking is supported can be deduced from the Prolog flag open shared object (see
current prolog flag/2). If this Prolog flag yields true, open shared object/2 and
related predicates are defined. See section 12.2.3 for a suitable high-level interface to these predi-
cates.

12.2.2 What kind of loading should I be using?

All described approaches have their advantages and disadvantages. Static linking is portable and
allows for debugging on all platforms. It is relatively cumbersome and the libraries you need to pass
to the linker may vary from system to system, though the utility program swipl-ld described in
section 12.5 often hides these problems from the user.

Loading shared objects (DLL files on Windows) provides sharing and protection and is
generally the best choice. If a saved state is created using qsave program/[1,2], an
initialization/1 directive may be used to load the appropriate library at startup.

Note that the definition of the foreign predicates is the same, regardless of the linking type used.

12.2.3 library(shlib): Utility library for loading foreign objects (DLLs, shared objects)

This section discusses the functionality of the (autoload) library(shlib), providing an interface
to manage shared libraries. We describe the procedure for using a foreign resource (DLL in Windows
and shared object in Unix) called mylib.

First, one must assemble the resource and make it compatible to SWI-Prolog. The details for
this vary between platforms. The swipl-ld(1) utility can be used to deal with this in a portable
manner. The typical commandline is:

swipl-ld -shared -o mylib file.{c,o,cc,C} ...

Make sure that one of the files provides a global function install_mylib() that initialises the
module using calls to PL register foreign(). Below is a simple example file mylib.c, which prints a
”hello” message. Note that we use SWI-Prolog’s Sprintf() rather than C standard printf() to print
the outout through Prolog’s current_output stream, making the example work in a windowed
environment. The standard C printf() works in a console environment, but this bypasses Prolog’s
output redirection. Also note the use of the standard C bool type, which is supported in 9.2.x and
more actively promoted in the 9.3.x development series.

#include <SWI-Prolog.h>
#include <SWI-Stream.h>

1The system also contains code to load .o files directly for some operating systems, notably Unix systems using the
BSD a.out executable format. As the number of Unix platforms supporting this quickly gets smaller and this interface is
difficult to port and slow, it is no longer described in this manual. The best alternative would be to use the dld package on
machines that do not have shared libraries.

SWI-Prolog 9.3 Reference Manual

432 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

#include <stdbool.h>

static foreign_t
pl_say_hello(term_t to)
{ char *s;

if (PL_get_chars(to, &s, CVT_ALL|REP_UTF8))
{ Sprintf("hello %Us", s);

return true;
}

return false;
}

install_t
install_mylib(void)
{ PL_register_foreign("say_hello", 1, pl_say_hello, 0);
}

Now write a file mylib.pl:

:- module(mylib, [say_hello/1]).
:- use_foreign_library(foreign(mylib)).

The file mylib.pl can be loaded as a normal Prolog file and provides the predicate defined in C.
The generated mylib.so (or .dll, etc.) must be placed in a directory searched for using the Prolog
search path foreign (see absolute file name/3). To load this from the current directory, we
can use the -p alias=dir option:

swipl -p foreign=. mylib.pl
?- say_hello(world).
hello world
true.

use foreign library(+FileSpec) [det]

use foreign library(+FileSpec, +Options:list) [det]

Load and install a foreign library as load foreign library/1,2 and register the
installation using initialization/2 with the option now. This is similar to using:

:- initialization(load_foreign_library(foreign(mylib))).

SWI-Prolog 9.3 Reference Manual

12.2. LINKING FOREIGN MODULES 433

but using the initialization/1 wrapper causes the library to be loaded after loading of
the file in which it appears is completed, while use foreign library/1 loads the library
immediately. I.e. the difference is only relevant if the remainder of the file uses functionality of
the C-library.

As of SWI-Prolog 8.1.22, use foreign library/1,2 is in provided as a built-in predicate
that, if necessary, loads library(shlib). This implies that these directives can be used
without explicitly loading library(shlib) or relying on demand loading.

qsave:compat arch(Arch1, Arch2) [semidet,multifile]

User definable hook to establish if Arch1 is compatible with Arch2 when running a shared
object. It is used in saved states produced by qsave program/2 to determine which shared
object to load at runtime.

See also foreign option in qsave program/2 for more information.

load foreign library(:FileSpec) [det]

load foreign library(:FileSpec, +Options:list) [det]

Load a shared object or DLL. After loading the Entry function is called without arguments.
The default entry function is composed from =install =, followed by the file base-name. E.g.,
the load-call below calls the function install_mylib(). If the platform prefixes extern
functions with = =, this prefix is added before calling. Options provided are below. Other
options are passed to open shared object/3.

install(+Function)
Installation function to use. Default is default(install), which derives the function
from FileSpec.

...
load_foreign_library(foreign(mylib)),
...

Arguments
FileSpec is a specification for absolute file name/3. If search-

ing the file fails, the plain name is passed to the OS to try
the default method of the OS for locating foreign objects. The
default definition of file search path/2 searches <prolog
home>/lib/<arch> on Unix and <prolog home>/bin on Win-
dows.

See also use foreign library/1,2 are intended for use in directives.

unload foreign library(+FileSpec) [det]

unload foreign library(+FileSpec, +Exit:atom) [det]

Unload a shared object or DLL. After calling the Exit function, the shared object is removed
from the process. The default exit function is composed from =uninstall =, followed by the file
base-name.

SWI-Prolog 9.3 Reference Manual

434 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

current foreign library(?File, ?Public)
Query currently loaded shared libraries.

reload foreign libraries
Reload all foreign libraries loaded (after restore of a state created using qsave program/2.

12.2.4 Low-level operations on shared libraries

The interface defined in this section allows the user to load shared libraries (.so files on most Unix
systems, .dll files on Windows). This interface is portable to Windows as well as to Unix machines
providing dlopen(2) (Solaris, Linux, FreeBSD, Irix and many more) or shl open(2) (HP/UX).
It is advised to use the predicates from section 12.2.3 in your application.

open shared object(+File, -Handle)
File is the name of a shared object file (DLL in MS-Windows). This file is attached to
the current process, and Handle is unified with a handle to the library. Equivalent to
open shared object(File, Handle, []). See also open shared object/3,
load foreign library/1 and use foreign library/1.

On errors, an exception shared object(Action, Message) is raised. Message is the return
value from dlerror().

open shared object(+File, -Handle, +Options)
As open shared object/2, but allows for additional flags to be passed. Defined
options are below. These options map to RTLD NOW, RTLD LAZY, RTLD GLOBAL,
RTLD NODELETE, RTLD NOLOAD and RTLD DEEPBIND on systems where this predicate is
implemented using dlopen() and these flags are supported. If the flag is not supported on
the target OS, the corresponding option is silently ignored.

resolve(Atom)
When to resolve symbols. Values are lazy (default) or now.

visibility(Atom)
Visibility of the new symbols. Values are are local (default) or global, making the
new symbols available to all subsequently loaded shared objects.

now(Bool)
now(true) is the same as resolve(now). Provided for backward compatibility.

global(Bool)
global(true) is the same as visibility(global). Provided for backward compatibil-
ity.

delete(Bool)
If false, include RTLD NODELETE.

load(Bool)
if false, include RTLD NOLOAD. This returns a handle to the object if it is already
loaded and NULL otherwise. It causes this predicate to fail silently if the object is not
loaded.

deepbind(Bool)
if true, include RTLD DEEPBIND.

SWI-Prolog 9.3 Reference Manual

12.3. INTERFACE DATA TYPES 435

Note that these flags may not be supported by your operating system. Check the documentation
of dlopen() or equivalent on your operating system. Unsupported flags are silently ignored.

close shared object(+Handle)
Detach the shared object identified by Handle.

call shared object function(+Handle, +Function)
Call the named function in the loaded shared library. The function is called without arguments
and the return value is ignored. Normally this function installs foreign language predicates
using calls to PL register foreign().

12.2.5 Static Linking

Older versions of SWI-Prolog were shipped by default with a static library. In recent versions we no
longer ship a static library because practically every OS properly supports dynamic linking without
serious drawbacks and dynamic linking has several advantages. It is on many platforms required to
be able to load SWI-Prolog foreign libraries (see use foreign library/1). Only on ELF based
systems such as Linux we can load foreign libraries if the main executable is linked to export its global
symbols (gcc -rdynamic option). Another advantage of dynamic libraries is that the user does not
have to worry about libraries that this particular build of SWI-Prolog requires such as libgmp as
well as OS specific libraries.

If one really wants a static library, use the CMake flag -DSWIPL STATIC LIB=ON while con-
figuring a build from source. This causes building and installing libswipl_static.a. Note
the static postfix to avoid a name conflict on Windows between the import library and the static
library.2.

12.3 Interface Data Types

12.3.1 Type term t: a reference to a Prolog term

The principal data type is term t. Type term t is what Quintus calls QP term ref. This name
indicates better what the type represents: it is a handle for a term rather than the term itself. Terms can
only be represented and manipulated using this type, as this is the only safe way to ensure the Prolog
kernel is aware of all terms referenced by foreign code and thus allows the kernel to perform garbage
collection and/or stack-shifts while foreign code is active, for example during a callback from C.

A term reference is a C uintptr t, representing the offset of a variable on the
Prolog environment stack. A foreign function is passed term references for the predi-
cate arguments, one for each argument. If references for intermediate results are needed,
such references may be created using PL new term ref() or PL new term refs().
These references normally live till the foreign function returns control back to Pro-
log. Their scope can be explicitly limited using PL open foreign frame() and
PL close foreign frame()/PL discard foreign frame().

A term t always refers to a valid Prolog term (variable, atom, integer, float or compound term).
A term lives either until backtracking takes us back to a point before the term was created, the garbage

2As is, the Windows build is cross-compiled using MinGW which produces libswipl_static.a. This file can, as
far as we know, not be used by MSVC.

SWI-Prolog 9.3 Reference Manual

436 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

collector has collected the term, or the term was created after a PL open foreign frame() and
PL discard foreign frame() has been called.

The foreign interface functions can either read, unify or write to term references. In this document
we use the following notation for arguments of type term t:

term t +t Accessed in read-mode. The ‘+’ indicates the argument is ‘input’.
term t -t Accessed in write-mode.
term t ?t Accessed in unify-mode.

WARNING Term references that are accessed in ‘write’ (-) mode will refer to an invalid term if
the term is allocated on the global stack and backtracking takes us back to a point before the term was
written.3 Compound terms, dicts, large integers, rational numbers, floats and strings are all allocated
on the global stack. Below is a typical scenario where this may happen. The first solution writes a
term extracted from the solution into a. After the system backtracks due to PL next solution(),
a becomes a reference to a term that no longer exists.

term_t a = PL_new_term_ref();
...
query = PL_open_query(...);
while(PL_next_solution(query))
{ PL_get_arg(i, ..., a);
}
PL_close_query(query);

There are two solutions to this problem. One is to scope the term reference using
PL open foreign frame() and PL close foreign frame() and makes sure it goes
out of scope before backtracking happens. The other is to clear the term reference using
PL put variable() before backtracking.

Term references are obtained in any of the following ways:

• Passed as argument
The C functions implementing foreign predicates are passed their arguments as term references.
These references may be read or unified. Writing to these variables causes undefined behaviour.

• Created by PL new term ref()
A term created by PL new term ref() is normally used to build temporary terms or to be
written by one of the interface functions. For example, PL get arg() writes a reference to
the term argument in its last argument.

• Created by PL new term refs(size t n)
This function returns a set of term references with the same characteristics as
PL new term ref(). See PL open query().

• Created by PL copy term ref(term t t)
Creates a new term reference to the same term as the argument. The term may be written to.
See figure 12.2.

3This could have been avoided by trailing term references when data is written to them. This seriously hurts performance
in some scenarios though. If this is desired, use PL put variable() followed by one of the PL unify *() functions.

SWI-Prolog 9.3 Reference Manual

12.3. INTERFACE DATA TYPES 437

Term references can safely be copied to other C variables of type term t, but all copies will
always refer to the same term.

term t PL new term ref()
Return a fresh reference to a term. The reference is allocated on the local stack. Allocating
a term reference may trigger a stack-shift on machines that cannot use sparse memory
management for allocation of the Prolog stacks. The returned reference describes a variable.
Raise a resource exception and returns (term t)0 on failure.

term t PL new term refs(size t n)
Return n new term references. The first term reference is returned. The others are t + 1, t + 2,
etc. Raise a resource exception and returns (term t)0 on failure. There are two reasons for
using this function. PL open query() and PL cons functor() expect the arguments
as a set of consecutive term references, and very time-critical code requiring a number of term
references can be written as:

pl_mypredicate(term_t a0, term_t a1)
{ term_t t0 = PL_new_term_refs(2);

term_t t1 = t0+1;

...
}

term t PL copy term ref(term t from)
Create a new term reference and make it point initially to the same term as from. This function
is commonly used to copy a predicate argument to a term reference that may be written. Raise
a resource exception and returns (term t)0 on failure. An example of its use is given below,
in the sample code pl write atoms().

void PL free term ref(term t t)
Release a specific term reference. Normally all term references in a scope are dis-
carded together or all term references created after a specific one are reclaimed using
PL reset term refs(). This function shrinks the current foreign frame if t is the last one
in the frame. Else it marks t for reuse by PL new term ref().

void PL reset term refs(term t after)
Destroy all term references that have been created after after, including after itself. Any refer-
ence to the invalidated term references after this call results in undefined behaviour.

Note that returning from the foreign context to Prolog will reclaim all references used in the
foreign context. This call is only necessary if references are created inside a loop that never exits
back to Prolog. See also PL open foreign frame(), PL close foreign frame()
and PL discard foreign frame().

Interaction with the garbage collector and stack-shifter

Prolog implements two mechanisms for avoiding stack overflow: garbage collection and stack ex-
pansion. On machines that allow for it, Prolog will use virtual memory management to detect stack

SWI-Prolog 9.3 Reference Manual

438 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

overflow and expand the runtime stacks. On other machines Prolog will reallocate the stacks and
update all pointers to them. To do so, Prolog needs to know which data is referenced by C code.
As all Prolog data known by C is referenced through term references (term t), Prolog has all the
information necessary to perform its memory management without special precautions from the C
programmer.

12.3.2 Other foreign interface types

atom t The type atom t actually represents a blob (see section 12.4.10). Blobs are the super type
of Prolog atoms, where atoms are blobs that represent textual content. Textual content is also
represented by Prolog string (see section 5.2), which makes the general notion of string in
Prolog ambiguous. The core idea behind blobs/atoms is to represent arbitrary content using a
unique handle, such that comparing the handles is enough to prove equivalence of the contents;
i.e., given two different atom handles we know they represent different texts. This uniqueness
feature allows the core engine to reason about atom equality and inequality without consider-
ing their content. Blobs without the PL BLOB UNIQUE feature are also tested for uniqueness
without considering their content. Each time an atom or a PL BLOB UNIQUE blob is created, it
must be looked up in the atom table; if a blob without PL BLOB UNIQUE is created, no lookup
is done. Strings (section 5.2) and blobs without the PL BLOB UNIQUE feature do not have this
uniqueness property - to test for equality, the contents of the strings or blobs must be compared.
For both atoms and strings, comparisons for ordering (e.g., used by sort/2 or @¡/2) must use
the contents; in the case of blobs, compare() can be specified in the PL blob t structure to
override the default bitwise comparison.

Because atoms are often used to represent (parts of) arbitrary input, intermediate results, and
output of data processed by Prolog, it is necessary that atoms be subject to garbage collection
(see garbage collect atoms/0). The garbage collection makes atoms ideal handles for
arbitrary data structures, which are generalized as blobs. Blobs provide safe access to many
internal Prolog data structures such as streams, clause references, etc.

functor t A functor is the internal representation of a name/arity pair. They are used to find the name
and arity of a compound term as well as to construct new compound terms. Like atoms they
live for the whole Prolog session and are unique.

predicate t Handle to a Prolog predicate. Predicate handles live forever (although they can lose their
definition).

qid t Query identifier. Used by PL open query(), PL next solution(),
PL cut query(), and PL close query() to handle calling Prolog from C.

fid t Frame identifier. Used by PL open foreign frame() and
PL close foreign frame().

module t A module is a unique handle to a Prolog module. Modules are used only to call predicates
in a specific module.

foreign t Return type for a C function implementing a Prolog predicate.

control t Passed as additional argument to non-deterministic foreign functions. See PL retry*() and
PL foreign context*().

SWI-Prolog 9.3 Reference Manual

12.3. INTERFACE DATA TYPES 439

install t Type for the install() and uninstall() functions of shared or dynamic link libraries.
See section 12.2.3.

int64 t Actually part of the C99 standard rather than Prolog. As of version 5.5.6, Prolog integers are
64-bit on all hardware. The C99 type int64 t is defined in the stdint.h standard header
and provides platform-independent 64-bit integers. Portable code accessing Prolog should use
this type to exchange integer values. Please note that PL get long() can return FALSE on
Prolog integers that cannot be represented as a C long. Robust code should not assume any of
the integer fetching functions to succeed, even if the Prolog term is known to be an integer.

PL ARITY AS SIZE

As of SWI-Prolog 7.3.12, the arity of terms has changed from int to size t. To deal with this
transition, all affecting functions have two versions, where the old name exchanges the arity as int
and a new function with name * sz() exchanges the arity as size t. Up to 8.1.28, the default was
to use the old int functions. As of 8.1.29/8.2.x, the default is to use size t and the old behaviour
can be restored by defining PL ARITY AS SIZE to 0 (zero). This makes old code compatible, but
the following warning is printed when compiling:

#warning "Term arity has changed from int to size_t."
#warning "Please update your code or use #define PL_ARITY_AS_SIZE 0."

To make the code compile silently again, change the types you use to represent arity from int to
size t. Please be aware that size t is unsigned. At some point representing arity as int will be
dropped completely.

Notes on C API bool return values

Most of the SWI-Prolog C-API consists of C functions that return a Boolean result. Up to version
9.3.10, these functions are defined to return int. Later versions define these functions to return
the bool. This type is provided by the standard header stdbool.h and will be supported as
a native type starting with the C23 standard, which introduces the keywords false, true and
bool. SWI-Prolog.h defines the constants FALSE and TRUE. These constants are consistent
with false, and true and may be used interchangeably. Future versions will deprecate FALSE and
TRUE. As of version 9.3.11 SWI-Prolog.h includes stdbool.h and thus provides the standard
names.

The Boolean result true indicates success, while false may indicate an error or logical fail-
ure. Which of the two happened can be examined by calling PL exception(0), which returns a
term t of value 0 if there was a logical failure. Otherwise the returned term reference is a handle
to the Prolog exception. Typically there is no need to test whether or not there has been an excep-
tion. Instead, the implementation of a foreign predicate can often simply return false in case some
API returned false. Prolog will map this to logical failure or raise the pending exception. The
C API defines several groups of bool functions that behave consistently. Note that errors which as
the Prolog term handle (term t) not being a valid is not reported through the API. If this is detected
PL api error() is called, which aborts the process with a diagnostic message. If not detected,
such errors lead to undefined behaviour (read: arbitrary crashes or wrong behaviour now or later).

SWI-Prolog 9.3 Reference Manual

440 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

PL is *()
These are type checking functions. They have no side effects and no error conditions. Returning
false implies the argument is not of the tested type.

PL get *()
This group extracts C value from a Prolog term. If the term is not of the expected type or the C
value cannot represent the value the function returns false. No exception is raised.

PL get * ex()
This group is similar to PL get *(), but raises a Prolog exception. The exception is either an
instantiation error in case the term is unbound but should not be, a type error in
case the term is of the wrong type or a representation error in case the C type cannot
represent the Prolog value (e.g., a C int while the Prolog integer is out of reach for this type).

PL put *()
This group converts C data to a Prolog term. Such a function returning false always raises
a resource error, indicating that Prolog does not have sufficient resources to store the
result.

PL unify *()
This group unifies a Prolog term to a converted C value. Here, the failure can be logical if the
unification failed because the term was already bound to some other value or the failure may be
the result of a resource error as with the PL put *() group.

12.4 The Foreign Include File

12.4.1 Argument Passing and Control

If Prolog encounters a foreign predicate at run time it will call a function specified in the predicate
definition of the foreign predicate. The arguments 1, . . . , ⟨arity⟩ pass the Prolog arguments to the goal
as Prolog terms. Foreign functions should be declared of type foreign t.

All the arguments to a foreign predicate must be of type term t. The only operation that
is allowed with an argument to a foreign predicate is unification; for anything that might over-
write the term, you must use a copy created by PL copy term ref(). For an example, see
PL unify list().

Deterministic foreign functions return with either TRUE (success) or FALSE (failure).4 The for-
eign function may raise an exception using PL raise exception() or one of the shorthands for
commonly used exceptions such as PL type error(). Note that the C language does not provide
exception handling and therefore the functions that raise an exception return (with the value FALSE).
Functions that raise an exception must return FALSE.

Non-deterministic Foreign Predicates

By default foreign predicates are deterministic. Using the PL FA NONDETERMINISTIC attribute
(see PL register foreign()) it is possible to register a predicate as a non-deterministic predi-
cate. Writing non-deterministic foreign predicates is slightly more complicated as the foreign function

4SWI-Prolog.h defines the macros PL succeed and PL fail to return with success or failure. These macros
should be considered deprecated.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 441

needs context information for generating the next solution. Note that the same foreign function should
be prepared to be simultaneously active in more than one goal. Suppose the natural number below n/2
is a non-deterministic foreign predicate, backtracking over all natural numbers lower than the first ar-
gument. Now consider the following predicate:

quotient_below_n(Q, N) :-
natural_number_below_n(N, N1),
natural_number_below_n(N, N2),
Q =:= N1 / N2, !.

In this predicate the function natural number below n/2 simultaneously generates solutions for both
its invocations.

Non-deterministic foreign functions should be prepared to handle three different calls from Prolog:

• Initial call (PL FIRST CALL)
Prolog has just created a frame for the foreign function and asks it to produce the first answer.

• Redo call (PL REDO)
The previous invocation of the foreign function associated with the current goal indicated it was
possible to backtrack. The foreign function should produce the next solution.

• Terminate call (PL PRUNED)
The choice point left by the foreign function has been destroyed by a cut or exception. The
foreign function is given the opportunity to clean the environment. The context handle is the
only meaningful argument – the term arguments to the call are (term t)0.

Both the context information and the type of call is provided by an argument of type
control t appended to the argument list for deterministic foreign functions. The macro
PL foreign control() extracts the type of call from the control argument. The foreign func-
tion can pass a context handle using the PL retry*() macros and extract the handle from the extra
argument using the PL foreign context*() macro.

(return) foreign t PL retry(intptr t value)
The foreign function succeeds while leaving a choice point. On backtracking over this goal the
foreign function will be called again, but the control argument now indicates it is a ‘Redo’ call
and the macro PL foreign context() returns the handle passed via PL retry(). This
handle is a signed value two bits smaller than a pointer, i.e., 30 or 62 bits (two bits are used for
status indication). Defined as return PL retry(n). See also PL succeed().

(return) foreign t PL retry address(void *)
As PL retry(), but ensures an address as returned by malloc() is correctly recovered by
PL foreign context address(). Defined as return PL retry address(n).
See also PL succeed().

int PL foreign control(control t)
Extracts the type of call from the control argument. The return values are described above.
Note that the function should be prepared to handle the PL PRUNED case and should be aware
that the other arguments are not valid in this case.

SWI-Prolog 9.3 Reference Manual

442 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

intptr t PL foreign context(control t)
Extracts the context from the context argument. If the call type is PL FIRST CALL the context
value is 0L. Otherwise it is the value returned by the last PL retry() associated with this
goal (both if the call type is PL REDO or PL PRUNED).

void * PL foreign context address(control t)
Extracts an address as passed in by PL retry address().

predicate t PL foreign context predicate(control t)
Fetch the Prolog predicate that is executing this function. Note that if the predicate is imported,
the returned predicate refers to the final definition rather than the imported predicate; i.e., the
module reported by PL predicate info() is the module in which the predicate is defined
rather than the module where it was called. See also PL predicate info().

Note: If a non-deterministic foreign function returns using PL succeed() or PL fail(),
Prolog assumes the foreign function has cleaned its environment. No call with control argument
PL PRUNED will follow.

The code of figure 12.1 shows a skeleton for a non-deterministic foreign predicate definition.

Yielding from foreign predicates

Starting with SWI-Prolog 8.5.5 we provide an experimental interface that allows using a SWI-Prolog
engine for asynchronous processing. The idea is that an engine that calls a foreign predicate which
would need to block may be suspended and later resumed. For example, consider an application that
listens to a large number of network connections (sockets). SWI-Prolog offers three scenarios to deal
with this:

1. Using a thread per connection. This model fits Prolog well as it allows to keep state in e.g. a
DCG using phrase from stream/2. Maintaining an operating system thread per connec-
tion uses a significant amount of resources though.

2. Using wait for input/3 a single thread can wait for many connections. Each time input
arrives we must associate this with a state engine and advance this engine using a chunk of input
of unknown size. Programming a state engine in Prolog is typically a tedious job. Although
we can use delimited continuations (see section 4.9) in some scenarios this is not a universal
solution.

3. Using the primitives from this section we can create an engine (see PL engine create())
to handle a connection with the same benefits as using threads. When the engine calls a for-
eign predicate that would need to block it calls PL yield address() to suspend the engine.
An overall scheduler watches for ready connections and calls PL next solution() to re-
sume the suspended engine. This approach allows processing many connections on the same
operating system thread.

As is, these features can only used through the foreign language interface. It was added after
discussion with with Mattijs van Otterdijk aiming for using SWI-Prolog together with Rust’s asyn-
chronous programming support. Note that this feature is related to the engine API as described in
section 11. It is different though. Where the Prolog engine API allows for communicating with a
Prolog engine, the facilities of this section merely allow an engine to suspend, to be resumed later.

SWI-Prolog 9.3 Reference Manual

https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html
https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html

12.4. THE FOREIGN INCLUDE FILE 443

typedef struct /* define a context structure */
{ ...
} context;

foreign_t
my_function(term_t a0, term_t a1, control_t handle)
{ struct context * ctxt;

switch(PL_foreign_control(handle))
{ case PL_FIRST_CALL:

if (!(ctxt = malloc(sizeof *ctxt)))
return PL_resource_error("memory");

<initialize ctxt>
break;

case PL_REDO:
ctxt = PL_foreign_context_address(handle);
break;

case PL_PRUNED:
ctxt = PL_foreign_context_address(handle);
...
free(ctxt);
return TRUE;

}

<find first/next solution from ctxt>
...
// We fail */
if (<no_solution>)
{ free(ctx);

return FALSE;
}
// We succeed without a choice point */
if (<last_solution>)
{ free(ctx);

return TRUE;
}
// We succeed with a choice point */
PL_retry_address(ctxt);

}

Figure 12.1: Skeleton for non-deterministic foreign functions

SWI-Prolog 9.3 Reference Manual

444 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

To prepare a query for asynchronous usage we first create an engine using
PL create engine(). Next, we create a query in the engine using PL open query()
with the flags PL Q ALLOW YIELD and PL Q EXT STATUS. A foreign predicate that needs to
be capable of suspending must be registered using PL register foreign() and the flags
PL FA VARARGS and PL FA NONDETERMINISTIC; i.e., only non-det predicates can yield.
This is no restriction as non-det predicate can always return TRUE to indicate deterministic suc-
cess. Finally, PL yield address() allows the predicate to yield control, preparing to resume
similar to PL retry address() does for non-deterministic results. PL next solution()
returns PL S YIELD if a predicate calls PL yield address() and may be resumed by calling
PL next solution() using the same query id (qid). We illustrate the above using some example
fragments.

First, let us create a predicate that can read the available input from a Prolog stream and yield if
it would block. Note that our predicate must the PL FA VARARGS interface, which implies the first
argument is in a0, the second in a0+1, etc.5

/** read_or_block(+Stream, -String) is det.

*/

#define BUFSIZE 4096

static foreign_t
read_or_block(term_t a0, int arity, void *context)
{ IOSTREAM *s;

switch(PL_foreign_control(context))
{ case PL_FIRST_CALL:

if (PL_get_stream(a0, &s, SIO_INPUT))
{ Sset_timeout(s, 0);

break;
}
return FALSE;

case PL_RESUME:
s = PL_foreign_context_address(context);
break;

case PL_PRUNED:
return PL_release_stream(s);

default:
assert(0);
return FALSE;

}

char buf[BUFSIZE];

size_t n = Sfread(buf, sizeof buf[0], sizeof buf / sizeof buf[0], s);
if (n == 0) // timeout or error

5the other foreign interfaces do not support the yield API.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 445

{ if ((s->flags&SIO_TIMEOUT))
PL_yield_address(s); // timeout: yield

else
return PL_release_stream(s); // raise error

} else
{ return (PL_release_stream(s) &&

PL_unify_chars(a0+1, PL_STRING|REP_ISO_LATIN_1, n, buf));
}

}

This function must be registered using PL register foreign():

PL_register_foreign("read_or_block", 2, read_or_block,
PL_FA_VARARGS|PL_FA_NONDETERMINISTIC);

Next, create an engine to run handle connection/1 on a Prolog stream. Note that we omitted
most of the error checking for readability. Also note that we must make our engine current using
PL set engine() before we can interact with it.

qid_t
start_connection(IOSTREAM *c)
{ predicate_t p = PL_predicate("handle_connection", 1, "user");

PL_engine_t e = PL_create_engine(NULL);
qid_t q = NULL;
PL_WITH_ENGINE(e)
{ term_t av = PL_new_term_refs(1);

PL_unify_stream(av+0, c);
q = PL_open_query(e, NULL,

PL_Q_CATCH_EXCEPTION|
PL_Q_ALLOW_YIELD|
PL_Q_EXT_STATUS,
p, av);

}
return q;

}

Finally, our foreign code must manage this engine. Normally it will do so together with many other
engines. First, we write a function that runs a query in the engine to which it belongs.6

int
PL_engine_next_solution(qid_t qid)
{ int rc = FALSE;

6Possibly, future versions of PL next solution() may do that although the value is in general limited because
interacting with the arguments of the query requires the query’s engine to be current anyway.

SWI-Prolog 9.3 Reference Manual

446 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

PL_WITH_ENGINE(PL_query_engine(qid))
{ rc = PL_next_solution(qid);
}

return rc;
}

Now we can simply handle a connection using the loop below which restarts the query as long as it
yields. Realistic code manages multiple queries and will (in this case) use the POSIX poll() or
select() interfaces to activate the next query that can continue without blocking.

int rc;
do
{ rc = PL_engine_next_solution(qid);
} while(rc == PL_S_YIELD);

After the query completes it must be closed using PL close query() or PL cut query(). The
engine may be destroyed using PL engine destroy() or reused for a new query.

(return) foreign t PL yield address(void *)
Cause PL next solution() of the active query to return with PL S YIELD. A subsequent
call to PL next solution() on the same query calls the foreign predicate again with the
control status set to PL RESUME, after which PL foreign context address() retrieves
the address passed to this function. The state of the Prolog engine is maintained, including
term t handles. If the passed address needs to be invalidated the predicate must do so when
returning either TRUE or FALSE. If the engine terminates the predicate the predicate is called
with status PL PRUNED, in which case the predicate must cleanup.

bool PL can yield(void)
Returns TRUE when called from inside a foreign predicate if the query that (indirectly) calls
this foreign predicate can yield using PL yield address(). Returns FALSE when either
there is no current query or the query cannot yield.

Discussion Asynchronous processing has become popular with modern programming languages,
especially those aiming at network communication. Asynchronous processing uses fewer resources
than threads while avoiding most of the complications associated with thread synchronization if only
a single thread is used to manage the various states. The lack of good support for destructive state
updates in Prolog makes it attractive to use threads for dealing with multiple inputs. The fact that
Prolog discourages using shared global data such as dynamic predicates typically makes multithreaded
code easy to manage.

It is not clear how much scalability we gain using Prolog engines instead of Prolog threads. The
only difference between the two is the operating system task. Prolog engines are still rather memory
intensive, mainly depending on the stack sizes. Global garbage collection (atoms and clauses) need to
process all the stacks of all the engines and thus limit scalability.

One possible future direction is to allow all (possibly) blocking Prolog predicates to use the yield
facility and provide a Prolog API to manage sets of engines that use this type of yielding. As is, these
features are designed to allow SWI-Prolog for cooperating with languages that provide asynchronous
functions.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 447

Implementing a yield based debugger

Starting with version 9.3.21, the SWI-Prolog foreign interface allows you to implement a debugger
based on yielding, similar to section 12.4.1. This implies that instead of using the built-in debugger
or the prolog trace interception/4 hook that is used for e.g., driving the GUI debugger,
PL next solution() returns when trace interaction is required. The embedding system can in-
teract with the user and resume PL next solution(). This is notably required by the WASM
described in section 13 version, where we need to return to the browser event loop to interact with
the user. Yielding on behalf of the debugger is enabled using the PL Q TRACE WITH YIELD flag of
PL open query(). The skeleton or using these facilities is below. PL get trace context()
retrieves a Prolog term that provides information similar to prolog trace interception/4.

qid_t qid = PL_open_query(module,
PL_Q_EXT_STATUS|
PL_Q_ALLOW_YIELD|PL_Q_TRACE_WITH_YIELD,
predicate, argv);

for(;;)
{ int rc = PL_next_solution(qid);

switch(rc)
{ case PL_S_YIELD_DEBUG:

PL_get_trace_context(msg);
trace_reply(msg, action);
PL_set_trace_action(action);
break;

case ...
}

}

The trace reply() is a user defined function that typically calls Prolog to display the current
goal and requests the user how to continue. PL set trace action() processes the same term
as output argument of prolog trace interception/4, telling Prolog how to continue. One
option for trace reply() is to call a Prolog predicate. Below is a partial implementation for
such a predicate. Here, trace reply/3 uses the character typed by the user to derive the trace
continuation action.

read_trace_reply(Msg, Action) :-
print_message(debug, Msg),
format(user_error, ’? ’, []),
get_single_char(Code),
char_code(Char, Code),
trace_reply(Char, Msg, Action).

bool PL get trace context(term t -msg)
Unify msg with a Prolog term of the following shape: frame(Frame, Choice, Port, PC).
This provides the same information as passed to prolog trace interception/4. The
additional PC argument provides the program counter in the executing clause. The msg term

SWI-Prolog 9.3 Reference Manual

448 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

may be passed to print message/2 to print the current port and goal, similarly to the
commandline debugger.

bool PL set trace action, term t +action(S)
et the continuation action. Supported values are described with the Action argument of
prolog trace interception/4.

12.4.2 Atoms and functors

The following functions provide for communication using atoms and functors.

atom t PL new atom(const char *)
Return an atom handle for the given C-string. This function always succeeds. The returned
handle is valid as long as the atom is referenced (see section 12.4.2). Currently aborts the
process with a fatal error on failure. Future versions may raise a resource exception and return
(atom t)0.

The following atoms are provided as macros, giving access to the empty list symbol and the
name of the list constructor. Prior to version 7, ATOM nil is the same as PL new atom(”[]”)
and ATOM dot is the same as PL new atom(”.”). This is no longer the case in SWI-Prolog
version 7.

atom t ATOM nil(A)
tomic constant that represents the empty list. It is advised to use PL get nil(),
PL put nil() or PL unify nil() where applicable.

atom t ATOM dot(A)
tomic constant that represents the name of the list constructor. The list constructor itself is
created using PL new functor(ATOM dot,2). It is advised to use PL get list(),
PL put list() or PL unify list() where applicable.

atom t PL new atom mbchars(int rep, size t len, const char *s)
This function generalizes PL new atom() and PL new atom nchars() while allowing
for multiple encodings. The rep argument is one of REP ISO LATIN 1, REP UTF8 or
REP MB. If len is (size t)-1, it is computed from s using strlen(). Raises an exception
if s violates rep and returns (atom t)0. For other error conditions, see PL new atom().

bool PL atom mbchars(atom t atom, size t len, char *s, unsigned int flags)
This function generalizes fetching the text associated with an atom. The encoding depends on
the flags REP UTF8, REP MB or REP ISO LATIN 1. Storage is defined by the BUF * flags
as described with PL get chars(). The flag CVT EXCEPTION defines whether or not the
function fails silently or raises a Prolog exception. This function may fail because atom is not a
text atom but a blob (see section 12.4.10), conversion to the requested encoding is not possible
or a resource error occurs.

const char* PL atom chars(atom t atom)
Deprecated. This function returns a pointer to the content represented by the atom or blob
regardless of its type. New code that uses blobs should use the blob functions such as
PL blob data() to get a pointer to the content, the size of the content, and the type
of the content. Most applications that need to get text from a term t handle should use

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 449

PL atom nchars(), PL atom wchars(), or PL atom mbchars(). If it is known that
atom is a classical Prolog text atom, one can use PL atom nchars() to obtain the C string
and its length (for ISO-Latin-1 atoms) or PL atom wchars() to obtain a C wide string
(wchar t).

size t PL atom index(atom t atom)
Extract the index of an atom. This is a relatively small integer. Atoms are numbered sequen-
tially, starting at one (1). Note that the sequence may have holes due to atom garbage collection.
The released index may later be reused for a new atom. The index may be used as a compact
identifier for the atom. Extracting the index has no impact on the lifetime of the atom, i.e., the
index is valid as long as the atom t is valid.

atom t PL atom from index(size t index)
Recover an atom from its index as obtained by PL atom index().

functor t PL new functor(atom t name, int arity)
Returns a functor identifier, a handle for the name/arity pair. The returned handle is valid for
the entire Prolog session. Future versions may garbage collect functors as part of atom garbage
collection. Currently aborts the process with a fatal error on failure. Future versions may raise
a resource exception and return (atom t)0.

atom t PL functor name(functor t f)
Return an atom representing the name of the given functor.

size t PL functor arity(functor t f)
Return the arity of the given functor.

Atoms and atom garbage collection

With the introduction of atom garbage collection in version 3.3.0, atoms no longer live as long as the
process. Instead, their lifetime is guaranteed only as long as they are referenced. In the single-threaded
version, atom garbage collections are only invoked at the call-port. In the multithreaded version (see
chapter 10), they appear asynchronously, except for the invoking thread.

For dealing with atom garbage collection, two additional functions are provided:

void PL register atom(atom t atom)
Increment the reference count of the atom by one. PL new atom() performs this automati-
cally, returning an atom with a reference count of at least one.7

void PL unregister atom(atom t atom)
Decrement the reference count of the atom. If the reference count drops below zero, an assertion
error is raised.

Please note that the following two calls are different with respect to atom garbage collection:

PL_unify_atom_chars(t, "text");
PL_unify_atom(t, PL_new_atom("text"));

7Otherwise asynchronous atom garbage collection might destroy the atom before it is used.

SWI-Prolog 9.3 Reference Manual

450 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

The latter increments the reference count of the atom text, which effectively ensures the atom will
never be collected. It is advised to use the * chars() or * nchars() functions whenever applica-
ble.

12.4.3 Input and output

For input and output, SWI-Stream.h defines a set of functions that are similar to the C library
functions, except prefixed by S, e.g. Sfprintf(). They differ from the C functions in following
ways:

• Instead of returning the number of bytes written and a negative value for error, they return the
number of characters written and a negative value for error.

• Instead of a FILE, they access the Prolog streams, using IOSTREAM*. In par-
ticular, Scurrent output accesses the current output stream and works well with
with output to/2. Similarly, there are Scurrent intput, Suser output,
Suser error, and Suser input.

• If you wish to directly use the operating system’s stdin, stdout, stderr, you
can use Sinput, Soutput, Serror. These are not affected by predicates such as
with output to/2.

In general, if a stream is acquired via PL acquire stream(), an error is raised when
PL release stream() is called, so in that situation, there’s no need to check the return codes
from the IO functions. Blob write callbacks are also called in the context of an acquired stream, so
there is no need to check the return codes from its IO function calls. However, if you use one of the
standard streams such as Scurrent output, you should check the return code and return FALSE
from the foreign predicate, at which point an error will be raised. Not all IO functions follow this,
because they need to return other information, so you should check the details with each one (e.g.,
Sputcode() returns -1 on error).

For more details, including formatting extensions for printing terms, see section 12.9.

12.4.4 Analysing Terms via the Foreign Interface

Each argument of a foreign function (except for the control argument) is of type term t, an opaque
handle to a Prolog term. Three groups of functions are available for the analysis of terms. The first
just validates the type, like the Prolog predicates var/1, atom/1, etc., and are called PL is *().
The second group attempts to translate the argument into a C primitive type. These predicates take a
term t and a pointer to the appropriate C type and return TRUE or FALSE depending on successful
or unsuccessful translation. If the translation fails, the pointed-to data is never modified.

Testing the type of a term

int PL term type(term t)
Obtain the type of a term, which should be a term returned by one of the other interface pred-
icates or passed as an argument. The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functions PL get *() also validate the
type and thus the two sections below are equivalent.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 451

if (PL_is_atom(t))
{ char *s;

PL_get_atom_chars(t, &s);
...;

}

or

char *s;
if (PL_get_atom_chars(t, &s))
{ ...;
}

Version 7 added PL NIL, PL BLOB, PL LIST PAIR and PL DICT. Older versions classify
PL NIL and PL BLOB as PL ATOM, PL LIST PAIR as PL TERM and do not have dicts.
PL VARIABLE A variable or attributed variable
PL ATOM A Prolog atom
PL NIL The constant []
PL BLOB A blob (see section 12.4.10)
PL STRING A string (see section 5.2)
PL INTEGER A integer
PL RATIONAL A rational number
PL FLOAT A floating point number
PL TERM A compound term
PL LIST PAIR A list cell ([H|T])
PL DICT A dict (see section 5.4))

The functions PL is ⟨type⟩ are an alternative to PL term type(). The test
PL is variable(term) is equivalent to PL term type(term) == PL VARIABLE, but
the first is considerably faster. On the other hand, using a switch over PL term type() is faster
and more readable then using an if-then-else using the functions below. All these functions return
either TRUE or FALSE.

bool PL is variable(term t)
Returns non-zero if term is a variable.

bool PL is ground(term t)
Returns non-zero if term is a ground term. See also ground/1. This function is cycle-safe.

bool PL is atom(term t)
Returns non-zero if term is an atom.

bool PL is string(term t)
Returns non-zero if term is a string.

bool PL is integer(term t)
Returns non-zero if term is an integer.

SWI-Prolog 9.3 Reference Manual

452 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

bool PL is rational(term t)
Returns non-zero if term is a rational number (P/Q). Note that all integers are considered
rational and this test thus succeeds for any term for which PL is integer() succeeds. See
also PL get mpq() and PL unify mpq().

bool PL is float(term t)
Returns non-zero if term is a float. Note that the corresponding PL get float() converts
rationals (and thus integers).

bool PL is callable(term t)
Returns non-zero if term is a callable term. See callable/1 for details.

bool PL is compound(term t)
Returns non-zero if term is a compound term.

bool PL is functor(term t, functor t)
Returns non-zero if term is compound and its functor is functor. This test is equivalent to
PL get functor(), followed by testing the functor, but easier to write and faster.

bool PL is list(term t)
Returns non-zero if term is a compound term using the list constructor or the list terminator.
See also PL is pair() and PL skip list().

bool PL is pair(term t)
Returns non-zero if term is a compound term using the list constructor. See also
PL is list() and PL skip list().

bool PL is dict(term t)
Returns non-zero if term is a dict. See also PL put dict() and PL get dict key().

bool PL is atomic(term t)
Returns non-zero if term is atomic (not a variable or compound).

bool PL is number(term t)
Returns non-zero if term is an rational (including integers) or float.

bool PL is acyclic(term t)
Returns non-zero if term is acyclic (i.e. a finite tree).

Reading data from a term

The functions PL get *() read information from a Prolog term. Most of them take two arguments.
The first is the input term and the second is a pointer to the output value or a term reference. The
return value is TRUE or FALSE, indicating the success of the ”get” operation. Most functions have a
related ” ex” function that raises an error if the argument is the operation cannot be completed. If the
Prolog term is not suitable, this is a type, domain or instantiation error. If the receiving C type cannot
represent the value this is a representation error.

For integers an alternative interface exists, which helps deal with the various integer types in C
and C++. They are convenient for use with Generic selection or C++ overloading.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 453

bool PL get atom(term t +t, atom t *a)
If t is an atom, store the unique atom identifier over a. See also PL atom chars() and
PL new atom(). If there is no need to access the data (characters) of an atom, it is
advised to manipulate atoms using their handle. As the atom is referenced by t, it will live
at least as long as t does. If longer lifetime is required, the atom should be locked using
PL register atom().

bool PL get atom chars(term t +t, char **s)
If t is an atom, store a pointer to a 0-terminated C-string in s. It is explicitly not allowed
to modify the contents of this string. Some built-in atoms may have the string allocated in
read-only memory, so ‘temporary manipulation’ can cause an error.

int PL get string chars(term t +t, char **s, size t *len)
If t is a string object, store a pointer to a 0-terminated C-string in s and the length of the string
in len. Note that this pointer is invalidated by backtracking, garbage collection and stack-shifts,
so generally the only safe operations are to pass it immediately to a C function that doesn’t
involve Prolog.

bool PL get chars(term t +t, char **s, unsigned flags)
Convert the argument term t to a 0-terminated C-string. flags is a bitwise disjunction from two
groups of constants. The first specifies which term types should be converted and the second
how the argument is stored. Below is a specification of these constants. BUF STACK implies,
if the data is not static (as from an atom), that the data is pushed on a stack. If BUF MALLOC is
used, the data must be freed using PL free() when no longer needed.

With the introduction of wide characters (see section 2.18.1), not all atoms can be converted into
a char*. This function fails if t is of the wrong type, but also if the text cannot be represented.
See the REP * flags below for details. See also PL get wchars() and PL get nchars().

The first set of flags (CVT ATOM through CVT VARIABLE, if set, are tested in order, using
the first that matches. If none of these match, then a check is made for one of CVT WRITE,
CVT WRITE CANONICAL, CVT WRITEQ being set. If none of the “CVT WRITE*” flags are
set, then a type error is raised.

CVT ATOM
Convert if term is an atom.

CVT STRING
Convert if term is a string.

CVT LIST
Convert if term is a list of characters (atoms of length 1) or character codes (integers
representing Unicode code points).

CVT INTEGER
Convert if term is an integer.

CVT RATIONAL
Convert if term is a rational number (including integers). Non-integral numbers are
written as ⟨num⟩r⟨den⟩.

CVT XINTEGER
Convert if term is an integer to hexadecimal notation. May be combined with

SWI-Prolog 9.3 Reference Manual

454 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

CVT RATIONAL to represent rational numbers using hexadecimal notation. Hex-
adecimal notation is notably useful for transferring big integers to other programming
environments if the target system can read hexadecimal notation because the result is both
more compact and faster to write and read.

CVT FLOAT
Convert if term is a float. The characters returned are the same as write/1 would write
for the floating point number.

CVT NUMBER
Convert if term is an integer, rational number or float. Equivalent to
CVT RATIONAL|CVT FLOAT. Note that CVT INTEGER is implied by
CVT RATIONAL.

CVT ATOMIC
Convert if term is atomic. Equivalent to CVT NUMBER|CVT ATOM|CVT STRING.

CVT ALL
Convert if term is any of the above. Integers and rational numbers are written as
decimal (i.e., CVT XINTEGER is not implied). Note that this does not include
variables or terms (with the exception of a list of characters/codes). Equivalent to
CVT ATOMIC|CVT LIST.

CVT VARIABLE
Convert variable to print-name (e.g., 3290).

CVT WRITE
Convert any term that is not converted by any of the other flags using write/1. If no
BUF * is provided, BUF STACK is implied.

CVT WRITEQ
As CVT WRITE, but using writeq/2.

CVT WRITE CANONICAL
As CVT WRITE, but using write canonical/2.

CVT EXCEPTION
If conversion fails due to a type error, raise a Prolog type error exception in addition to
failure.

BUF DISCARDABLE
Data must copied immediately.

BUF STACK
Data is stored on a stack. The older BUF RING is an alias for BUF STACK. See sec-
tion 12.4.14.

BUF MALLOC
Data is copied to a new buffer returned by PL malloc(3). When no longer needed the
user must call PL free() on the data.

REP ISO LATIN 1
Text is in ISO Latin-1 encoding and the call fails if text cannot be represented. This flag
has the value 0 and is thus the default.

REP UTF8
Convert the text to a UTF-8 string. This works for all text.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 455

REP MB
Convert to default locale-defined 8-bit string. Success depends on the locale. Conversion
is done using the wcrtomb() C library function.

bool PL get list chars(+term t l, char **s, unsigned flags)
Same as PL get chars(l, s, CVT LIST—flags), provided flags contains none of the CVT *
flags.

bool PL get integer(+term t t, int *i)
If t is a Prolog integer, assign its value over i. On 32-bit machines, this is the same as
PL get long(), but avoids a warning from the compiler. See also PL get long() and
PL get integer ex().

bool PL get long(term t +t, long *i)
If t is a Prolog integer that can be represented as a long, assign its value over i. If t is an
integer that cannot be represented by a C long, this function returns FALSE. If t is a floating
point number that can be represented as a long, this function succeeds as well. See also
PL get int64() and PL get long ex().

bool PL get int64(term t +t, int64 t *i)
If t is a Prolog integer or float that can be represented as a int64 t, assign its value over i.
See also PL get int64 ex().

bool PL get uint64(term t +t, uint64 t *i)
If t is a Prolog integer that can be represented as a uint64 t, assign its value over i. Note that
this requires GMP support for representing uint64 t values with the high bit set. See also
PL get uint64 ex().

bool PL get intptr(term t +t, intptr t *i)
Get an integer that is at least as wide as a pointer. On most platforms this is the
same as PL get long(), but on Win64 pointers are 8 bytes and longs only 4. Unlike
PL get pointer(), the value is not modified.

bool PL get bool(term t +t, int *val)
If t has the value true, false, set val to the C constant TRUE or FALSE and return success,
otherwise return failure. The values on, 1, off, const0 and are also accepted.

bool PL get pointer(term t +t, void **ptr)
Together with PL put pointer() and PL unify pointer(), these functions allow
representing a C pointer as a Prolog integer. The integer value is derived from the pointer, but
not equivalent. The translation aims at producing smaller integers that fit more often in the
tagged integer range. Representing C pointers as integers is unsafe. The blob API described in
section 12.4.10 provides a safe way for handling foreign resources that cooperates with Prolog
garbage collection.

bool PL get float(term t +t, double *f)
If t is a float, integer or rational number, its value is assigned over f. Note that if t is an integer
or rational conversion may fail because the number cannot be represented as a float.

SWI-Prolog 9.3 Reference Manual

456 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

bool PL get functor(term t +t, functor t *f)
If t is compound or an atom, the Prolog representation of the name-arity pair will be assigned
over f. See also PL get name arity() and PL is functor().

bool PL get name arity(term t +t, atom t *name, size t *arity)
If t is compound or an atom, the functor name will be assigned over name and the arity over
arity (either or both may be NULL). See also PL get compound name arity(),
PL get functor() and PL is functor().

bool PL get compound name arity(term t +t, atom t *name, size t *arity)
If t is compound term, the functor name will be assigned over name and the arity over arity
(either or both may be NULL). This is the same as PL get name arity(), but this function
fails if t is an atom.

bool PL get module(term t +t, module t *module)
If t is an atom, the system will look up or create the corresponding module and assign an
opaque pointer to it over module.

bool PL get arg(size t index, term t +t, term t -a)
If t is compound and index is between 1 and arity (inclusive), assign a with a term reference to
the argument. Returns FALSE if t is not a compound or index is out of range (zero or higher
than the arity of the compound). This function never raises a Prolog exception.

int PL get arg(size t index, term t +t, term t -a)
Same as PL get arg(), but no checking is performed, neither whether t is actually a term
nor whether index is a valid argument index. This is faster, but invalid usage leads to undefined
behaviour.

bool PL get dict key(atom t key, term t +dict, term t -value)
If dict is a dict, get the associated value in value. Fails silently if key does not appear in dict or
if if dict is not a dict.

Exchanging text using length and string

All internal text representation in SWI-Prolog is represented using char * plus length and allow for
0-bytes in them. The foreign library supports this by implementing a * nchars() function for each
applicable * chars() function. Below we briefly present the signatures of these functions. For full
documentation consult the * chars() function.

bool PL get atom nchars(term t t, size t *len, char **s)
See PL get atom chars().

bool PL get list nchars(term t t, size t *len, char **s)
See PL get list chars().

bool PL get nchars(term t t, size t *len, char **s, unsigned int flags)
See PL get chars(). The len pointer may be NULL.

bool PL put atom nchars(term t t, size t len, const char *s)
See PL put atom chars().

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 457

bool PL put string nchars(term t t, size t len, const char *s)
See PL put string chars().

bool PL put list ncodes(term t t, size t len, const char *s)
See PL put list codes().

bool PL put list nchars(term t t, size t len, const char *s)
See PL put list chars().

bool PL unify atom nchars(term t t, size t len, const char *s)
See PL unify atom chars().

bool PL unify string nchars(term t t, size t len, const char *s)
See PL unify string chars().

bool PL unify list ncodes(term t t, size t len, const char *s)
See PL unify codes().

bool PL unify list nchars(term t t, size t len, const char *s)
See PL unify list chars().

In addition, the following functions are available for creating and inspecting atoms:

atom t PL new atom nchars(size t len, const char *s)
Create a new atom as PL new atom(), but using the given length and characters. If len
is (size t)-1, it is computed from s using strlen(). See PL new atom() for error
handling.

const char * PL atom nchars(atom t a, size t *len)
Extract the text and length of an atom. If you do not need the length, pass NULL as the value
of len. If PL atom nchars() is called for a blob, NULL is returned.

Wide-character versions

Support for exchange of wide-character strings is still under consideration. The functions dealing
with 8-bit character strings return failure when operating on a wide-character atom or Prolog string
object. The functions below can extract and unify both 8-bit and wide atoms and string objects. Wide
character strings are represented as C arrays of objects of the type pl wchar t, which is guaranteed
to be the same as wchar t on platforms supporting this type. For example, on MS-Windows, this
represents a 16-bit UTF-16 string, while using the GNU C library (glibc) this represents 32-bit UCS4
characters.

atom t PL new atom wchars(size t len, const pl wchar t *s)
Create atom from wide-character string as PL new atom nchars() does for ISO-Latin-1
strings. If s only contains ISO-Latin-1 characters a normal byte-array atom is created. If len
is (size t)-1, it is computed from s using wcslen(). See PL new atom() for error
handling.

const pl wchar t* PL atom wchars(atom t atom, size t *len)
Extract characters from a wide-character atom. Succeeds on any atom marked as ‘text’. If

SWI-Prolog 9.3 Reference Manual

458 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

the underlying atom is a wide-character atom, the returned pointer is a pointer into the atom
structure. If the atom is represented as an ISO-Latin-1 string, the returned pointer comes from
Prolog’s ‘buffer stack’ (see section 12.4.14).

bool PL get wchars(term t t, size t *len, pl wchar t **s, unsigned flags)
Wide-character version of PL get chars(). The flags argument is the same as for
PL get chars(). Note that this operation may return a pointer into Prolog’s ‘buffer stack’
(see section 12.4.14).

bool PL put wchars(term t -t, int type, size t len, const pl wchar t *s)
Put text from a wide character array in t. Arguments are the same as PL unify wchars().8

bool PL unify wchars(term t +t, int type, size t len, const pl wchar t *s)
Unify t with a textual representation of the C wide-character array s. The type argument de-
fines the Prolog representation and is one of PL ATOM, PL STRING, PL CODE LIST or
PL CHAR LIST.

bool PL unify wchars diff(term t +t, term t -tail, int type, size t len, const pl wchar t *s)
Difference list version of PL unify wchars(), only supporting the types PL CODE LIST
and PL CHAR LIST. It serves two purposes. It allows for returning very long lists from
data read from a stream without the need for a resizing buffer in C. Also, the use of dif-
ference lists is often practical for further processing in Prolog. Examples can be found in
packages/clib/readutil.c from the source distribution.

Reading a list

The functions from this section are intended to read a Prolog list from C. Suppose we expect a list of
atoms; the code below will print the atoms, each on a line. Please note the following:

• We need a term t term reference for the elements (head). This reference is reused for each
element.

• We walk over the list using PL get list ex() which overwrites the list term t. As it is
not allowed to overwrite the term t passed in as arguments to a predicate, we must copy the
argument term t.

• SWI-Prolog atoms are Unicode objects. The PL get chars() returns a char*. We want
it to convert atoms, return the result as a multibyte string (REP UTF8 may also be used) and
finally we want an exception on type, instantiation or representation errors (if the system’s
default encoding cannot represent some characters of the Unicode atom). This may create
temporary copies of the atom text - PL STRINGS MARK() . . . PL STRINGS RELEASE()
handles that.

• The * ex()API functions are functionally the same as the ones without the ex suffix, but they
raise type, domain, or instantiation errors when the input is invalid; whereas the plain version
may only raise resource exceptions if the request cannot be fulfilled due to resource exhaustion.

• PL get nil ex() is designed to propagate an already raised exception.
8The current implementation uses PL put variable() followed by PL unify wchars().

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 459

foreign_t
pl_write_atoms(term_t l)
{ term_t head = PL_new_term_ref(); /* the elements */
term_t tail = PL_copy_term_ref(l); /* copy (we modify tail) */
int rc = TRUE;

while(rc && PL_get_list_ex(tail, head, tail))
{ PL_STRINGS_MARK();

char *s;
if (rc=PL_get_chars(head, &s, CVT_ATOM|REP_MB|CVT_EXCEPTION)))

rc = Sfprintf(Scurrent_output, "%s\n", s);
PL_STRINGS_RELEASE();

}

return rc && PL_get_nil_ex(tail); /* test end for [] */
}

Note that as of version 7, lists have a new representation unless the option --traditional is used.
see section 5.1.

bool PL get list(term t +l, term t -h, term t -t)
If l is a list and not the empty list, assign a term reference to the head to h and to the tail to t.

bool PL get head(term t +l, term t -h)
If l is a list and not the empty list, assign a term reference to the head to h.

bool PL get tail(term t +l, term t -t)
If l is a list and not the empty list, assign a term reference to the tail to t.

bool PL get nil(term t +l)
Succeeds if l represents the list termination constant.

int PL skip list(term t +list, term t -tail, size t *len)
This is a multi-purpose function to deal with lists. It allows for finding the length of a list,
checking whether something is a list, etc. The reference tail is set to point to the end of the list,
len is filled with the number of list-cells skipped, and the return value indicates the status of the
list:

PL LIST
The list is a ‘proper’ list: one that ends in the list terminator constant and tail is filled with
the terminator constant.

PL PARTIAL LIST
The list is a ‘partial’ list: one that ends in a variable and tail is a reference to this variable.

PL CYCLIC TERM
The list is cyclic (e.g. X = [a—X]). tail points to an arbitrary cell of the list and len is at
most twice the cycle length of the list.

SWI-Prolog 9.3 Reference Manual

460 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

PL NOT A LIST
The term list is not a list at all. tail is bound to the non-list term and len is set to the
number of list-cells skipped.

It is allowed to pass 0 for tail and NULL for len.

Processing option lists and dicts

bool PL scan options(term t options, int flags, const char* opttype, PL option t specs[], ...)
Process an option list as we find with, e.g., write term/2 and many other builtin predicates.
This function takes an option list (or dict) and in the variadic argument list pointers that receive
the option values. PL scan options() takes care of validating the list, ensuring the list
is not cyclic, validating the option type and storing the converted values using the supplied
pointers.

Below is an example. While PL option t is a struct, its members are initialised using the
PL OPTION() macro. The data structure is not constant because PL scan options()
adds the option names as atoms to speed up option processing. The macro PL OPTIONS END
terminates the option list.

static PL_option_t mypred_options[] =
{ PL_OPTION("quoted", OPT_BOOL),

PL_OPTION("length", OPT_SIZE),
PL_OPTION("callback", OPT_TERM),
PL_OPTIONS_END

};

static foreign_t
mypred(term_t a1, term_t options)
{ int quoted = FALSE;

size_t length = 10;
term_t callback = 0;

if (!PL_scan_options(options, 0, "mypred_options", mypred_options,
"ed, &length, &callback))

return FALSE;

<implement mypred>
}

The only defined value for flags is currently OPT ALL, which causes this function to raise a
domain error if an option is passed that is not in specs. Default in SWI-Prolog is to silently
ignore unknown options, unless the Prolog flag iso is true. The opttype argument defines
the type (group) of the options, e.g., "write option". Option types are defined by the ISO
standard. SWI-Prolog only uses this if OPT ALL is specified, to raise a domain error of the
indicated type if some option is unused. The type name is normally the name of the predicate
followed by option or the name of a representative of a group of predicates to which the
options apply.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 461

Defined option types and their corresponding pointer type are described below.

OPT BOOL int
Convert the option value to a bool. This converts the values described by
PL get bool(). In addition, an option without a value (i.e., a plain atom that
denotes the option name) can act as a boolean TRUE.

OPT INT int
OPT INT64 int64 t
OPT UINT64 uint64 t
OPT SIZE size t
OPT DOUBLE double

Numeric values of various types. Raises an error if the Prolog value cannot be represented
by the C type.

OPT STRING char*
Uses PL get chars() using the flags CVT ALL|REP UTF8|BUF STACK|CVT EXCEPTION.
The buffered string must be guarded using PL STRINGS MARK() and
PL STRINGS RELEASE().

OPT ATOM atom t
Accepts an atom. Note that if the C function that implements the predicate wishes to keep
hold of the atom after it returns it must use PL register atom().

OPT TERM term t
Accepts an arbitrary Prolog term. The term handle is scoped by the foreign predicate
invocation. Terms can be preserved using PL record().

The ISO standard demands that if an option is repeated the last occurrence holds. This implies
that PL scan options() must scan the option list to the end.

An example: defining write/1 in C

Figure 12.2 shows a simplified definition of write/1 to illustrate the described functions. This
simplified version does not deal with operators. It is called display/1, because it mimics closely
the behaviour of this Edinburgh predicate.

12.4.5 Constructing Terms

Terms can be constructed using functions from the PL put *() and PL cons *() families. This
approach builds the term ‘inside-out’, starting at the leaves and subsequently creating compound
terms. Alternatively, terms may be created ‘top-down’, first creating a compound holding only vari-
ables and subsequently unifying the arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments for PL call() and PL open query().

bool PL put variable(term t -t)
Put a fresh variable in the term, resetting the term reference to its initial state.9

9Older versions created a variable on the global stack.

SWI-Prolog 9.3 Reference Manual

462 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

foreign_t
pl_display(term_t t)
{ functor_t functor;
int arity, len, n;
char *s;

switch(PL_term_type(t))
{ case PL_VARIABLE:

case PL_ATOM:
case PL_INTEGER:
case PL_FLOAT:
PL_get_chars(t, &s, CVT_ALL);
if (! Sfprintf(Scurrent_output, "%s", s))

PL_fail;
break;

case PL_STRING:
if (!PL_get_string_chars(t, &s, &len) &&

!Sfprintf(Scurrent_output, "\"%s\"", s))
PL_fail;

break;
case PL_TERM:
{ term_t a = PL_new_term_ref();

if (!PL_get_name_arity(t, &name, &arity) &&
!Sfprintf(Scurrent_output, "%s(", PL_atom_chars(name)))

PL_fail
for(n=1; n<=arity; n++)
{ if (! PL_get_arg(n, t, a))

PL_fail;
if (n > 1)
if (! Sfprintf(Scurrent_output, ", "))

PL_fail;
if (!pl_display(a))
PL_fail;

}
if (!Sfprintf(Scurrent_output, ")"))

PL_fail;
break;

default:
PL_fail; /* should not happen */

}
}

PL_succeed;
}

Figure 12.2: A Foreign definition of display/1
SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 463

bool PL put atom(term t -t, atom t a)
Put an atom in the term reference from a handle. See also PL new atom() and
PL atom chars().

bool PL put bool(term t -t, int val)
Put one of the atoms true or false in the term reference See also PL put atom(),
PL unify bool() and PL get bool().

bool PL put chars(term t -t, int flags, size t len, const char *chars)
New function to deal with setting a term from a char* with various encodings. The flags
argument is a bitwise or specifying the Prolog target type and the encoding of chars. A Prolog
type is one of PL ATOM, PL STRING, PL CODE LIST or PL CHAR LIST. A representation
is one of REP ISO LATIN 1, REP UTF8 or REP MB. See PL get chars() for a definition
of the representation types. If len is -1 chars must be zero-terminated and the length is
computed from chars using strlen().

bool PL put atom chars(term t -t, const char *chars)
Put an atom in the term reference constructed from the zero-terminated string. The string itself
will never be referenced by Prolog after this function.

bool PL put string chars(term t -t, const char *chars)
Put a zero-terminated string in the term reference. The data will be copied. See also
PL put string nchars().

bool PL put string nchars(term t -t, size t len, const char *chars)
Put a string, represented by a length/start pointer pair in the term reference. The data will be
copied. This interface can deal with 0-bytes in the string. See also section 12.4.24.

bool PL put list chars(term t -t, const char *chars)
Put a list of ASCII values in the term reference.

bool PL put integer(term t -t, long i)
Put a Prolog integer in the term reference.

bool PL put int64(term t -t, int64 t i)
Put a Prolog integer in the term reference.

bool PL put uint64(term t -t, uint64 t i)
Put a Prolog integer in the term reference. Note that unbounded integer support is required for
uint64 t values with the highest bit set to 1. Without unbounded integer support, too large
values raise a representation error exception.

bool PL put pointer(term t -t, void *ptr)
Put a Prolog integer in the term reference. Provided ptr is in the ‘malloc()-area’,
PL get pointer() will get the pointer back.

bool PL put float(term t -t, double f)
Put a floating-point value in the term reference.

bool PL put functor(term t -t, functor t functor)
Create a new compound term from functor and bind t to this term. All arguments of the term

SWI-Prolog 9.3 Reference Manual

464 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

will be variables. To create a term with instantiated arguments, either instantiate the arguments
using the PL unify *() functions or use PL cons functor().

bool PL put list(term t -l)
As PL put functor(), using the list-cell functor. Note that on classical Prolog systems
or in SWI-Prolog using the option --traditional, this is ./2, while on SWI-Prolog
version 7 this is [|]/2.

bool PL put nil(term t -l)
Put the list terminator constant in l. Always returns TRUE. Note that in classical Pro-
log systems or in SWI-Prolog using the option --traditional, this is the same as
PL put atom chars(”[]”). See section 5.1.

bool PL put term(term t -t1, term t +t2)
Make t1 point to the same term as t2. Under the unusual condition that t2 is a fresh term
reference this function requires a global stack cell and may thus return FALSE and leave a
resource exception in the environment.

bool PL cons functor(term t -h, functor t f, . . .)
Create a term whose arguments are filled from a variable argument list holding the same number
of term t objects as the arity of the functor. To create the term animal(gnu, 50), use:

{ term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
term_t t = PL_new_term_ref();
functor_t animal2;

/* animal2 is a constant that may be bound to a global
variable and re-used

*/
animal2 = PL_new_functor(PL_new_atom("animal"), 2);

PL_put_atom_chars(a1, "gnu");
PL_put_integer(a2, 50);
PL_cons_functor(t, animal2, a1, a2);

}

After this sequence, the term references a1 and a2 may be used for other purposes.

bool PL cons functor v(term t -h, functor t f, term t a0)
Create a compound term like PL cons functor(), but a0 is an array of term references
as returned by PL new term refs(). The length of this array should match the number of
arguments required by the functor.

bool PL cons list(term t -l, term t +h, term t +t)
Create a list (cons-) cell in l from the head h and tail t. As with PL cons functor(), the
term references h and t may be used for other purposes after the call to PL cons list().
The code below creates a list of atoms from a char **. The list is built tail-to-head. The
PL unify *() functions can be used instead to build a list head-to-tail.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 465

void
put_list(term_t l, int n, char **words)
{ term_t a = PL_new_term_ref();

PL_put_nil(l);
while(--n >= 0)
{ PL_put_atom_chars(a, words[n]);

PL_cons_list(l, a, l);
}

}

int PL put dict(term t -h, atom t tag, size t len, const atom t *keys, term t values)
Create a dict from a tag and vector of atom-value pairs and put the result in h. The dict’s key
is set by tag, which may be 0 to leave the tag unbound. The keys vector is a vector of atoms
of at least len long. The values is a term vector allocated using PL new term refs() of
at least len long. This function returns TRUE on success, FALSE on a resource error (leaving
a resource error exception in the environment), -1 if some key or the tag is invalid and -2 if
there are duplicate keys.

12.4.6 Unifying data

The functions of this section unify terms with other terms or translated C data structures. Except
for PL unify(), these functions are specific to SWI-Prolog. They have been introduced because
they shorten the code for returning data to Prolog and at the same time make this more efficient by
avoiding the need to allocate temporary term references and reduce the number of calls to the Prolog
API. Consider the case where we want a foreign function to return the host name of the machine
Prolog is running on. Using the PL get *() and PL put *() functions, the code becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof buf))
{ term_t tmp = PL_new_term_ref();

PL_put_atom_chars(tmp, buf);
return PL_unify(name, tmp);

}

PL_fail;
}

Using PL unify atom chars(), this becomes:

foreign_t
pl_hostname(term_t name)

SWI-Prolog 9.3 Reference Manual

466 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

{ char buf[100];

if (gethostname(buf, sizeof buf))
return PL_unify_atom_chars(name, buf);

PL_fail;
}

Note that unification functions that perform multiple bindings may leave part of the bindings in case
of failure. See PL unify() for details.

bool PL unify(term t ?t1, term t ?t2)
Unify two Prolog terms and return TRUE on success. PL unify() does not evaluate at-
tributed variables (see section 8.1), it merely schedules the goals associated with the attributes
to be executed after the foreign predicate succeeds.10

Care is needed if PL unify() returns FALSE and the foreign function does not immediately
return to Prolog with FALSE. Unification may perform multiple changes to either t1 or t2.
A failing unification may have created bindings before failure is detected. Already created
bindings are not undone. For example, calling PL unify() on a(X, a) and a(c,b) binds X to
c and fails when trying to unify a to b. If control remains in C or if we want to return success
to Prolog, we must undo such bindings. In addition, PL unify() may have failed on an
exception, typically a resource (stack) overflow. This can be tested using PL exception(),
passing 0 (zero) for the query-id argument. Foreign functions that encounter an exception must
return FALSE to Prolog as soon as possible or call PL clear exception() if they wish
to ignore the exception. Note that there can only be an exception if PL unify() returned
FALSE.

In some scenarios we need to undo partial unifications. Suppose we have a database that con-
tains Prolog terms and we run a query over this database. We must succeed on the first success-
ful unification. If a unification is not successful, we must stop if there is an exception or undo
the partial unification and try again. Suppose our database contains f(a,1) and f(b,2) and our
query is f(A,2). This should succeed with A = b, but the first unification binds A to a before
failing to unify 1 with 2.

static foreign_t
find_in_db(term_t target)
{ fid_t fid = PL_open_foreign_frame();

term_t candidate = PL_new_term_ref();

while(get_from_my_database(candidate))
{ if (PL_unify(candidate, target)) /* found */

{ PL_close_foreign_frame(fid);
return TRUE;

} else if (PL_exception(0)) /* error */
{ PL_close_foreign_frame(fid);

10Goal associated with attributes may be non-deterministic, which we cannot handle from a callback. A callback could
also result in deeply nested mutual recursion between C and Prolog and eventually trigger a C stack overflow.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 467

return FALSE;
}

PL_rewind_foreign_frame(fid); /* try next */
}
PL_close_foreign_frame(fid); /* not found */
return FALSE;

}

This code is only needed if the foreign predicate does not return immediately to Prolog when
PL unify() fails - there is an implicit frame around the entire predicate, and returning FALSE
undoes all bindings when that frame is closed.

bool PL unify atom(term t ?t, atom t a)
Unify t with the atom a and return non-zero on success.

bool PL unify bool(term t ?t, int a)
Unify t with either false or true, according to whether a is zero or non-zero. If t is instanti-
ated, off and on are also accepted.

bool PL unify chars(term t ?t, int flags, size t len, const char *chars)
New function to deal with unification of char* with various encodings to a Prolog represen-
tation. The flags argument is a bitwise or specifying the Prolog target type and the encoding of
chars. A Prolog type is one of PL ATOM, PL STRING, PL CODE LIST or PL CHAR LIST. A
representation is one of REP ISO LATIN 1, REP UTF8 or REP MB. See PL get chars()
for a definition of the representation types. If len is -1 chars must be zero-terminated and the
length is computed from chars using strlen().

If flags includes PL DIFF LIST and type is one of PL CODE LIST or PL CHAR LIST, the
text is converted to a difference list. The tail of the difference list is t+ 1.

bool PL unify atom chars(term t ?t, const char *chars)
Unify t with an atom created from chars and return non-zero on success.

bool PL unify list chars(term t ?t, const char *chars)
Unify t with a list of ASCII characters constructed from chars.

bool PL unify string chars(term t ?t, const char *chars)
Unify t with a Prolog string object created from the zero-terminated string chars. The data will
be copied. See also PL unify string nchars().

bool PL unify integer(term t ?t, intptr t n)
Unify t with a Prolog integer from n.

bool PL unify int64(term t ?t, int64 t n)
Unify t with a Prolog integer from n.

bool PL unify uint64(term t ?t, uint64 t n)
Unify t with a Prolog integer from n. Note that unbounded integer support is re-
quired if n does not fit in a signed int64 t. If unbounded integers are not supported a
representation error is raised.

SWI-Prolog 9.3 Reference Manual

468 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

bool PL unify float(term t ?t, double f)
Unify t with a Prolog float from f.

bool PL unify pointer(term t ?t, void *ptr)
Unify t with a Prolog integer describing the pointer. See also PL put pointer() and
PL get pointer().

bool PL unify functor(term t ?t, functor t f)
If t is a compound term with the given functor, just succeed. If it is unbound, create a term
and bind the variable, else fail. Note that this function does not create a term if the argument
is already instantiated. If f is a functor with arity 0, t is unified with an atom. See also
PL unify compound().

bool PL unify compound(term t ?t, functor t f)
If t is a compound term with the given functor, just succeed. If it is unbound, create a term and
bind the variable, else fail. Note that this function does not create a term if the argument is
already instantiated. If f is a functor with arity 0, t is unified with compound without arguments.
See also PL unify functor().

bool PL unify list(term t ?l, term t -h, term t -t)
Unify l with a list-cell (./2). If successful, write a reference to the head of the list into h and
a reference to the tail of the list into t. This reference to h may be used for subsequent calls
to this function. Suppose we want to return a list of atoms from a char **. We could use
the example described by PL cons list(), followed by a call to PL unify(), or we can
use the code below. If the predicate argument is unbound, the difference is minimal (the code
based on PL cons list() is probably slightly faster). If the argument is bound, the code
below may fail before reaching the end of the word list, but even if the unification succeeds,
this code avoids a duplicate (garbage) list and a deep unification.

Note that PL unify list() is not used with env but with tail, which is a copy of env.
PL copy term ref() creates a copy term t holding the same Prolog term, i.e., not a copy
of the Prolog term. The only thing that is allowed to be done with an argument to a foreign
predicate (such as env) is unification; for anything that might over-write the term, you must
use a copy created by PL copy term ref(). The name PL unify list() is slightly
misleading - it unifies the first argument (l but overwrites the second (h) and third (t) arguments.

foreign_t
pl_get_environ(term_t env)
{ term_t tail = PL_copy_term_ref(env);

term_t item = PL_new_term_ref();
extern char **environ;

for(const char **e = environ; *e; e++)
{ if (!PL_unify_list(tail, item, tail) ||

!PL_unify_atom_chars(item, *e))
PL_fail;

}

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 469

return PL_unify_nil(tail);
}

In this example, item is initialized outside the loop. This allocates a single new reference
to a term, which is used as a temporary inside the loop - there is no need to allocate a new
reference each time around the loop because the item term reference can be reused and the
call to PL unify list() copies a reference to the new list cell’s head into the the term
referenced by item.

bool PL unify nil(term t ?l)
Unify l with the atom [].

bool PL unify arg(int index, term t ?t, term t ?a)
Unifies the index-th argument (1-based) of t with a.

bool PL unify term(term t ?t, . . .)
Unify t with a (normally) compound term. The remaining arguments are a sequence of a type
identifier followed by the required arguments. This predicate is an extension to the Quintus and
SICStus foreign interface from which the SWI-Prolog foreign interface has been derived, but
has proved to be a powerful and comfortable way to create compound terms from C. Due to
the vararg packing/unpacking and the required type-switching this interface is slightly slower
than using the primitives. Please note that some bad C compilers have fairly low limits on the
number of arguments that may be passed to a function.

Special attention is required when passing numbers. C ‘promotes’ any integral smaller than int
to int. That is, the types char, short and int are all passed as int. In addition, on most
32-bit platforms int and long are the same. Up to version 4.0.5, only PL INTEGER could
be specified, which was taken from the stack as long. Such code fails when passing small
integral types on machines where int is smaller than long. It is advised to use PL SHORT,
PL INT or PL LONG as appropriate. Similarly, C compilers promote float to double and
therefore PL FLOAT and PL DOUBLE are synonyms.

The type identifiers are:

PL VARIABLE none
No op. Used in arguments of PL FUNCTOR.

PL BOOL int
Unify the argument with true or false.

PL ATOM atom t
Unify the argument with an atom, as in PL unify atom().

PL CHARS const char *
Unify the argument with an atom constructed from the C char *, as in
PL unify atom chars().

PL NCHARS size t, const char *
Unify the argument with an atom constructed from length and char* as in
PL unify atom nchars().

PL UTF8 CHARS const char *
Create an atom from a UTF-8 string.

SWI-Prolog 9.3 Reference Manual

470 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

PL UTF8 STRING const char *
Create a packed string object from a UTF-8 string.

PL MBCHARS const char *
Create an atom from a multi-byte string in the current locale.

PL MBCODES const char *
Create a list of character codes from a multi-byte string in the current locale.

PL MBSTRING const char *
Create a packed string object from a multi-byte string in the current locale.

PL NWCHARS size t, const wchar t *
Create an atom from a length and a wide character pointer.

PL NWCODES size t, const wchar t *
Create a list of character codes from a length and a wide character pointer.

PL NWSTRING size t, const wchar t *
Create a packed string object from a length and a wide character pointer.

PL SHORT short
Unify the argument with an integer, as in PL unify integer(). As short is pro-
moted to int, PL SHORT is a synonym for PL INT.

PL INTEGER long
Unify the argument with an integer, as in PL unify integer().

PL INT int
Unify the argument with an integer, as in PL unify integer().

PL LONG long
Unify the argument with an integer, as in PL unify integer().

PL INT64 int64 t
Unify the argument with a 64-bit integer, as in PL unify int64().

PL INTPTR intptr t
Unify the argument with an integer with the same width as a pointer. On most machines
this is the same as PL LONG. but on 64-bit MS-Windows pointers are 64 bits while longs
are only 32 bits.

PL DOUBLE double
Unify the argument with a float, as in PL unify float(). Note that, as the argument
is passed using the C vararg conventions, a float must be casted to a double explicitly.

PL FLOAT double
Unify the argument with a float, as in PL unify float().

PL POINTER void *
Unify the argument with a pointer, as in PL unify pointer().

PL STRING const char *
Unify the argument with a string object, as in PL unify string chars().

PL TERM term t
Unify a subterm. Note this may be the return value of a PL new term ref() call to
get access to a variable.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 471

PL FUNCTOR functor t, . . .
Unify the argument with a compound term. This specification should be followed by
exactly as many specifications as the number of arguments of the compound term.

PL FUNCTOR CHARS const char *name, int arity, . . .
Create a functor from the given name and arity and then behave as PL FUNCTOR.

PL LIST int length, . . .
Create a list of the indicated length. The remaining arguments contain the elements of the
list.

For example, to unify an argument with the term language(dutch), the following skeleton
may be used:

static functor_t FUNCTOR_language1;

static void
init_constants()
{ FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"),1);
}

foreign_t
pl_get_lang(term_t r)
{ return PL_unify_term(r,

PL_FUNCTOR, FUNCTOR_language1,
PL_CHARS, "dutch");

}

install_t
install()
{ PL_register_foreign("get_lang", 1, pl_get_lang, 0);

init_constants();
}

bool PL chars to term(const char *chars, term t -t)
Parse the string chars and put the resulting Prolog term into t. chars may or may not be closed
using a Prolog full-stop (i.e., a dot followed by a blank). Returns FALSE if a syntax error
was encountered and TRUE after successful completion. In addition to returning FALSE, the
exception-term is returned in t on a syntax error. See also term to atom/2.

The following example builds a goal term from a string and calls it.

int
call_chars(const char *goal)
{ fid_t fid = PL_open_foreign_frame();

term_t g = PL_new_term_ref();
BOOL rval;

SWI-Prolog 9.3 Reference Manual

472 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

if (PL_chars_to_term(goal, g))
rval = PL_call(goal, NULL);

else
rval = FALSE;

PL_discard_foreign_frame(fid);
return rval;

}
...
call_chars("consult(load)");
...

PL chars to term() is defined using PL put term from chars() which can deal
with not null-terminated strings as well as strings using different encodings:

int
PL_chars_to_term(const char *s, term_t t)
{ return PL_put_term_from_chars(t, REP_ISO_LATIN_1, (size_t)-1, s);
}

bool PL wchars to term(const pl wchar t *chars, term t -t)
Wide character version of PL chars to term().

char * PL quote(int chr, const char *string)
Return a quoted version of string. If chr is ’\’’, the result is a quoted atom. If chr is ’"’, the
result is a string. The result string is stored in the same ring of buffers as described with the
BUF STACK argument of PL get chars();

In the current implementation, the string is surrounded by chr and any occurrence of chr is
doubled. In the future the behaviour will depend on the character escapes Prolog flag.

int PL for dict(term t dict, int (*func)(term t key, term t value, void *closure), void *closure, int flags)
Iterates over dict, calling func for each item. In each call, key and value are the processed item’s
key-value pair and the closure argument is passed from the call to PL for dict(). If func re-
turns a non-0 value, the iteration stops and PL for dict() returns that value; otherwise, all
pairs are processed and PL for dict() returns 0. If flags contains PL FOR DICT SORTED,
the key-value pairs are processed in the standard order of terms; otherwise the processing order
is unspecified.

12.4.7 Convenient functions to generate Prolog exceptions

The typical implementation of a foreign predicate first uses the PL get *() functions to extract C data
types from the Prolog terms. Failure of any of these functions is normally because the Prolog term
is of the wrong type. The * ex() family of functions are wrappers around (mostly) the PL get *()
functions, such that we can write code in the style below and get proper exceptions if an argument is
uninstantiated or of the wrong type. Section 12.4.8 documents an alternative API to fetch values for
the C basic types.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 473

/** set_size(+Name:atom, +Width:int, +Height:int) is det.

static foreign_t
set_size(term_t name, term_t width, term_t height)
{ char *n;
int w, h;

if (!PL_get_chars(name, &n, CVT_ATOM|CVT_EXCEPTION) ||
!PL_get_integer_ex(with, &w) ||
!PL_get_integer_ex(height, &h))

return FALSE;

...

}

bool PL get atom ex(term t t, atom t *a)
As PL get atom(), but raises a type or instantiation error if t is not an atom.

bool PL get integer ex(term t t, int *i)
As PL get integer(), but raises a type or instantiation error if t is not an integer, or a
representation error if the Prolog integer does not fit in a C int.

bool PL get long ex(term t t, long *i)
As PL get long(), but raises a type or instantiation error if t is not an atom, or a represen-
tation error if the Prolog integer does not fit in a C long.

bool PL get int64 ex(term t t, int64 t *i)
As PL get int64(), but raises a type or instantiation error if t is not an integer, or a repre-
sentation error if the Prolog integer does not fit in a C int64 t.

bool PL get uint64 ex(term t t, uint64 t *i)
As PL get uint64(), but raises a type, domain or instantiation error if t is not an integer or
t is less than zero, or a representation error if the Prolog integer does not fit in a C int64 t.

bool PL get intptr ex(term t t, intptr t *i)
As PL get intptr(), but raises a type or instantiation error if t is not an atom, or a repre-
sentation error if the Prolog integer does not fit in a C intptr t.

bool PL get size ex(term t t, size t *i)
As PL get intptr(), but raises a type or instantiation error if t is not an integer, or a
representation error if the Prolog integer does not fit in a C size t.

bool PL get bool ex(term t t, int *i)
As PL get bool(), but raises a type or instantiation error if t is not a valid boolean value
(true, false, on, constoff, 1 or 0). Note that the pointer is to an int because C has no
bool type.

SWI-Prolog 9.3 Reference Manual

474 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

bool PL get float ex(term t t, double *f)
As PL get float(), but raises a type or instantiation error if t is not a float.

bool PL get char ex(term t t, int *p, int eof)
Get a character code from t, where t is either an integer or an atom with length one. If eof
is TRUE and t is -1, p is filled with -1. Raises an appropriate error if the conversion is not
possible.

bool PL get pointer ex(term t t, void **addrp)
As PL get pointer(), but raises a type or instantiation error if t is not a pointer.

bool PL get list ex(term t l, term t h, term t t)
As PL get list(), but raises a type or instantiation error if t is not a list.

bool PL get nil ex(term t l)
As PL get nil(), but raises a type or instantiation error if t is not the empty list. Because
PL get nil ex() is commonly used after a while loop over PL get list ex(), it fails
immediately if there is an exception pending (from PL get list ex()).

bool PL unify list ex(term t l, term t h, term t t)
As PL unify list(), but raises a type error if t is not a variable, list-cell or the empty list.

bool PL unify nil ex(term t l)
As PL unify nil(), but raises a type error if t is not a variable, list-cell or the empty list.

bool PL unify bool ex(term t t, int val)
As PL unify bool(), but raises a type error if t is not a variable or a boolean.

The second family of functions in this section simplifies the generation of ISO compatible error
terms. Any foreign function that calls this function must return to Prolog with the return code of the
error function or the constant FALSE. If available, these error functions add the name of the calling
predicate to the error context. See also PL raise exception().

bool PL instantiation error(term t culprit)
Raise instantiation error. Culprit is ignored, but should be bound to the term that is
insufficiently instantiated. See instantiation error/1.

bool PL uninstantiation error(term t culprit)
Raise uninstantiation error(culprit). This should be called if an argument that
must be unbound at entry is bound to culprit. This error is typically raised for a pure output
arguments such as a newly created stream handle (e.g., the third argument of open/3).

bool PL representation error(const char *resource)
Raise representation error(resource). See representation error/1.

bool PL type error(const char *expected, term t culprit)
Raise type error(expected, culprit). See type error/2.

bool PL domain error(const char *expected, term t culprit)
Raise domain error(expected, culprit). See domain error/2.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 475

bool PL existence error(const char *type, term t culprit)
Raise existence error(type, culprit). See existence error/2.

bool PL permission error(const char *operation, const char *type, term t culprit)
Raise permission error(operation, type, culprit). See
permission error/3.

bool PL resource error(const char *resource)
Raise resource error(resource). See resource error/1.

bool PL syntax error(const char *message, IOSTREAM *in)
Raise syntax error(message). If arg is not NULL, add information about the current
position of the input stream.

12.4.8 Foreign language wrapper support functions

In addition to the functions described in section 12.4.4, there is a family of functions that is used for
automatic generation of wrapper functions, for example using the Prolog library qpforeign that
provides a Quintus/SICStus compatible foreign language interface.

The PL cvt i *() family of functions is suitable for use with a Generic selector or C++ over-
loading.11

Note that the documentation on this API is incomplete. Also note that many of these functions are
equivalent to the PL get * ex() functions described in section 12.4.7.

bool PL cvt i bool(term t p, int *c)
Equivalent to PL get bool ex(). Note that the pointer is to an int because C has no bool
type. The return value is either 0 or 1.

bool PL cvt i char(term t p, char *c)
bool PL cvt i schar(term t p, signed char *c)
bool PL cvt i uchar(term t p, unsigned char *c)
bool PL cvt i short(term t p, short *s)
bool PL cvt i ushort(term t p, unsigned short *s)
bool PL cvt i int(term t p, int *c)
bool PL cvt i uint(term t p, unsigned int *c)
bool PL cvt i long(term t p, long *c)
bool PL cvt i ulong(term t p, unsigned long *c)
bool PL cvt i llong(term t p, long long *c)
bool PL cvt i ullong(term t p, unsigned long long *c)
bool PL cvt i int32(term t p, int32 t *c)
bool PL cvt i uint32(term t p, uint32 t *c)
bool PL cvt i int64(term t p, int64 t *c)
bool PL cvt i uint64(term t p, uint64 t *c)
bool PL cvt i size t(term t p, size t *c)

Convert a Prolog integer into a C integer of the specified size. Generate an exception and return
FALSE if the conversion is impossible because the Prolog term is not an integer or the C type
cannot represent the value of the Prolog integer.

11 Generic needs to take into account that there’s no bool type in C but there is in C++. An overloaded integer()
method is provided in the C++ interface.

SWI-Prolog 9.3 Reference Manual

476 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

12.4.9 Serializing and deserializing Prolog terms

bool PL put term from chars(term t t, int flags, size t len, const char *s)
Parse the text from the C-string s holding len bytes and put the resulting term in t. len can be
(size t)-1, assuming a 0-terminated string. The flags argument controls the encoding and
is currently one of REP UTF8 (string is UTF8 encoded), REP MB (string is encoded in the
current locale) or 0 (string is encoded in ISO latin 1). The string may, but is not required, to be
closed by a full stop (.).

If parsing produces an exception; the behaviour depends on the CVT EXCEPTION flag. If
present, the exception is propagated into the environment. Otherwise, the exception is placed
in t and the return value is FALSE.12.

12.4.10 BLOBS: Using atoms to store arbitrary binary data

SWI-Prolog atoms as well as strings can represent arbitrary binary data of arbitrary length. This
facility is attractive for storing foreign data such as images in an atom. An atom is a unique handle to
this data and the atom garbage collector is able to destroy atoms that are no longer referenced by the
Prolog engine. This property of atoms makes them attractive as a handle to foreign resources, such as
Java atoms, Microsoft’s COM objects, etc., providing safe combined garbage collection.

To exploit these features safely and in an organised manner, the SWI-Prolog foreign interface al-
lows creating ‘atoms’ with additional type information. The type is represented by a structure holding
C function pointers that tell Prolog how to handle releasing the atom, writing it, sorting it, etc. Two
atoms created with different types can represent the same sequence of bytes. Atoms are first ordered
on the rank number of the type and then on the result of the compare() function. Rank numbers are
assigned when the type is registered. This implies that the results of inequality comparisons between
blobs of different types is undefined and can change if the program is run twice (the ordering within a
blob type will not change, of course).

While the blob is alive, neither its handle nor the location of the contents (see PL blob data())
change. If the blob’s type has the PL BLOB UNIQUE feature, the content of the blob must remain
unmodified. If the blob’s type does not have the PL BLOB UNIQUE feature multiple instances of
this blob type may contain the same data. The blob handle (atom t) is reclaimed only by the atom
garbage collector. The blob’s content (data) is normally reclaimed when the garbage collector re-
claims the blob. If the blob’s type defines the release() function, this function is called. This
hook may deal with side effects and is responsible of releasing the data if the blob’s type has the
PL BLOB NOCOPY flag. The content of a PL BLOB NOCOPY blob may be released before the blob
itself can be garbage collected using PL free blob(). This immediately triggers the release()
function. After PL free blob() has reclaimed the content, this function will not be called when
the atom t handle is reclaimed. An atom t handle may be reused for a new atom or blob after it
has been garbage collected.

If foreign code stores the atom t handle in some permanent location it must make sure the
handle is registered to prevent it from being garbage collected. If the handle is obtained from a
term t object it is not registered because it is protected by the term t object. This applies to
e.g., PL get atom(). Functions that create a handle from data, such as PL new atom(), return a
registered handle to prevent the asynchronous atom garbage collector from reclaiming it immediately.
Note that many of the API functions create an atom or blob handle and use this to fill a term t object,

12The CVT EXCEPTION was added in version 8.3.12

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 477

e.g., PL unify blob(), PL unify chars(), etc. In this scenario the handle is protected by the
term t object. Registering and unregistering atom t handles is done by PL register atom()
and PL unregister atom().

Note that during program shutdown using PL cleanup(), all atoms and blobs are reclaimed as
described above. These objects are reclaimed regardless of their registration count. The order
in which the atoms or blobs are reclaimed under PL cleanup() is undefined. However, when
these objects are reclaimed using garbage collect atoms/0, registration counts are taken into
account.

Defining a BLOB type

The type PL blob t represents a structure with the layout displayed below. The structure contains
additional fields at the . . . for internal bookkeeping as well as future extensions.

typedef struct PL_blob_t
{ uintptr_t magic; /* PL_BLOB_MAGIC */
uintptr_t flags; /* Bitwise or of PL_BLOB_* */
const char * name; /* name of the type */
int (*release)(atom_t a);
int (*compare)(atom_t a, atom_t b);
int (*write)(IOSTREAM *s, atom_t a, int flags);
void (*acquire)(atom_t a);
int (*save)(atom_t a, IOSTREAM *s);
atom_t (*load)(IOSTREAM *s);
...

} PL_blob_t;

For each type, exactly one such structure should be allocated and must not be moved because
the address of the structure determines the blob’s ”type”. Its first field must be initialised to
PL BLOB MAGIC. If a blob type is registered from a loadable object (shared object or DLL) the
blob type must be deregistered using PL unregister blob type() before the object may be
released.

The flags is a bitwise or of the following constants:

PL BLOB TEXT
If specified, the blob is assumed to contain text and is considered a normal Prolog atom. The
(currently) two predefined blob types that represent atoms have this flag set. User-defined
blobs may not specify this, even if they contain only text. Applications should not use the blob
API to create normal text atoms or get access to the text represented by normal text atoms.
Most applications should use PL get nchars() and PL unify chars() to get text from
Prolog terms or create Prolog terms that represent text.

PL BLOB UNIQUE
If specified the system ensures that the blob-handle is a unique reference for a blob with the
given type, length and content. If this flag is not specified, each lookup creates a new blob.
Uniqueness is determined by comparing the bytes in the blobs unless PL BLOB NOCOPY is
also specified, in which case the pointers are compared. Note that the lookup does not use

SWI-Prolog 9.3 Reference Manual

478 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

the blob’s compare function when testing for equality, but only tests the bytes; this means that
terms from the recorded database or C++-style strings will typically not compare as equal
when doing blob lookup.

PL BLOB NOCOPY
By default the content of the blob is copied. Using this flag the blob references the external
data directly. The user must ensure the provided pointer is valid as long as the atom lives.
If PL BLOB UNIQUE is also specified, uniqueness is determined by comparing the pointer
rather than the data pointed at. Using PL BLOB UNIQUE|PL BLOB NOCOPY can be used
to make a blob reference an arbitrary pointer where the pointer data may be reclaimed in the
release() handler.

PL BLOB WCHAR
If PL BLOB TEXT is also set, then the text is made up of pl wchar t items and the blob’s
lenght is the number of bytes (that is, the number of characters times sizeof(pl wchar t)).
As PL BLOB TEXT, this flag should not be set in user-defined blobs.

The name field represents the type name as available to Prolog. See also current blob/2.
The other fields are function pointers that must be initialised to proper functions or NULL to get the
default behaviour of built-in atoms. Below are the defined member functions:

void acquire(atom t a)
Called if a new blob of this type is created through PL put blob(), PL unify blob(),
or PL new blob(). Note this this call is done as part of creating the blob. The call to
PL unify blob() may fail if the unification fails or cannot be completed due to a resource
error. PL put blob() has no such error conditions. This callback is typically used to store
the atom t handle into the content of the blob. Given a pointer to the content, we can now
use PL unify atom() to bind a Prolog term with a reference to the pointed to object. If the
content of the blob can be modified (PL BLOB UNIQUE is not present) this is the only way to
get access to the atom t handle that belongs to this blob. If PL BLOB UNIQUE is provided
and respected, PL unify blob() given the same pointer and length will produce the same
atom t handle.

int release(atom t a)
The blob (atom) a is about to be released. The release() function is called when the
atom is reclaimed by the atom garbage collector, when an explicit call to PL free blob()
is made or during shutdown of Prolog. This function can retrieve the data of the blob using
PL blob data(). If the release() function returns FALSE, the atom garbage collector
will not reclaim the atom. For critical resources such as file handles or significant memory
resources, it may be desirable to have an explicit call to dispose (most of) the resources. For
example, close/1 reclaims the file handle and most of the resources associated with a stream,
leaving only a tiny bit of content to the garbage collector. See also setup call cleanup/3.

The release() callback is called in the context of the thread executing the atom garbage col-
lect, the thread executing PL free blob() or the thread initiating the shutdown. Normally
the thread gc runs all atom and clause garbage collections. The release() function may not
call any of the PL *() functions except for PL blob data() or PL unregister atom()
to unregister other atoms that are part data associated to the blob. Calling any of the other PL *
functions may result in deadlocks or crashes. The release() function should not call any

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 479

potentially slow or blocking functions as this may cause serious slowdowns in the rest of the
system.

Blobs that require cleanup that is slow, blocking or requires calling Prolog must pass the data
to be cleaned to another thread. Be aware that if the blob uses PL BLOB NOCOPY the user is
responsible for discarding the data, otherwise the atom garbage collector will free the data.

As SWI-Prolog atom garbage collector is conservative, there is no guarantee that the
release() function will ever be called. If it is important to clean up some resource, there
should be an explicit predicate for doing that, and calling that predicate should be guaranteed by
using setup call cleanup/3 or some a process finalization hook such as at halt/1.

Normally, Prolog does not clean memory during shutdown. It does so on an explicit call to
PL cleanup().13 In such a situation, there is no guarantee of the order in which atoms are
released; if a blob contains an atom (or another blob), those atoms (or blobs) may have already
been released. See also PL blob data().

int compare(atom t a, atom t b)
Compare the blobs a and b, both of which are of the type associated to this blob type. Return
values are as memcmp(): < 0 if a is less than b, = 0 if both are equal, and > 0 otherwise.
The default implementation is a bitwise comparison of the blobs’ contents. This default
implementation suffices if PL BLOB UNIQUE is set and the blob follows the requirement that
its contents do not change, although it might give an unexpected ordering, and the ordering
may change if the blob is saved and restored using save program/2.

If the compare() function is defined, the sort/2 predicate uses that to determine if two
blobs are equal and only keeps one of them. This can cause unexpected results with blobs
that are actually different; if you cannot guarantee that the blobs all have unique contents, then
you should incorporate the blob address (the system guarantees that blobs are not shifted in
memory after they are allocated). This function should not call any PL *() functions other than
PL blob data().

The following minimal compare function gives a stable total ordering:

static int
compare_my_blob(atom_t a, atom_t b)
{ const struct my_blob_data *blob_a = PL_blob_data(a, NULL, NULL);

const struct my_blob_data *blob_b = PL_blob_data(b, NULL, NULL);
return (blob_a < blob_b) ? -1 : (blob_a > blob_b) ? 1 : 0;

}

int write(IOSTREAM *s, atom t a, int flags)
Write the content of the blob a to the stream s respecting the flags. The return value is TRUE
or FALSE and does not follow the Unix convention of the number of bytes (where zero
is possible) and negative for errors. Any I/O operations to s are in the context of a
PL acquire stream(); upon return, the PL release stream() handles any errors, so
it is safe to not check return codes from Sfprintf(), etc.

13Or if the system is compiled with the cmake build type Debug.

SWI-Prolog 9.3 Reference Manual

480 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

In general, the output from the write() callback should be minimal. If you wish to output
more debug information, it is suggested that you either add a debug option to your ”open” pred-
icate to output more information, or provide a ”properties” predicate. A typical implementation
is:

static int write_my_blob(IOSTREAM *s, atom_t symbol, int flags)
{ (void)flags; /* unused */

Sfprintf(s, "<my_blob>(%p)", PL_blob_data(symbol, NULL, NULL));
return TRUE;

}

The flags are a bitwise or of zero or more of the PL WRT * flags that were passed in to the
calling PL write term() that called write(), and are defined in SWI-Prolog.h. The
flags do not have the PL WRT NEWLINE bit set, so it is safe to call PL write term() and
there is no need for writing a trailing newline. This prototype is available if the SWI-Stream.
h is included before SWI-Prolog.h. This function can retrieve the data of the blob using
PL blob data().

Most blobs reference some external data identified by a pointer and the write() function
writes <type>(address). If this function is not provided, write/1 emits the content of the
blob for blobs of type PL BLOB TEXT or a string of the format <#hex data> for binary blobs.

int save(atom t a, IOSTREAM *s)
Write the blob to stream s, in an opaque form that is known only to the blob. If a “save”
function is not provided (that is, the field is NULL), the default implementation saves and
restores the blob as if it is an array of bytes which may contain null (’0’) bytes.

SWI-Stream.h defines a number of PL qlf put *() functions that write data in a machine-
independent form that can be read by the corresponding PL qlf get *() functions.

If the “save” function encounters an error, it should call PL warning(), raise an exception
(see PL raise exception()), and return FALSE.14 Note that failure to save/restore a blob
makes it impossible to compile a file that contains such a blob using qcompile/2 as well
as creating a saved state from a program that contains such a blob impossible. Here, contains
means that the blob appears in a clause or directive.

atom t load(IOSTREAM *s)
Read the blob from its saved form as written by the “save” function of the same blob type.
If this cannot be done (e.g., a stream read failure or a corrupted external form), the “load”
function should call PL warning(), then PL fatal error(), and return constFALSE.15

If a “load” function is not provided (that is, the field is NULL, the default implementation
assumes that the blob was written by the default “save” - that is, as an array of bytes

SWI-Stream.h defines a number of PL qlf get *() functions that read data in a machine-
independent form, as written by the by the corresponding PL qlf put *() functions.

The atom that the “load” function returns can be created using PL new blob().

14Details are subject to change.
15Details are subject to change; see the “save” function.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 481

bool PL unregister blob type(PL blob t *type)
Unlink the blob type from the registered type and transform the type of possible living blobs
to unregistered, avoiding further reference to the type structure, functions referred by it,
as well as the data. This function returns TRUE if no blobs of this type existed and FALSE
otherwise. PL unregister blob type() is intended for the uninstall() hook of
foreign modules, avoiding further references to the module.

int PL register blob type(PL blob t *type)
This function does not need to be called explicitly. It is called if needed when a blob is created
by PL unify blob(), PL put blob(), or PL new blob().

Accessing blobs

The blob access functions are similar to the atom accessing functions. Blobs being atoms, the atom
functions operate on blobs and vice versa. For clarity and possible future compatibility issues, how-
ever, it is not advised to rely on this.

bool PL is blob(term t t, PL blob t **type)
Succeeds if t refers to a blob, in which case type is filled with the type of the blob.

bool PL unify blob(term t t, void *blob, size t len, PL blob t *type)
Unify t to a blob constructed from the given data and associated with the given type. This
performs the following steps:

1. If the type has PL BLOB UNIQUE set, search the blob database for a blob of the same
type with the same content. If found, unify t with the existing handle.

2. If not found or PL BLOB UNIQUE is not set, create a new blob handle. If
PL BLOB NOCOPY is set, associate it to the given memory; else, copy the memory to
a new area owned by the blob. Call the acquire() function of the type.

3. Unify t with the existing or new handle. This succeeds if t is already bound to the existing
blob handle. If t is a variable, it succeeds if sufficient resources are available to perform
the unification; if t is bound to something else, this fails.

It is possible that a blob referencing critical resources is created after which the unification fails.
Typically these resources are eventually reclaimed because the new blob is not referenced and
reclaimed by the atom garbage collector. As described with the release() function, it can
be desirable to reclaim the critical resources after the failing PL unify blob() call.

bool PL put blob(term t t, void *blob, size t len, PL blob t *type)
Store the described blob in t. The return value indicates whether a new blob was allocated
(FALSE) or the blob is a reference to an existing blob (TRUE). Reporting new/existing can be
used to deal with external objects having their own reference counts. If the return is TRUE this
reference count must be incremented, and it must be decremented on blob destruction callback.
See also PL put atom nchars().

atom t PL new blob(void *blob, size t len, PL blob t *type)
Create a blob from its internal opaque form. This function is intended for the “load” function
of a blob.

SWI-Prolog 9.3 Reference Manual

482 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

bool PL get blob(term t t, void **blob, size t *len, PL blob t **type)
If t holds a blob or atom, get the data and type and return TRUE. Otherwise return FALSE.
Each result pointer may be NULL, in which case the requested information is ignored.

void * PL blob data(atom t a, size t *len, PL blob t **type)
Get the data and type associated to a blob. This function is mainly used from the callback
functions described in section 12.4.10. Note that if the release() hook is called from
PL cleanup(), blobs are released regardless of whether or not they are referenced and the
order in which blobs are released is undefined (the order depends on the ordering in the atom
hash table). PL blob data() may be called safely on a blob that has already been released.
If this happens during PL cleanup() the return value is guaranteed to be NULL. During
normal execution it may return the content of a newly allocated blob that reuses the released
handle.

bool PL free blob(atom t blob)
New in 9.1.12. This function may be used on blobs with the PL BLOB NOCOPY flag set and
the blob type implements the release() callback. It causes the release() callback to
be called, after which the data and size are set to 0 if the release() returns TRUE. After
this sequence, the release() for this blob is never called again. The related atom t handle
remains valid until it is no longer referenced and reclaimed by the atom garbage collector. If
the blob data is accessed using e.g., PL get blob() it returns NULL for the data and 0 for the
size.16 If the release() function is not called, or if it returns FALSE, FALSE is returned.

PL free blob() may be called multiple times on the same atom t, provided the handle is
still valid. Subsequent calls after a successful call have no effect and return FALSE.

Considerations for non-C code

The blob API assumes that Prolog will take care of memory management, using the
release(c)allback to handle any cleanup.

Other programming languages have their own memory management, which might not fit nicely
with the Prolog memory management. For more details on blobs written with C++, see C++ interface
to SWI-Prolog (Version 2).

12.4.11 Exchanging GMP numbers

If SWI-Prolog is linked with the GNU Multiple Precision Arithmetic Library (GMP, used by default),
the foreign interface provides functions for exchanging numeric values to GMP types. To access these
functions the header <gmp.h> must be included before <SWI-Prolog.h>. Foreign code using
GMP linked to SWI-Prolog asks for some considerations.

• SWI-Prolog normally rebinds the GMP allocation functions using
mp set memory functions(). This means SWI-Prolog must be ini-
tialised before the foreign code touches any GMP function. You can call
PL_action(PL_GMP_SET_ALLOC_FUNCTIONS, TRUE) to force Prolog’s GMP initial-
ization without doing the rest of the Prolog initialization. If you do not want Prolog rebinding
the GMP allocation, call PL_action(PL_GMP_SET_ALLOC_FUNCTIONS, FALSE)
before initializing Prolog.

16This means that any predicates or callbacks that use the blob must check the result of PL blob data().

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/pldoc/man?section=cpp2
https://www.swi-prolog.org/pldoc/man?section=cpp2

12.4. THE FOREIGN INCLUDE FILE 483

• On Windows, each DLL has its own memory pool. To make exchange of GMP numbers be-
tween Prolog and foreign code possible you must either let Prolog rebind the allocation func-
tions (default) or you must recompile SWI-Prolog to link to a DLL version of the GMP library.

Here is an example exploiting the function mpz nextprime():

#include <gmp.h>
#include <SWI-Prolog.h>

static foreign_t
next_prime(term_t n, term_t prime)
{ mpz_t mpz;
int rc;

mpz_init(mpz);
if (PL_get_mpz(n, mpz))
{ mpz_nextprime(mpz, mpz);

rc = PL_unify_mpz(prime, mpz);
} else

rc = FALSE;

mpz_clear(mpz);
return rc;

}

install_t
install()
{ PL_register_foreign("next_prime", 2, next_prime, 0);
}

bool PL get mpz(term t t, mpz t mpz)
If t represents an integer, mpz is filled with the value and the function returns TRUE. Otherwise
mpz is untouched and the function returns FALSE. Note that mpz must have been initialised
before calling this function and must be cleared using mpz clear() to reclaim any storage
associated with it.

bool PL get mpq(term t t, mpq t mpq)
If t is an integer or rational number (term rdiv/2), mpq is filled with the normalised rational
number and the function returns TRUE. Otherwise mpq is untouched and the function returns
FALSE. Note that mpq must have been initialised before calling this function and must be
cleared using mpq clear() to reclaim any storage associated with it.

bool PL unify mpz(term t t, mpz t mpz)
Unify t with the integer value represented by mpz and return TRUE on success. The mpz
argument is not changed.

SWI-Prolog 9.3 Reference Manual

484 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

bool PL unify mpq(term t t, mpq t mpq)
Unify t with a rational number represented by mpq and return TRUE on success. Note that t is
unified with an integer if the denominator is 1. The mpq argument is not changed.

12.4.12 Calling Prolog from C

The Prolog engine can be called from C. There are two interfaces for this. For the first, a term is
created that could be used as an argument to call/1, and then PL call() is used to call Prolog.
This system is simple, but does not allow to inspect the different answers to a non-deterministic goal
and is relatively slow as the runtime system needs to find the predicate. The other interface is based on
PL open query(), PL next solution(), and PL cut query() or PL close query().
This mechanism is more powerful, but also more complicated to use.

Predicate references

This section discusses the functions used to communicate about predicates. Though a Prolog predicate
may be defined or not, redefined, etc., a Prolog predicate has a handle that is neither destroyed nor
moved. This handle is known by the type predicate t.

predicate t PL pred(functor t f, module t m)
Return a handle to a predicate for the specified name/arity in the given module. If the module
argument m is NULL, the current context module is used. If the target predicate does not
exist a handle to a new undefined predicate is returned. The predicate may fail, returning
(predicate t)0 after setting a resource exception, if the target module has a limit on the
program space, see set module/1. Currently aborts the process with a fatal error when
out of memory. Future versions may raise a resource exception and return (predicate t)0.

predicate t PL predicate(const char *name, int arity, const char* module)
Same as PL pred(), but provides a more convenient interface to the C programmer. If the
module argument module is NULL, the current context module is used. The predicate t
handle may be stored as global data and reused for future queries17 as illustrated below.

static predicate_t p = 0;

...
if (!p)

p = PL_predicate("is_a", 2, "database");

Note that PL cleanup() invalidates the predicate handle. Foreign libraries that use the above
mechanism must implement the module uninstall() function to clear the predicate t
global variable.

bool PL predicate info(predicate t p, atom t *n, size t *a, module t *m)
Return information on the predicate p. The name is stored over n, the arity over a, while m
receives the definition module. Note that the latter need not be the same as specified with

17PL predicate() involves 5 hash lookups (two to get the atoms, one to get the module, one to get the functor and
the final one to get the predicate associated with the functor in the module)

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 485

PL predicate(). If the predicate is imported into the module given to PL predicate(),
this function will return the module where the predicate is defined. Any of the arguments n, a
and m can be NULL. Currently always returns TRUE.

Initiating a query from C

This section discusses the functions for creating and manipulating queries from C. Note that a foreign
context can have at most one active query. This implies that it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc.), but it is not allowed to open multiple
queries and start generating solutions for each of them by calling PL next solution(). Be sure
to call PL cut query() or PL close query() on any query you opened before opening the
next or returning control back to Prolog. Failure to do so results in ”undefined behavior” (typically, a
crash).

qid t PL open query(module t ctx, int flags, predicate t p, term t +t0)
Opens a query and returns an identifier for it. ctx is the context module of the goal. When
NULL, the context module of the calling context will be used, or user if there is no
calling context (as may happen in embedded systems). Note that the context module
only matters for meta-predicates. See meta predicate/1, context module/1 and
module transparent/1. The term reference t0 is the first of a vector of term references
as returned by PL new term refs(n). Raise a resource exception and returns (qid t)0
on failure.

Every use of PL open query() must have a corresponding call to PL cut query() or
PL close query() before the foreign predicate returns either TRUE or FALSE.

The flags arguments provides some additional options concerning debugging and exception
handling. It is a bitwise or of the following values below. Note that exception propagation is de-
fined by the flags PL Q NORMAL, PL Q CATCH EXCEPTION and PL Q PASS EXCEPTION.
Exactly one of these flags must be specified (if none of them is specified, the behavior is as if
PL Q NODEBUG is specified)..

PL Q NORMAL
Normal operation. It is named ”normal” because it makes a call to Prolog behave as it did
before exceptions were implemented, i.e., an error (now uncaught exception) triggers the
debugger. See also the Prolog flag debug on error. This mode is still useful when
calling Prolog from C if the C code is not willing to handle exceptions.

PL Q NODEBUG
Switch off the debugger while executing the goal. This option is used by many calls
to hook-predicates to avoid tracing the hooks. An example is print/1 calling
portray/1 from foreign code. This is the default if flags is 0.

PL Q CATCH EXCEPTION
If an exception is raised while executing the goal, make it available by calling
PL exception(qid), where qid is the qid t returned by PL open query().
The exception is implicitly cleared from the environment when the query is closed
and the exception term returned from PL exception(qid) becomes invalid. Use
PL Q PASS EXCEPTION if you wish to propagate the exception.

SWI-Prolog 9.3 Reference Manual

486 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

PL Q PASS EXCEPTION
As PL Q CATCH EXCEPTION, making the exception on the inner environment available
using PL exception(0) in the parent environment. If PL next solution()
returns FALSE, you must call PL cut query() or PL close query(). After
that you may verify whether failure was due to logical failure of the called pred-
icate or an exception by calling PL exception(0). If the predicate failed due
to an exception you should return with FALSE from the foreign predicate or call
PL clear exception() to clear it. If you wish to process the exception in C, it is
advised to use PL Q CATCH EXCEPTION instead, but only if you have no need to raise
an exception or re-raise the caught exception.

Note that PL Q PASS EXCEPTION is used by the debugger to decide whether the excep-
tion is caught. If there is no matching catch/3 call in the current query and the query
was started using PL Q PASS EXCEPTION the debugger searches the parent queries
until it either finds a matching catch/3, a query with PL Q CATCH EXCEPTION
(in which case it considers the exception handled by C) or the top of the query stack
(in which case it considers the exception uncaught). Uncaught exceptions use the
library(prolog stack) to add a backtrace to the exception and start the debug-
ger as soon as possible if the Prolog flag debug on error is true.

PL Q ALLOW YIELD
Support the I YIELD instruction for engine-based coroutining. See
$engine yield/2 in boot/init.pl for details.

PL Q TRACE WITH YIELD
Allows for implementing a yield based debugger. See section 12.4.1

PL Q EXT STATUS
Make PL next solution() return extended status. Instead of only TRUE or FALSE
extended status as illustrated in the following table:

Extended Normal
PL S NOT INNER FALSE PL next solution() may only be called on the innermost

query
PL S EXCEPTION FALSE Exception available through PL exception()
PL S FALSE FALSE Query failed
PL S TRUE TRUE Query succeeded with choicepoint
PL S LAST TRUE Query succeeded without choicepoint
PL S YIELD n/a Query was yielded. See section 12.4.1
PL S YIELD DEBUG n/a Yielded on behalf of the debugger. See section 12.4.1

PL open query() can return the query identifier 0 if there is not enough space on the envi-
ronment stack (and makes the exception available through PL exception(0)). This function
succeeds, even if the referenced predicate is not defined. In this case, running the query using
PL next solution() may return an existence error. See PL exception().

The example below opens a query to the predicate is a/2 to find the ancestor of ‘me’. The
reference to the predicate is valid for the duration of the process or until PL cleanup() is
called (see PL predicate() for details) and may be cached by the client.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 487

char *
ancestor(const char *me)
{ term_t a0 = PL_new_term_refs(2);

static predicate_t p;

if (!p)
p = PL_predicate("is_a", 2, "database");

PL_put_atom_chars(a0, me);
PL_open_query(NULL, PL_Q_PASS_EXCEPTION, p, a0);
...

}

int PL next solution(qid t qid)
Generate the first (next) solution for the given query. The return value is TRUE if a solution was
found, or FALSE to indicate the query could not be proven. This function may be called re-
peatedly until it fails to generate all solutions to the query. The return value PL S NOT INNER
is returned if qid is not the innermost query.

If the PL open query() had the flag PL Q EXT STATUS, there are additional return values
(see section 12.4.1).

int PL cut query(qid t qid)
Discards the query, but does not delete any of the data created by the query. It just invalidates
qid, allowing for a new call to PL open query() in this context. PL cut query() may
invoke cleanup handlers (see setup call cleanup/3) and therefore may experience
exceptions. If an exception occurs the return value is FALSE and the exception is accessible
through PL exception(0).

An example of a handler that can trigger an exception in PL cut query() is:

test_setup_call_cleanup(X) :-
setup_call_cleanup(

true,
between(1, 5, X),
throw(error)).

where PL next solution() returns TRUE on the first result and the throw(error)
will only run when PL cut query() or PL close query() is run. On the other hand,
if the goal in setup call cleanup/3 has completed (failure, exception, deterministic
success), the cleanup handler will have done its work before control gets back to Prolog
and therefore PL next solution() will have generated the exception. The return value
PL S NOT INNER is returned if qid is not the innermost query.

int PL close query(qid t qid)
As PL cut query(), but all data and bindings created by the query are destroyed as if

SWI-Prolog 9.3 Reference Manual

488 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

the query is called as \+ \+ Goal. This reduces the need for garbage collection, but also
rewinds side effects such as setting global variables using b setval/2. The return value
PL S NOT INNER is returned if qid is not the innermost query.

qid t PL current query(void)
Returns the query id of the current query or 0 if the current thread is not executing any queries.

PL engine t PL query engine(qid t qid)
Return the engine to which qid belongs. Note that interacting with a query or the Prolog terms
associated with a query requires the engine to be current. See PL set engine().

term t PL query arguments(qid t qid)
Return a term t handle to the first argument of the main goal of the query qid. This al-
lows for enumerating a query and acting on the binding of one of the arguments without
additional context. Note that the returned term t is not the same handle that was used in
PL open query() to pass the arguments. The content of the returned vector, however, is the
same.

void* PL set query data(qid t qid, unsigned int offset, void* data)
void* PL query data(qid t qid, unsigned int offset)

Associate user data with a query. offset must be smaller than PL MAX QUERY DATA (currently
2). PL set query data() returns the old value.

bool PL call predicate(module t m, int flags, predicate t pred, term t +t0)
Shorthand for PL open query(), PL next solution(), PL cut query(), generat-
ing a single solution. The arguments are the same as for PL open query(), the return value
is the same as PL next solution().

bool PL call(term t t, module t m)
Call term t just like the Prolog predicate once/1. t is called in the module m, or in the context
module if m == NULL. Returns TRUE if the call succeeds, FALSE otherwise. If the goal
raises an exception the return value is FALSE and the exception term is available using
PL exception(0).18 Figure 12.3 shows an example to obtain the number of defined atoms.

12.4.13 Discarding Data

The Prolog data created and term references needed to set up the call and/or analyse the result can
in most cases be discarded right after the call. PL close query() allows for destroying the data,
while leaving the term references. The calls below may be used to destroy term references and data.
See figure 12.3 for an example.

fid t PL open foreign frame()
Create a foreign frame, holding a mark that allows the system to undo bindings and destroy
data created after it, as well as providing the environment for creating term references.
Each call to a foreign predicate is wrapped in a PL open foreign frame() and
PL close foreign frame() pair. This ensures that term t handles created during the
execution of a foreign predicate are scoped to this execution. Note that if the foreign predicate
is non-deterministic, term t handles are scoped to each activation of the foreign function.

18Up to version 9.1.11 the debugger was started and the exception was not propagated.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 489

The user may create explicit foreign frames to undo (backtrack) changes to Prolog terms. See
PL unify() for an example. An explicit foreign frame must also be used for creating a
callback from C to Prolog (see PL open query()) to ensure the existence of such a frame
and to scope the term t handles needed to setup the call to Prolog.

On success, the stack has room for at least 10 term t handles. This implies that foreign predi-
cates as well as code inside an explicitly created foreign frame may use PL new term ref()
to create up to 10 term t handles without checking the return status.

Returns (fid t)0 on failure. Failure is either lack of space on the stacks, in which case a
resource exception is scheduled or atom-gc being in progress in the current thread, in which
case no exception is scheduled. The latter is an exceptional case that prevents doing a callback
on Prolog from blob release handlers.19

void PL close foreign frame(fid t id)
Discard all term references created after the frame was opened. Prolog data referenced by the
discarded term references is not affected.

void PL discard foreign frame(fid t id)
Same as PL close foreign frame(), but also undo all bindings made since the open and
destroy all Prolog data.

void PL rewind foreign frame(fid t id)
Undo all bindings and discard all term references created since the frame was created, but do
not pop the frame. That is, the same frame can be rewound multiple times, and must eventually
be closed or discarded.

It is obligatory to call either of the two closing functions to discard a foreign frame. Foreign
frames may be nested.

12.4.14 String buffering

Many of the functions of the foreign language interface involve strings. Some of these strings point
into static memory like those associated with atoms. These strings are valid as long as the atom is
protected against atom garbage collection, which generally implies the atom must be locked using
PL register atom() or be part of an accessible term. Other strings are more volatile. Several
functions provide a BUF * flag that can be set to either BUF STACK (default) or BUF MALLOC.
Strings returned by a function accepting BUF MALLOC must be freed using PL free(). Strings
returned using BUF STACK are pushed on a stack that is cleared when a foreign predicate returns
control back to Prolog. More fine grained control may be needed if functions that return strings are
called outside the context of a foreign predicate or a foreign predicate creates many strings during its
execution. Temporary strings are scoped using these macros:

void PL STRINGS MARK()
void PL STRINGS RELEASE()

These macros must be paired and create a C block ({...}). Any string created using BUF STACK
after PL STRINGS MARK() is released by the corresponding PL STRINGS RELEASE().
These macros should be used like below. Note that strings returned by any of the Prolog
functions between this pair may be invalidated.

19Such a callback would deadlock if the callback creates new atoms or requires stack shifts or garbage collection.

SWI-Prolog 9.3 Reference Manual

490 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

int
count_atoms()
{ fid_t fid = PL_open_foreign_frame();
term_t goal = PL_new_term_ref();
term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2);
int atoms;

PL_put_atom_chars(a1, "atoms");
PL_cons_functor(goal, s2, a1, a2);
PL_call(goal, NULL); /* call it in current module */

PL_get_integer(a2, &atoms);
PL_discard_foreign_frame(fid);

return atoms;
}

Figure 12.3: Calling Prolog

...
PL_STRINGS_MARK();

<operations involving strings>
PL_STRINGS_RELEASE();
...

The Prolog flag string stack tripwire may be used to set a tripwire to help finding places
where scoping strings may help reducing resources.

12.4.15 Foreign Code and Modules

Modules are identified via a unique handle. The following functions are available to query and ma-
nipulate modules.

module t PL context()
Return the module identifier of the context module of the currently active foreign predicate. If
there is no currently active predicate it returns a handle to the user module.

bool PL strip module(term t +raw, module t *m, term t -plain)
Utility function. If raw is a term, possibly holding the module construct ⟨module⟩:⟨rest⟩, this
function will make plain a reference to ⟨rest⟩ and fill module * with ⟨module⟩. For further
nested module constructs the innermost module is returned via module *. If raw is not a module
construct, raw will simply be put in plain. The value pointed to by m must be initialized before

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 491

calling PL strip module(), either to the default module or to NULL. A NULL value is
replaced by the current context module if raw carries no module. The following example shows
how to obtain the plain term and module if the default module is the user module:

{ module m = PL_new_module(PL_new_atom("user"));
term_t plain = PL_new_term_ref();

PL_strip_module(term, &m, plain);
...

}

Returns TRUE on success and FALSE on error, leaving an exception. Currently the only excep-
tion condition is raw to be a cyclic term.

atom t PL module name(module t module)
Return the name of module as an atom.

module t PL new module(atom t name)
Find an existing module or create a new module with the name name. Currently aborts the
process with a fatal error on failure. Future versions may raise a resource exception and return
(module t)0.

12.4.16 Prolog exceptions in foreign code

This section discusses PL exception() and PL raise exception(), the interface functions
to detect and generate Prolog exceptions from C code. PL raise exception() from the C in-
terface registers the exception term and returns FALSE. If a foreign predicate returns FALSE, while
an exception term is registered, a Prolog exception will be raised by the virtual machine. This im-
plies for a foreign function that implements a predicate and wishes to raise an exception, the function
must call PL raise exception(), perform any necessary cleanup, and return the return code of
PL raise exception() or explicitly FALSE. Calling PL raise exception() outside the
context of a function implementing a foreign predicate results in undefined behaviour.

Note that many of the C API functions may call PL raise exception() and return FALSE.
The user must test for this, cleanup, and make the foreign function return FALSE.

PL exception() may be used to inspect the currently registered exception. It is normally
called after a call to PL next solution() returns FALSE, and returns a term reference to an
exception term if an exception is pending, and (term t)0 otherwise. It may also be called af-
ter, e.g., PL unify() to distinguish a normal failing unification from a unification that raised
an resource error exception. PL exception() must only be called after a function such as
PL next solution() or PL unify() returns failure; if called elsewhere, the return value is
undefined.

If a C function implementing a predicate that calls Prolog should use PL open query() with
the flag PL Q PASS EXCEPTION and make the function return FALSE if PL next solution()
returns FALSE and PL exception() indicates an exception is pending.

Both for C functions implementing a predicate and when Prolog is called while the main control
of the process is in C, user code should always check for exceptions. As explained above, C func-
tions implementing a predicate should normally cleanup and return with FALSE. If the C function

SWI-Prolog 9.3 Reference Manual

492 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

wishes to continue it may call PL clear exception(). Note that this may cause any excep-
tion to be ignored, including time outs and abort. Typically the user should check the exception
details before ignoring an exception (using PL exception(0) or PL exception(qid) as ap-
propriate). If the C code does not implement a predicate it normally prints the exception and calls
PL clear exception() to discard it. Exceptions may be printed by calling print message/2
through the C interface.

bool PL raise exception(term t exception)
Generate an exception (as throw/1) and return FALSE. If there is already a pending excep-
tion, the most urgent exception is kept; and if both are of the same urgency, the new exception
is kept. Urgency of exceptions is described in secrefurgentexceptions.

This function is rarely used directly. Instead, errors are typically raised using the functions in
section 12.4.7 or the C API functions that end in ex such as PL get atom ex(). Below
we give an example returning an exception from a foreign predicate the verbose way. Note that
the exception is raised in a sequence of actions connected using &&. This ensures that a proper
exception is raised should any of the calls used to build or raise the exception themselves raise
an exception. In this simple case PL new term ref() is guaranteed to succeed because the
system guarantees at least 10 available term references before entering the foreign predicate.
PL unify term() however may raise a resource exception for the global stack.

foreign_t
pl_hello(term_t to)
{ char *s;

if (PL_get_atom_chars(to, &s))
{ return Sfprintf(Scurrent_output, "Hello \"%s\"\n", s);
} else
{ term_t except;

return ((except=PL_new_term_ref()) &&
PL_unify_term(except,

PL_FUNCTOR_CHARS, "type_error", 2,
PL_CHARS, "atom",
PL_TERM, to) &&

PL_raise_exception(except));
}

}

For reference, the preferred implementation of the above is below. The CVT EXCEPTION tells
the system to generate an exception if the conversion fails. The other CVT flags define the
admissible types and REP MB requests the string to be provided in the current locale repre-
sentation. This implies that Unicode text is printed correctly if the current environment can
represent it. If not, a representation error is raised.

foreign_t
pl_hello(term_t to)

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 493

{ char *s;

if (PL_get_chars(to, &s, CVT_ATOM|CVT_STRING|CVT_EXCEPTION|REP_MB))
{ return Sfprintf(Scurrent_output, "Hello \"%s\"\n", s);
}

return FALSE;
}

bool PL throw(term t exception)
Similar to PL raise exception(), but returns using the C longjmp() function to the
innermost PL next solution(). This function is deprecated as it does not provide the
opportunity to cleanup.

term t PL exception(qid t qid)
Return the pending exception. Exceptions may be raised by most of the API calls de-
scribed in this chapter, a common possibility being resource error exceptions.
Some return type error or domain error exceptions. A call to Prolog using
PL next solution() may return any exception, including those thrown by explicit
calls to throw/1. If no exception is pending this function returns (term t)0.

Normally qid should be 0. An explicit qid must be used after a call to PL next solution()
that returns FALSE when the query was created using the PL Q PASS EXCEPTION flag (see
PL open query()).

Note that an API may only raise an exception when it fails; if the API call succeeds, the result of
PL exception(0) will be 0.20 The implementation of a foreign predicate should normally
cleanup and return FALSE after an exception is raised (and typically also after an API call
failed for logical reasons; see PL unify() for an elaboration on this topic). If the call to
Prolog is not the implementation of a foreign predicate, e.g., when the overall process control is
in some other language, exceptions may be printed by calling print message/2 and should
be discarded by calling PL clear exception().

void PL clear exception(void)
Tells Prolog that the encountered exception must be ignored. This function must be called if
control remains in C after a previous API call fails with an exception.21 If there is no pending
exception, PL clear exception() does nothing.

12.4.17 Catching Signals (Software Interrupts)

SWI-Prolog offers both a C and Prolog interface to deal with software interrupts (signals). The Prolog
mapping is defined in section 4.12. This subsection deals with handling signals from C.

If a signal is not used by Prolog and the handler does not call Prolog in any way, the native signal
interface routines may be used.

20Provided no exception was pending before calling the API function. As clients must deal with exceptions immediately
after an API call raises one, this can not happen in a well behaved client.

21This feature is non-portable. Other Prolog systems (e.g., YAP) have no facilities to ignore raised exceptions, and the
design of YAP’s exception handling does not support such a facility.

SWI-Prolog 9.3 Reference Manual

494 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

Any handler that wishes to call one of the Prolog interface functions should call
PL sigaction() to install the handler. PL signal() provides a deprecated interface that is
notably not capable of properly restoring the old signal status if the signal was previously handled by
Prolog.

int PL sigaction(int sig, pl sigaction t *act, pl sigaction t *oldact)
Install or query the status for signal sig. The signal is an integer between 1 and 64, where the
where the signals up to 32 are mapped to OS signals and signals above that are handled by
Prolog’s synchronous signal handling. The pl sigaction t is a struct with the following
definition:

typedef struct pl_sigaction
{ void (*sa_cfunction)(int); /* traditional C function */

predicate_t sa_predicate; /* call a predicate */
int sa_flags; /* additional flags */

} pl_sigaction_t;

The sa flags is a bitwise or of PLSIG THROW, PLSIG SYNC and PLSIG NOFRAME. Sig-
nal handling is enabled if PLSIG THROW is provided, sa cfunction or sa predicate is
provided. sa predicate is a predicate handle for a predicate with arity 1. If no action is pro-
vided the signal handling for this signal is restored to the default before PL initialise()
was called.

Finally, 0 (zero) may be passed for sig. In that case the system allocates a free signal in the
Prolog range (32. . . 64). Such signal handler are activated using PL thread raise().

void (*)() PL signal(sig, func)
This function is equivalent to the BSD-Unix signal() function, regardless of the platform
used. The signal handler is blocked while the signal routine is active, and automatically
reactivated after the handler returns.

After a signal handler is registered using this function, the native signal interface redirects the
signal to a generic signal handler inside SWI-Prolog. This generic handler validates the en-
vironment, creates a suitable environment for calling the interface functions described in this
chapter and finally calls the registered user-handler.

By default, signals are handled asynchronously (i.e., at the time they arrive). It is inherently
dangerous to call extensive code fragments, and especially exception related code from asyn-
chronous handlers. The interface allows for synchronous handling of signals. In this case
the native OS handler just schedules the signal using PL raise(), which is checked by
PL handle signals() at the call- and redo-port. This behaviour is realised by or-ing sig
with the constant PL SIGSYNC.22

Signal handling routines may raise exceptions using PL raise exception(). The use of
PL throw() is not safe. If a synchronous handler raises an exception, the exception is delayed
to the next call to PL handle signals();

bool PL raise(int sig)
Register sig for synchronous handling by Prolog. Synchronous signals are handled at the
call-port or if foreign code calls PL handle signals(). See also thread signal/2.

22A better default would be to use synchronous handling, but this interface preserves backward compatibility.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 495

int PL handle signals(void)
Handle any signals pending from PL raise(). PL handle signals() is called at each
pass through the call- and redo-port at a safe point. Exceptions raised by the handler using
PL raise exception() are properly passed to the environment.

The user may call this function inside long-running foreign functions to handle scheduled inter-
rupts. This routine returns the number of signals handled. If a handler raises an exception, the
return value is -1 and the calling routine should return with FALSE as soon as possible.

int PL get signum ex(term t t, int *sig)
Extract a signal specification from a Prolog term and store as an integer signal number in sig.
The specification is an integer, a lowercase signal name without SIG or the full signal name.
These refer to the same: 9, kill and SIGKILL. Leaves a typed, domain or instantiation error
if the conversion fails.

12.4.18 Miscellaneous

Term Comparison

int PL compare(term t t1, term t t2)
Compares two terms using the standard order of terms and returns -1, 0 or 1. See also
compare/3.

bool PL same compound(term t t1, term t t2)
Yields TRUE if t1 and t2 refer to physically the same compound term and FALSE otherwise.

Recorded database

In some applications it is useful to store and retrieve Prolog terms from C code. For example, the
XPCE graphical environment does this for storing arbitrary Prolog data as slot-data of XPCE objects.

Please note that the returned handles have no meaning at the Prolog level and the recorded terms
are not visible from Prolog. The functions PL recorded() and PL erase() are the only func-
tions that can operate on the stored term.

Two groups of functions are provided. The first group (PL record() and friends) store Prolog
terms on the Prolog heap for retrieval during the same session. These functions are also used by
recorda/3 and friends. The recorded database may be used to communicate Prolog terms between
threads.

record t PL record(term t +t)
Record the term t into the Prolog database as recorda/3 and return an opaque handle to the
term. The returned handle remains valid until PL erase() is called on it. PL recorded()
is used to copy recorded terms back to the Prolog stack. Currently aborts the process with a fatal
error on failure. Future versions may raise a resource exception and return (record t)0.

record t PL duplicate record(record t record)
Return a duplicate of record. As records are read-only objects this function merely increments
the records reference count. Returns (record t)0 if the record is an external record (see
PL record external()).

SWI-Prolog 9.3 Reference Manual

496 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

bool PL recorded(record t record, term t -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy multiple
instances at any time to the Prolog stack. Returns TRUE on success, and FALSE if there
is not enough space on the stack to accommodate the term. See also PL record() and
PL erase().

void PL erase(record t record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

The second group (headed by PL record external()) provides the same functionality, but
the returned data has properties that enable storing the data on an external device. It has been designed
for fast and compact storage of Prolog terms in an external database. Here are the main features:

• Independent of session
Records can be communicated to another Prolog session and made visible using
PL recorded external().

• Binary
The representation is binary for maximum performance. The returned data may contain zero
bytes.

• Byte-order independent
The representation can be transferred between machines with different byte order.

• No alignment restrictions
There are no memory alignment restrictions and copies of the record can thus be moved freely.
For example, it is possible to use this representation to exchange terms using shared memory
between different Prolog processes.

• Compact
It is assumed that a smaller memory footprint will eventually outperform slightly faster repre-
sentations.

• Stable
The format is designed for future enhancements without breaking compatibility with older
records.

char * PL record external(term t +t, size t *len)
Similar to PL record(), but the term is serialized such that it can be reloaded in another
Prolog session. This implies that atoms and functors are stored by their content rather than their
handle. As a result, PL record external() fails (returning NULL if the term contains
blobs that cannot be serialized, such as streams.

These functions are used to implement library fastrw as well as for storing Prolog terms
in external databases such as BerkeleyDB (library bdb) or RocksDB. The representation is
optimized for plain atoms and numbers.

Records that are used only in the same Prolog process should use PL record() as this can
represent any term, is more compact and faster.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 497

The returned string may be copied. Note that the string may contain null bytes and is not null
terminated. The length in bytes is returned in len. After copying, the returned string may be
discarded using PL erase external().

PL recorded external() is used to copy the term represented in the data back to the
Prolog stack. PL recorded external() can be used on the returned string as well as on a
copy.

bool PL recorded external(const char *record, term t -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy mul-
tiple instances at any time to the Prolog stack. See also PL record external() and
PL erase external().

bool PL erase external(char *record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

Database

bool PL assert(term t t, module t m, int flags)
Provides direct access to asserta/1 and assertz/1 by asserting t into the database in the
module m. Defined flags are:

PL ASSERTZ
Add the new clause as last. Calls assertz/1. This macros is defined as 0 and thus the
default.

PL ASSERTA
Add the new clause as first. Calls asserta/1.

PL CREATE THREAD LOCAL
If the predicate is not defined, create it as thread-local. See thread local/1.

PL CREATE INCREMENTAL
If the predicate is not defined, create it as incremental see table/1 and section 7.7.

On success this function returns TRUE. On failure FALSE is returned and an exception is left
in the environment that describes the reason of failure. See PL exception().

This predicate bypasses creating a Prolog callback environment and is faster than setting up a
call to assertz/1. It may be used together with PL chars to term(), but the typical use
case will create a number of clauses for the same predicate. The fastest way to achieve this is
by creating a term that represents the invariable structure of the desired clauses using variables
for the variable sub terms. Now we can loop over the data, binding the variables, asserting the
term and undoing the bindings. Below is an example loading words from a file that contains a
word per line.

#include <SWI-Prolog.h>
#include <stdio.h>
#include <string.h>

#define MAXWLEN 256

SWI-Prolog 9.3 Reference Manual

498 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

static foreign_t
load_words(term_t name)
{ char *fn;

if (PL_get_file_name(name, &fn, PL_FILE_READ))
{ FILE *fd = fopen(fn, "r");

char word[MAXWLEN];
module_t m = PL_new_module(PL_new_atom("words"));
term_t cl = PL_new_term_ref();
term_t w = PL_new_term_ref();
fid_t fid;

if (!PL_unify_term(cl, PL_FUNCTOR_CHARS, "word", 1, PL_TERM, w))
return FALSE;

if ((fid = PL_open_foreign_frame()))
{ while(fgets(word, sizeof word, fd))
{ size_t len;

if ((len=strlen(word)))
{ word[len-1] = ’\0’;
if (!PL_unify_chars(w, PL_ATOM|REP_MB, (size_t)-1, word) ||

!PL_assert(cl, m, 0))
return FALSE;

PL_rewind_foreign_frame(fid);
}

}

PL_close_foreign_frame(fid);
}

fclose(fd);
return TRUE;

}

return FALSE;
}

install_t
install(void)
{ PL_register_foreign("load_words", 1, load_words, 0);
}

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 499

Getting file names

The function PL get file name() provides access to Prolog filenames and its file-search mech-
anism described with absolute file name/3. Its existence is motivated to realise a uniform
interface to deal with file properties, search, naming conventions, etc., from foreign code.

bool PL get file name(term t spec, char **name, int flags)
Translate a Prolog term into a file name. The name is stored in the buffer stack described
with the PL get chars() option BUF STACK, which is popped upon return from the
foreign predicate to Prolog. Conversion from the internal UNICODE encoding is done using
standard C library functions. flags is a bit-mask controlling the conversion process. On failure,
PL FILE NOERRORS controls whether an exception is raised. Options are:

PL FILE ABSOLUTE
Return an absolute path to the requested file.

PL FILE OSPATH
Return the name using the hosting OS conventions. On MS-Windows, \ is used to sepa-
rate directories rather than the canonical /.

PL FILE SEARCH
Invoke absolute file name/3. This implies rules from file search path/2
are used.

PL FILE EXIST
Demand the path to refer to an existing entity.

PL FILE READ
Demand read-access on the result.

PL FILE WRITE
Demand write-access on the result.

PL FILE EXECUTE
Demand execute-access on the result.

PL FILE NOERRORS
Do not raise any exceptions.

bool PL get file nameW(term t spec, wchar t **name, int flags)
Same as PL get file name(), but returns the filename as a wide-character string. This
is intended for Windows to access the Unicode version of the Win32 API. Note that the flag
PL FILE OSPATH must be provided to fetch a filename in OS native (e.g., C:\x\y) notation.

Dealing with Prolog flags from C

Foreign code can set or create Prolog flags using PL set prolog flag(). See
set prolog flag/2 and create prolog flag/3. To retrieve the value of a flag you can
use PL current prolog flag().

bool PL set prolog flag(const char *name, int type, ...)
Set/create a Prolog flag from C. name is the name of the affected flag. type is one of the
values below, which also dictates the type of the final argument. The function returns TRUE
on success and FALSE on failure. This function can be called before PL initialise(),
making the flag available to the Prolog startup code.

SWI-Prolog 9.3 Reference Manual

500 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

PL BOOL
Create a boolean (true or false) flag. The argument must be an int.

PL ATOM
Create a flag with an atom as value. The argument must be of type const char *.

PL INTEGER
Create a flag with an integer as value. The argument must be of type intptr t *.

bool PL current prolog flag(atom t name, int type, void *value)
Retrieve the value of a Prolog flag from C. name is the name of the flag as an atom t (see
current prolog flag/2). type specifies the kind of value to be retrieved, it is one of the
values below. value is a pointer to a location where to store the value. The user is responsible
for making sure this memory location is of the appropriate size/type (see the returned types
below to determine the size/type). The function returns TRUE on success and FALSE on
failure.

PL ATOM
Retrieve a flag whose value is an atom. The returned value is an atom handle of type
atom t.

PL INTEGER
Retrieve a flag whose value is an integer. The returned value is an integer of type
int64 t.

PL FLOAT
Retrieve a flag whose value is a float. The returned value is a floating point number of
type double.

PL TERM
Retrieve a flag whose value is a term. The returned value is a term handle of type
term t.

Foreign code and Well Founded Semantics

bool PL get delay list(term t -dl)
Fetch the current delay list. If this list is not empty, the current answer is undefined. In the
logical sense, this function always succeeds and sets dl to the delay list. It returns FALSE if
the delay list is empty (and answer is well defined) and TRUE if the delay list is not empty. If
dl is 0 no list is instantiated, while the return value is the same. This allows for testing that an
answer is undefined as below.

if (PL_get_delay_list(0))
<undefined>

else
<normal answer>

For now, we consider the content of the list elements opaque. See boot/tabling.pl for
examples.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 501

12.4.19 Errors and warnings

PL warning() prints a standard Prolog warning message to the standard error (user error)
stream. Please note that new code should consider using PL raise exception() to raise a Prolog
exception. See also section 4.10.

bool PL warning(format, a1, . . .)
Print an error message starting with ‘[WARNING: ’, followed by the output from format,
followed by a ‘]’ and a newline. Then start the tracer. format and the arguments are the same
as for printf(2). Always returns FALSE.

int PL fatal error(format, a1, . . .)
As PL warning(), but using [FATAL ERROR: at ⟨time⟩ ...] and terminates the
process after cleanup using abort(). If the process is a Windows GUI application it uses a
message box. This function should be used if an unrepairable error is detected. For example,
Prolog uses it to signal it cannot find the compiled Prolog startup or memory allocation fails in
a place from where we cannot gracefully generate an exception.23

int PL system error(format, a1, . . .)
As PL fatal error(), but using [ERROR: system error:] and provides additional
technical details such as the thread that trapped the error and backtrace of the C and Prolog
stacks. This function should be used to when an unexpected and unrepairable error is detected.
For example, Prolog uses this after it finds an inconsistency in the data during garbage
collection.

int PL api error(format, a1, . . .)
As PL system error(), but using [ERROR: API error:] and provides additional
technical details such as the thread that trapped the error and backtrace of the C and Prolog
stacks. This function is used by the C API and may be used by other language bindings to
report invalid use of the API. This function causes the process to be terminated.

bool PL print message(atom t severity, . . .)
Calls print message/2 using a term constructed from the remaining arguments that are
passed to PL unify term(). This is similar to setting up a call to print message/2
using PL call predicate(), except that it saves and restores possibly pending exceptions
and delayed goals. The severity argument must be valid for print message/2.

12.4.20 Environment Control from Foreign Code

bool PL action(int, ...)
Perform some action on the Prolog system. int describes the action. Remaining arguments
depend on the requested action. The actions are listed below:

PL ACTION TRACE
Start Prolog tracer (trace/0). Requires no arguments.

PL ACTION DEBUG
Switch on Prolog debug mode (debug/0). Requires no arguments.

23Currently most memory allocation except for most of the big allocations such as for the Prolog stacks.

SWI-Prolog 9.3 Reference Manual

502 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

PL ACTION BACKTRACE
Print backtrace on current output stream. The argument (an int) is the number of frames
printed.

PL ACTION HALT
Halt Prolog execution. This action should be called rather than Unix exit() to give
Prolog the opportunity to clean up. This call does not return. The argument (an int) is
the exit code. See halt/1.

PL ACTION ABORT
Generate a Prolog abort (abort/0). This call does not return. Requires no arguments.

PL ACTION BREAK
Create a standard Prolog break environment (break/0). Returns after the user types the
end-of-file character. Requires no arguments.

PL ACTION GUIAPP
Windows: Used to indicate to the kernel that the application is a GUI application if the
argument is not 0, and a console application if the argument is 0. If a fatal error occurs,
the system uses a windows messagebox to report this on a GUI application, and otherwise
simply prints the error and exits.

PL ACTION TRADITIONAL
Same effect as using --traditional. Must be called before PL initialise().

PL ACTION WRITE
Write the argument, a char * to the current output stream.

PL ACTION FLUSH
Flush the current output stream. Requires no arguments.

PL ACTION ATTACH CONSOLE
Attach a console to a thread if it does not have one. See attach console/0.

PL GMP SET ALLOC FUNCTIONS
Takes an integer argument. If TRUE, the GMP allocations are immediately bound to the
Prolog functions. If FALSE, SWI-Prolog will never rebind the GMP allocation functions.
See mp set memory functions() in the GMP documentation. The action returns
FALSE if there is no GMP support or GMP is already initialised.

unsigned int PL version info(int key)
Query version information. This function may be called before PL initialise(). If the
key is unknown the function returns 0. See section 2.21 for a more in-depth discussion on bi-
nary compatibility. Versions up to SWI-Prolog 8.5.2 defined this function as PL version().
It was renamed to avoid a conflict with Perl affecting Yaswi. PL version() is provided as a
macro for compatibility. Defined keys are:

PL VERSION SYSTEM
SWI-Prolog version as 10, 000×major + 100×minor + patch.

PL VERSION FLI
Incremented if the foreign interface defined in this chapter changes in a way that breaks
backward compatibility.

SWI-Prolog 9.3 Reference Manual

https://github.com/salva/p5-Language-Prolog-Yaswi

12.4. THE FOREIGN INCLUDE FILE 503

PL QUERY ARGC Return an integer holding the number of ar-
guments given to Prolog from Unix.

PL QUERY ARGV Return a char ** holding the argument
vector given to Prolog from Unix.

PL QUERY SYMBOLFILE Return a char * holding the current symbol
file of the running process.

PL MAX INTEGER Return a long, representing the maximal inte-
ger value represented by a Prolog integer.

PL MIN INTEGER Return a long, representing the minimal inte-
ger value.

PL QUERY VERSION Return a long, representing the version as
10, 000 × M + 100 × m + p, where M is
the major, m the minor version number and p
the patch level. For example, 20717 means
2.7.17.

PL QUERY ENCODING Return the default stream encoding of Prolog
(of type IOENC).

PL QUERY USER CPU Get amount of user CPU time of the process
in milliseconds.

Table 12.1: PL query() options

PL VERSION REC
Incremented if the binary representation of terms as used by PL record external()
and fast write/2 changes.

PL VERSION QLF
Incremented if the QLF file format changes.

PL VERSION QLF LOAD
Represents the oldest loadable QLF file format version.

PL VERSION VM
A hash that represents the VM instructions and their arguments.

PL VERSION BUILT IN
A hash that represents the names, arities and properties of all built-in predicates defined
in C. If this function is called before PL initialise() it returns 0.

12.4.21 Querying Prolog

long PL query(int)
Obtain status information on the Prolog system. The actual argument type depends on the
information required. int describes what information is wanted.24 The options are given in
table 12.1.

24Returning pointers and integers as a long is bad style. The signature of this function should be changed.

SWI-Prolog 9.3 Reference Manual

504 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

12.4.22 Registering Foreign Predicates

bool PL register foreign in module(char *mod, char *name, int arity, foreign t (*f)(), int flags, ...)
Register the C function f to implement a Prolog predicate. After this call returns successfully a
predicate with name name (a char *) and arity arity (a C int) is created in module mod. If
mod is NULL, the predicate is created in the module of the calling context, or if no context is
present in the module user.

When called in Prolog, Prolog will call function. flags form a bitwise or’ed list of options for
the installation. These are:
PL FA META Provide meta-predicate info (see below)
PL FA TRANSPARENT Predicate is module transparent (deprecated)
PL FA NONDETERMINISTIC Predicate is non-deterministic. See also

PL retry().
PL FA NOTRACE Predicate cannot be seen in the tracer
PL FA VARARGS Use alternative calling convention.

If PL FA META is provided, PL register foreign in module() takes one extra ar-
gument. This argument is of type const char*. This string must be exactly as long as
the number of arguments of the predicate and filled with characters from the set 0-9:ˆ-+?.
See meta predicate/1 for details. PL FA TRANSPARENT is implied if at least one
meta-argument is provided (0-9:ˆ). Note that meta-arguments are not always passed as
⟨module⟩:⟨term⟩. Always use PL strip module() to extract the module and plain term
from a meta-argument.25

Predicates may be registered either before or after PL initialise(). When registered be-
fore initialisation the registration is recorded and executed after installing the system predicates
and before loading the saved state.

Default calling (i.e. without PL FA VARARGS) function is passed the same number of term t
arguments as the arity of the predicate and, if the predicate is non-deterministic, an extra ar-
gument of type control t (see section 12.4.1). If PL FA VARARGS is provided, function
is called with three arguments. The first argument is a term t handle to the first argument.
Further arguments can be reached by adding the offset (see also PL new term refs()). The
second argument is the arity, which defines the number of valid term references in the argument
vector. The last argument is used for non-deterministic calls. It is currently undocumented and
should be defined of type void*. Here is an example:

static foreign_t
atom_checksum(term_t a0, int arity, void* context)
{ char *s;

if (PL_get_atom_chars(a0, &s))
{ int sum;

for(sum=0; *s; s++)
sum += *s&0xff;

25It is encouraged to pass an additional NULL pointer for non-meta-predicates.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 505

return PL_unify_integer(a0+1, sum&0xff);
}

return FALSE;
}

install_t
install()
{ PL_register_foreign("atom_checksum", 2,

atom_checksum, PL_FA_VARARGS);
}

bool PL register foreign(const char *name, int arity, foreign t (*function)(), int flags, ...)
Same as PL register foreign in module(), passing NULL for the module.

void PL register extensions in module(const char *module, PL extension *e)
Register a series of predicates from an array of definitions of the type PL extension in the
given module. If module is NULL, the predicate is created in the module of the calling context,
or if no context is present in the module user. The PL extension type is defined as

typedef struct PL_extension
{ char *predicate_name; /* Name of the predicate */

short arity; /* Arity of the predicate */
pl_function_t function; /* Implementing functions */
short flags; /* Or of PL_FA_... */

} PL_extension;

For details, see PL register foreign in module(). Here is an example of its usage:

static PL_extension predicates[] = {
{ "foo", 1, pl_foo, 0 },
{ "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC },
{ NULL, 0, NULL, 0 }
};

main(int argc, char **argv)
{ PL_register_extensions_in_module("user", predicates);

if (!PL_initialise(argc, argv))
PL_halt(1);

...
}

SWI-Prolog 9.3 Reference Manual

506 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

void PL register extensions(PL extension *e)
Same as PL register extensions in module() using NULL for the module argu-
ment.

12.4.23 Foreign Code Hooks

For various specific applications some hooks are provided.

PL dispatch hook t PL dispatch hook(PL dispatch hook t)
If this hook is not NULL, this function is called when reading from the terminal. It is supposed
to dispatch events when SWI-Prolog is connected to a window environment. It can return
two values: PL DISPATCH INPUT indicates Prolog input is available on file descriptor 0
or PL DISPATCH TIMEOUT to indicate a timeout. The old hook is returned. The type
PL dispatch hook t is defined as:

typedef int (*PL_dispatch_hook_t)(void);

void PL abort hook(PL abort hook t)
Install a hook when abort/0 is executed. SWI-Prolog abort/0 is implemented using
C setjmp()/longjmp() construct. The hooks are executed in the reverse order of their
registration after the longjmp() took place and before the Prolog top level is reinvoked. The
type PL abort hook t is defined as:

typedef void (*PL_abort_hook_t)(void);

bool PL abort unhook(PL abort hook t)
Remove a hook installed with PL abort hook(). Returns FALSE if no such hook is found,
TRUE otherwise.

void PL on halt(int (*f)(int, void *), void *closure)
Register the function f to be called if SWI-Prolog is halted. The function is called with two
arguments: the exit code of the process (0 if this cannot be determined) and the closure
argument passed to the PL on halt() call. Handlers must return 0. Other return values
are reserved for future use. See also at halt/1.26 These handlers are called before system
cleanup and can therefore access all normal Prolog resources. See also PL exit hook().

void PL exit hook(int (*f)(int, void *), void *closure)
Similar to PL on halt(), but the hooks are executed by PL halt() instead of
PL cleanup() just before calling exit().

PL agc hook t PL agc hook(PL agc hook t new)
Register a hook with the atom-garbage collector (see garbage collect atoms/0) that is
called on any atom that is reclaimed. The old hook is returned. If no hook is currently defined,
NULL is returned. The argument of the called hook is the atom that is to be garbage collected.

26BUG: Although both PL on halt() and at halt/1 are called in FIFO order, all at halt/1 handlers are called
before all PL on halt() handlers.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 507

The return value is an int. If the return value is zero, the atom is not reclaimed. The hook
may invoke any Prolog predicate.

The example below defines a foreign library for printing the garbage collected atoms for debug-
ging purposes.

#include <SWI-Stream.h>
#include <SWI-Prolog.h>

static int
atom_hook(atom_t a)
{ Sdprintf("AGC: deleting %s\n", PL_atom_chars(a));

return TRUE;
}

static PL_agc_hook_t old;

install_t
install()
{ old = PL_agc_hook(atom_hook);
}

install_t
uninstall()
{ PL_agc_hook(old);
}

12.4.24 Storing foreign data

When combining foreign code with Prolog, it can be necessary to make data represented in the foreign
language available to Prolog. For example, to pass it to another foreign function. At the end of this
section, there is a partial implementation of using foreign functions to manage bit-vectors. Another
example is the SGML/XML library that manages a ‘parser’ object, an object that represents the current
state of the parser and that can be directed to perform actions such as parsing a document or make
queries about the document content.

This section provides some hints for handling foreign data in Prolog. There are four options for
storing such data:

• Natural Prolog data
Uses the representation one would choose if no foreign interface was required. For example, a
bitvector representing a list of small integers can be represented as a Prolog list of integers.

• Opaque packed data on the stacks
It is possible to represent the raw binary representation of the foreign object as a
Prolog string (see section 5.2). Strings may be created from foreign data using
PL put string nchars() and retrieved using PL get string chars(). It is good

SWI-Prolog 9.3 Reference Manual

508 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

practice to wrap the string in a compound term with arity 1, so Prolog can identify the type.
The hook portray/1 rules may be used to streamline printing such terms during develop-
ment.

• Opaque packed data in a blob
Similar to the above solution, binary data can be stored in an atom. The blob interface (sec-
tion 12.4.10) provides additional facilities to assign a type and hook-functions that act on cre-
ation and destruction of the underlying atom.

• Natural foreign data, passed as a pointer
An alternative is to pass a pointer to the foreign data. Again, the pointer is often wrapped in a
compound term.

The choice may be guided using the following distinctions

• Is the data opaque to Prolog
With ‘opaque’ data, we refer to data handled in foreign functions, passed around in Prolog, but
where Prolog never examines the contents of the data itself. If the data is opaque to Prolog, the
selection will be driven solely by simplicity of the interface and performance.

• What is the lifetime of the data
With ‘lifetime’ we refer to how it is decided that the object is (or can be) destroyed. We can
distinguish three cases:

1. The object must be destroyed on backtracking and normal Prolog garbage collection (i.e.,
it acts as a normal Prolog term). In this case, representing the object as a Prolog string
(second option above) is the only feasible solution.

2. The data must survive Prolog backtracking. This leaves two options. One is to represent
the object using a pointer and use explicit creation and destruction, making the program-
mer responsible. The alternative is to use the blob-interface, leaving destruction to the
(atom) garbage collector.

3. The data lives as during the lifetime of a foreign function that implements a predicate.
If the predicate is deterministic, foreign automatic variables are suitable. If the predicate
is non-deterministic, the data may be allocated using malloc() and a pointer may be
passed. See section 12.4.1.

Examples for storing foreign data

In this section, we outline some examples, covering typical cases. In the first example, we will deal
with extending Prolog’s data representation with integer sets, represented as bit-vectors. Then, we
discuss the outline of the DDE interface.

Integer sets with not-too-far-apart upper- and lower-bounds can be represented using bit-vectors.
Common set operations, such as union, intersection, etc., are reduced to simple and’ing and or’ing
the bit-vectors. This can be done using Prolog’s unbounded integers.

For really demanding applications, foreign representation will perform better, especially time-
wise. Bit-vectors are naturally expressed using string objects. If the string is wrapped in
bitvector/1, the lower-bound of the vector is 0 and the upper-bound is not defined; an imple-
mentation for getting and putting the sets as well as the union predicate for it is below.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 509

#include <SWI-Prolog.h>

#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

static functor_t FUNCTOR_bitvector1;

static int
get_bitvector(term_t in, int *len, unsigned char **data)
{ if (PL_is_functor(in, FUNCTOR_bitvector1))
{ term_t a = PL_new_term_ref();

PL_get_arg(1, in, a);
return PL_get_string(a, (char **)data, len);

}

PL_fail;
}

static int
unify_bitvector(term_t out, int len, const unsigned char *data)
{ if (PL_unify_functor(out, FUNCTOR_bitvector1))
{ term_t a = PL_new_term_ref();

PL_get_arg(1, out, a);

return PL_unify_string_nchars(a, len, (const char *)data);
}

PL_fail;
}

static foreign_t
pl_bitvector_union(term_t t1, term_t t2, term_t u)
{ unsigned char *s1, *s2;
int l1, l2;

if (get_bitvector(t1, &l1, &s1) &&
get_bitvector(t2, &l2, &s2))

{ int l = max(l1, l2);
unsigned char *s3 = alloca(l);

if (s3)
{ int n;
int ml = min(l1, l2);

SWI-Prolog 9.3 Reference Manual

510 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

for(n=0; n<ml; n++)
s3[n] = s1[n] | s2[n];

for(; n < l1; n++)
s3[n] = s1[n];

for(; n < l2; n++)
s3[n] = s2[n];

return unify_bitvector(u, l, s3);
}

return PL_warning("Not enough memory");
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0);

FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1);
}

The DDE interface (see section 4.44) represents another common usage of the foreign interface:
providing communication to new operating system features. The DDE interface requires knowledge
about active DDE server and client channels. These channels contains various foreign data types. Such
an interface is normally achieved using an open/close protocol that creates and destroys a handle. The
handle is a reference to a foreign data structure containing the relevant information.

There are a couple of possibilities for representing the handle. The choice depends on respon-
sibilities and debugging facilities. The simplest approach is to use PL unify pointer() and
PL get pointer(). This approach is fast and easy, but has the drawbacks of (untyped) point-
ers: there is no reliable way to detect the validity of the pointer, nor to verify that it is pointing to a
structure of the desired type. The pointer may be wrapped into a compound term with arity 1 (i.e.,
dde channel(⟨Pointer⟩)), making the type-problem less serious.

Alternatively (used in the DDE interface), the interface code can maintain a (preferably variable
length) array of pointers and return the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good suggestion.

12.4.25 Embedding SWI-Prolog in other applications

With embedded Prolog we refer to the situation where the ‘main’ program is not the Prolog applica-
tion. Prolog is sometimes embedded in C, C++, Java or other languages to provide logic based services
in a larger application. Embedding loads the Prolog engine as a library to the external language. Pro-
log itself only provides for embedding in the C language (compatible with C++). Embedding in Java
is achieved using JPL using a C-glue between the Java and Prolog C interfaces.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 511

The most simple embedded program is below. The interface function PL initialise()
must be called before any of the other SWI-Prolog foreign language functions described in
this chapter, except for PL initialise hook(), PL new atom(), PL new functor() and
PL register foreign(). PL initialise() interprets all the command line arguments, ex-
cept for the -t toplevel flag that is interpreted by PL toplevel().

int
main(int argc, char **argv)
{ if (!PL_initialise(argc, argv))

PL_halt(1);

PL_halt(PL_toplevel() ? 0 : 1);
}

bool PL initialise(int argc, char **argv)
Initialises the SWI-Prolog heap and stacks, restores the Prolog state, loads the system and
personal initialisation files, runs the initialization/1 hooks and finally runs the
initialization goals registered using -g goal.

Special consideration is required for argv[0]. On Unix, this argument passes the part of the
command line that is used to locate the executable. Prolog uses this to find the file holding the
running executable. The Windows version uses this to find a module of the running executable.
If the specified module cannot be found, it tries the module libswipl.dll, containing the
Prolog runtime kernel. In all these cases, the resulting file is used for two purposes:

• See whether a Prolog saved state is appended to the file. If this is the case, this state will
be loaded instead of the default boot.prc file from the SWI-Prolog home directory. See
also qsave program/[1,2] and section 12.5.

• Find the Prolog home directory. This process is described in detail in section 12.6.

PL initialise() returns 1 if all initialisation succeeded and 0 otherwise.27

In most cases, argc and argv will be passed from the main program. It is allowed to create
your own argument vector, provided argv[0] is constructed according to the rules above. For
example:

int
main(int argc, char **argv)
{ char *av[10];

int ac = 0;

av[ac++] = argv[0];
av[ac++] = "-x";
av[ac++] = "mystate";
av[ac] = NULL;

27BUG: Various fatal errors may cause PL initialise() to call PL halt(1), preventing it from returning at all.

SWI-Prolog 9.3 Reference Manual

512 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

if (!PL_initialise(ac, av))
PL_halt(1);

...
}

Please note that the passed argument vector may be referred from Prolog at any time and should
therefore be valid as long as the Prolog engine is used.

A good setup in Windows is to add SWI-Prolog’s bin directory to your PATH and either pass
a module holding a saved state, or "libswipl.dll" as argv[0]. If the Prolog state is
attached to a DLL (see the -dll option of swipl-ld), pass the name of this DLL.

bool PL winitialise(int argc, wchar t **argv)
Wide character version of PL initialise(). Can be used in Windows combined with the
wmain() entry point.

bool PL is initialised(int *argc, char ***argv)
Test whether the Prolog engine is already initialised. Returns FALSE if Prolog is not initialised
and TRUE otherwise. If the engine is initialised and argc is not NULL, the argument count used
with PL initialise() is stored in argc. Same for the argument vector argv.

bool PL set resource db mem(const unsigned char *data, size t size)
This function must be called at most once and before calling PL initialise(). The mem-
ory area designated by data and size must contain the resource data and be in the format as
produced by qsave program/2. The memory area is accessed by PL initialise() as
well as calls to open resource/3.28

For example, we can include the bootstrap data into an embedded executable using the steps
below. The advantage of this approach is that it is fully supported by any OS and you obtain a
single file executable.

1. Create a saved state using qsave program/2 or

% swipl -o state -c file.pl ...

2. Create a C source file from the state using e.g., the Unix utility xxd(1):

% xxd -i state > state.h

3. Embed Prolog as in the example below. Instead of calling the toplevel you probably want
to call your application code.

#include <SWI-Prolog.h>
#include "state.h"

int
main(int argc, char **argv)

28This implies that the data must remain accessible during the lifetime of the process if open resource/3 is used.
Future versions may provide a function to detach the resource database and cause open resource/3 to raise an excep-
tion.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 513

{ if (!PL_set_resource_db_mem(state, state_len) ||
!PL_initialise(argc, argv))

PL_halt(1);

return PL_toplevel();
}

Alternative to xxd, it is possible to use inline assembler, e.g. the gcc incbin instruction.
Code for gcc was provided by Roberto Bagnara on the SWI-Prolog mailinglist. Given the state
in a file state, create the following assembler program:

.globl _state

.globl _state_end
_state:

.incbin "state"
_state_end:

Now include this as follows:

#include <SWI-Prolog.h>

#if __linux
#define STATE _state
#define STATE_END _state_end
#else
#define STATE state
#define STATE_END state_end
#endif

extern unsigned char STATE[];
extern unsigned char STATE_END[];

int
main(int argc, char **argv)
{ if (!PL_set_resource_db_mem(STATE, STATE_END - STATE) ||

!PL_initialise(argc, argv))
PL_halt(1);

return PL_toplevel();
}

As Jose Morales pointed at https://github.com/graphitemaster/incbin, which
contains a portability layer on top of the above idea.

bool PL toplevel()
Runs the goal of the -t toplevel switch (default prolog/0) and returns 1 if successful,
0 otherwise.

SWI-Prolog 9.3 Reference Manual

https://github.com/graphitemaster/incbin

514 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

int PL cleanup(int status and flags)
This function may be called instead of PL halt() to cleanup Prolog without exiting the
process. It performs the reverse of PL initialise(). It runs the PL on halt() and
at halt/1 handlers, closes all streams (except for the standard I/O streams, which are
flushed only), restores all signal handlers and reclaims all memory unless asked not to.
status and flags accepts the following flags:

PL CLEANUP NO RECLAIM MEMORY
Do not reclaim memory. This is the default when called from PL halt() for the release
versions because the OS will do so anyway.

PL CLEANUP NO CANCEL
Do not allow Prolog and foreign halt hooks to cancel the cleanup.

The return value of PL cleanup() is one of the following:

PL CLEANUP CANCELED
A Prolog or foreign halt hook cancelled the cleanup. Note that some of the halt hooks
may have been executed.

PL CLEANUP SUCCESS
Cleanup completed successfully. Unless PL CLEANUP NO RECLAIM MEMORY was
specified this implies most of the memory was reclaimed and Prolog may be reinitialized
in the same process using PL initialise().

PL CLEANUP FAILED
Cleanup failed. This happens if the user requested to reclaim all memory but this failed
because the system was not able to join all Prolog threads and could therefore not reclaim
the memory.

PL CLEANUP RECURSIVE
PL cleanup() was called from a hook called by the cleanup process.

PL cleanup() allows deleting and restarting the Prolog system in the same process. In
versions older than 8.5.9 this did not work. As of version 8.5.9, it works for the basic Prolog
engine. Many of the plugins that contain foreign code do not implement a suitable uninstall
handler and will leak memory and possibly other resources. Note that shutting Prolog down and
renitializing it is slow. For almost all scenarios there are faster alternatives such as reloading
modified code, using temporary modules, using threads, etc.

void PL cleanup fork()
Stop intervaltimer that may be running on behalf of profile/1. The call is intended to be
used in combination with fork():

if ((pid=fork()) == 0)
{ PL_cleanup_fork();
<some exec variation>

}

The call behaves the same on Windows, though there is probably no meaningful application.

SWI-Prolog 9.3 Reference Manual

12.4. THE FOREIGN INCLUDE FILE 515

bool PL halt(int status)
Terminate the Prolog process as halt/1. The behaviour depends on several flags:

PL HALT WITH EXCEPTION
When specified, try to raise unwind(halt(status)). If this is not possible, ignore this
flag. Return false.

PL CLEANUP NO RECLAIM MEMORY
Never reclaim the memory, leaving this task to the OS. This is the default unless the
system is compiled for debugging.

PL CLEANUP NO CANCEL
Do not allow hooks to cancel halting the system.

Unless PL HALT WITH EXCEPTIONwas specified and effective, Clean up the Prolog environ-
ment using PL cleanup() and if successful call exit() with the status argument. Returns
true if exit was cancelled by PL cleanup().29

Threading, Signals and embedded Prolog

This section applies to Unix-based environments that have signals or multithreading. The Windows
version is compiled for multithreading, and Windows lacks proper signals.

We can distinguish two classes of embedded executables. There are small C/C++ programs that
act as an interfacing layer around Prolog. Most of these programs can be replaced using the normal
Prolog executable extended with a dynamically loaded foreign extension and in most cases this is
the preferred route. In other cases, Prolog is embedded in a complex application that—like Prolog—
wants to control the process environment. A good example is Java. Embedding Prolog is generally
the only way to get these environments together in one process image. Java VMs, however, are by
nature multithreaded and appear to do signal handling (software interrupts).

On Unix systems, SWI-Prolog installs handlers for the following signals:

SIGUSR2 has an empty signal handler. This signal is sent to a thread after sending a thread-signal
(see thread signal/2). It causes blocking system calls to return with EINTR, which gives
them the opportunity to react to thread-signals.

In some cases the embedded system and SWI-Prolog may both use SIGUSR2 without conflict.
If the embedded system redefines SIGUSR2 with a handler that runs quickly and no harm is
done in the embedded system due to spurious wakeup when initiated from Prolog, there is no
problem. If SWI-Prolog is initialised after the embedded system it will call the handler set
by the embedded system and the same conditions as above apply. SWI-Prolog’s handler is a
simple function only chaining a possibly previously registered handler. SWI-Prolog can handle
spurious SIGUSR2 signals.

SIGINT is used by the top level to activate the tracer (typically bound to control-C). The first control-
C posts a request for starting the tracer in a safe, synchronous fashion. If control-C is hit again
before the safe route is executed, it prompts the user whether or not a forced interrupt is desired.

SIGTERM, SIGABRT and SIGQUIT are caught to cleanup before killing the process again using
the same signal.

29Versions up to 9.3.12 returned false on cancel. If necessary, the two behaviours can be distinguished based on the
existence of the PL HALT WITH EXCEPTION macro.

SWI-Prolog 9.3 Reference Manual

516 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

SIGSEGV, SIGILL, SIGBUS, SIGFPE and SIGSYS are caught by to print a backtrace before
killing the process again using the same signal.

SIGHUP is caught and causes the process to exit with status 2 after cleanup.

The --no-signals option can be used to inhibit all signal processing except for SIGUSR2.
The handling of SIGUSR2 is vital for dealing with blocking system call in threads. The used signal
may be changed using the --sigalert=NUM option or disabled using --sigalert=0.

12.5 Linking embedded applications using swipl-ld

The utility program swipl-ld (Win32: swipl-ld.exe) may be used to link a combination of C files
and Prolog files into a stand-alone executable. swipl-ld automates most of what is described in the
previous sections.

In normal usage, a copy is made of the default embedding template .../swipl/include/
stub.c. The main() routine is modified to suit your application. PL initialise() must
be passed the program name (argv[0]) (Win32: the executing program can be obtained using
GetModuleFileName()). The other elements of the command line may be modified. Next,
swipl-ld is typically invoked as:

swipl-ld -o output stubfile.c [other-c-or-o-files] [plfiles]

swipl-ld will first split the options into various groups for both the C compiler and the Prolog
compiler. Next, it will add various default options to the C compiler and call it to create an executable
holding the user’s C code and the Prolog kernel. Then, it will call the SWI-Prolog compiler to create
a saved state from the provided Prolog files and finally, it will attach this saved state to the created
emulator to create the requested executable.

Below, it is described how the options are split and which additional options are passed.

-help
Print brief synopsis.

-pl prolog
Select the Prolog to use. This Prolog is used for two purposes: get the home directory as well
as the compiler/linker options and create a saved state of the Prolog code.

-ld linker
Linker used to link the raw executable. Default is to use the C compiler (Win32: link.exe).

-cc C compiler
Compiler for .c files found on the command line. Default is the compiler used to build SWI-
Prolog accessible through the Prolog flag c cc (Win32: cl.exe).

-c++ C++-compiler
Compiler for C++ source file (extensions .cpp, .cxx, .cc or .C) found on the command
line. Default is c++ or g++ if the C compiler is gcc (Win32: cl.exe).

SWI-Prolog 9.3 Reference Manual

12.5. LINKING EMBEDDED APPLICATIONS USING SWIPL-LD 517

-nostate
Just relink the kernel, do not add any Prolog code to the new kernel. This is used to create a new
kernel holding additional foreign predicates on machines that do not support the shared-library
(DLL) interface, or if building the state cannot be handled by the default procedure used by
swipl-ld. In the latter case the state is created separately and appended to the kernel using
cat ⟨kernel⟩ ⟨state⟩ > ⟨out⟩ (Win32: copy /b ⟨kernel⟩+⟨state⟩ ⟨out⟩).

-shared
Link C, C++ or object files into a shared object (DLL) that can be loaded by the
load foreign library/1 predicate. If used with -c it sets the proper options to
compile a C or C++ file ready for linking into a shared object.

-dll
Windows only. Embed SWI-Prolog into a DLL rather than an executable.

-c
Compile C or C++ source files into object files. This turns swipl-ld into a replacement for
the C or C++ compiler, where proper options such as the location of the include directory are
passed automatically to the compiler.

-E
Invoke the C preprocessor. Used to make swipl-ld a replacement for the C or C++ compiler.

-pl-options ,. . .
Additional options passed to Prolog when creating the saved state. The first character immedi-
ately following pl-options is used as separator and translated to spaces when the argument
is built. Example: -pl-options,-F,xpce passes -F xpce as additional flags to Prolog.

-ld-options ,. . .
Passes options to the linker, similar to -pl-options.

-cc-options ,. . .
Passes options to the C/C++ compiler, similar to -pl-options.

-v
Select verbose operation, showing the various programs and their options.

-o outfile
Reserved to specify the final output file.

-llibrary
Specifies a library for the C compiler. By default, -lswipl (Win32: libpl.lib) and the libraries
needed by the Prolog kernel are given.

-Llibrary-directory
Specifies a library directory for the C compiler. By default the directory containing the Prolog
C library for the current architecture is passed.

-g | -Iinclude-directory | -Ddefinition
These options are passed to the C compiler. By default, the include directory containing
SWI-Prolog.h is passed. swipl-ld adds three additional * -Ddef flags:

SWI-Prolog 9.3 Reference Manual

518 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

-D SWI PROLOG
Indicates the code is to be connected to SWI-Prolog.

-D SWI EMBEDDED
Indicates the creation of an embedded program.

-D SWIPL HOME=...
Provides the current SWI-Prolog home. This is used by SWI-Prolog.h to define
the SWIPL HOME macro to a string holding the home directory. This may be used to
construct the commandline argument --home=<dir>. For example

int
main(int argc, char **argv)
{ char *av[] = {argv[0], "--home=" SWIPL_HOME, "-q", NULL};

int ac = sizeof(av)/sizeof(*av)-1;
if (!PL_initialise(ac, argv))

PL_halt(1);
}

*.o | *.c | *.C | *.cxx | *.cpp
Passed as input files to the C compiler.

.pl |.qlf
Passed as input files to the Prolog compiler to create the saved state.

*
All other options. These are passed as linker options to the C compiler.

12.5.1 A simple example

The following is a very simple example going through all the steps outlined above. It provides an
arithmetic expression evaluator. We will call the application calc and define it in the files calc.c30

and calc.pl. The Prolog file is simple:

calc(Atom) :-
term_to_atom(Expr, Atom),
A is Expr,
write(A),
nl.

The C part of the application parses the command line options, initialises the Prolog engine, locates
the calc/1 predicate and calls it. The code is in figure 12.4.
The application is now created using the command line below. The option -goal true sets the
Prolog initialization goal to suppress the banner. Note that the -o calc does not specify an exten-
sion. If the platform uses a file extension for executables, swipl-ld will add this (e.g., .exe on
Windows). For more details on the swipl-ld command, see section 12.5.

% swipl-ld -goal true -o calc calc.c calc.pl

30A similar C++ program is in C++ interface to SWI-Prolog (Version 2).

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/pldoc/man?section=cpp2

12.5. LINKING EMBEDDED APPLICATIONS USING SWIPL-LD 519

#include <stdio.h>
#include <string.h>
#include <SWI-Prolog.h>

#define MAXLINE 1024

int
main(int argc, char **argv)
{ char expression[MAXLINE];
char *e = expression;
char *program = argv[0];
char *plav[2];
int n;

/* combine all the arguments in a single string */

for(n=1; n<argc; n++)
{ if (n != 1)

*e++ = ’ ’;
strcpy(e, argv[n]);
e += strlen(e);

}

/* make the argument vector for Prolog */

plav[0] = program;
plav[1] = NULL;

/* initialise Prolog */

if (!PL_initialise(1, plav))
PL_halt(1);

/* Lookup calc/1 and make the arguments and call */

{ predicate_t pred = PL_predicate("calc", 1, "user");
term_t h0 = PL_new_term_refs(1);
int rval;

PL_put_atom_chars(h0, expression);
rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0);

PL_halt(rval ? 0 : 1);
}

return 0;
}

Figure 12.4: C source for the calc application
SWI-Prolog 9.3 Reference Manual

520 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

The created program calc is a native executable with the Prolog code attached to it. Note that
the program typically depends on the shared object libswipl and, depending on the platform and
configuration, on several external shared objects.

% ./calc pi/2
1.5708

12.6 The Prolog ‘home’ directory

Executables embedding SWI-Prolog should be able to find the ‘home’ directory of the devel-
opment environment unless a self-contained saved state has been added to the executable (see
qsave program/[1,2] and section 12.5).

If Prolog starts up, it will try to locate the development environment. To do so, it will try the
following steps until one succeeds:

1. If the --home=DIR is provided, use this.

2. If the environment variable SWI HOME DIR is defined and points to an existing directory, use
this.

3. If the environment variable SWIPL is defined and points to an existing directory, use this.

4. Locate the primary executable or (Windows only) a component (module) thereof and check
whether the parent directory of the directory holding this file contains the file swipl. If so,
this file contains the (relative) path to the home directory. If this directory exists, use this. This
is the normal mechanism used by the binary distribution.

5. If the precompiled path exists, use it. This is only useful for a source installation.

If all fails and there is no state attached to the executable or provided Windows module (see
PL initialise()), SWI-Prolog gives up. If a state is attached, the current working directory is
used.

The file search path/2 alias swi is set to point to the home directory located.

12.7 Example of Using the Foreign Interface

Below is an example showing all stages of the declaration of a foreign predicate that transforms atoms
possibly holding uppercase letters into an atom only holding lowercase letters. Figure 12.5 shows the
C source file, figure 12.6 illustrates compiling and loading of foreign code.

SWI-Prolog 9.3 Reference Manual

12.7. EXAMPLE OF USING THE FOREIGN INTERFACE 521

/* Include file depends on local installation */
#include <SWI-Prolog.h>
#include <string.h>
#include <ctype.h>

foreign_t
pl_lowercase(term_t u, term_t l)
{ char *copy;
char *s, *q;
int rval;

if (!PL_get_atom_chars(u, &s))
return PL_warning("lowercase/2: instantiation fault");

copy = malloc(strlen(s)+1);
if (!copy)

return PL_resource_error("memory");

for(q=copy; *s; q++, s++)

*q = (isupper(*s) ? tolower(*s) : *s);

*q = ’\0’;

rval = PL_unify_atom_chars(l, copy);
free(copy);

return rval;
}

install_t
install()
{ PL_register_foreign("lowercase", 2, pl_lowercase, 0);
}

Figure 12.5: Lowercase source file

SWI-Prolog 9.3 Reference Manual

522 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

% gcc -I/usr/local/lib/swipl-\plversion/include -fpic -c lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% swipl
Welcome to SWI-Prolog (...)
...

1 ?- load_foreign_library(lowercase).
true.

2 ?- lowercase(’Hello World!’, L).
L = ’hello world!’.

Figure 12.6: Compiling the C source and loading the object file

SWI-Prolog 9.3 Reference Manual

12.8. NOTES ON USING FOREIGN CODE 523

12.8 Notes on Using Foreign Code

12.8.1 Foreign debugging functions

The functions in this section are primarily intended for debugging foreign extensions or embed-
ded Prolog. Violating the constraints of the foreign interface often leads to crashes in a subse-
quent garbage collection. If this happens, the system needs to be compiled for debugging using
cmake -DCMAKE BUILD TYPE=Debug, after which all functions and predicates listed below are
available to use from the debugger (e.g. gdb) or can be placed at critical location in your code or the
system code.

void PL backtrace(int depth, int flags)
Dump a Prolog backtrace to the user error stream. Depth is the number of frames to dump.
Flags is a bitwise or of the following constants:

PL BT SAFE
(0x1) Do not try to print goals. Instead, just print the predicate name and arity. This
reduces the likelihood to crash if PL backtrace() is called in a damaged environment.

PL BT USER
(0x2) Only show ‘user’ frames. Default is to also show frames of hidden built-in predi-
cates.

char * PL backtrace string(int depth, int flags)
As PL backtrace(), but returns the stack as a string. The string uses UTF-8 encoding. The
returned string must be freed using PL free(). This function is was added to get stack traces
from running servers where I/O is redirected or discarded. For example, using gdb, a stack
trace is printed in the gdb console regardless of Prolog I/O redirection using the following
command:

(gdb) printf "%s", PL_backtrace_string(25,0)

The source distribution provides the script scripts/swipl-bt that exploits gdb and
PL backtrace string() to print stack traces in various formats for a SWI-Prolog pro-
cess, given its process id.

bool PL check data(term t data)
Check the consistency of the term data. Returns TRUE this is actually implemented in the
current version and FALSE otherwise. The actual implementation only exists if the system is
compiled with the cflag -DO DEBUG or -DO MAINTENANCE. This is not the default.

bool PL check stacks()
Check the consistency of the runtime stacks of the calling thread. Returns TRUE this is actually
implemented in the current version and FALSE otherwise. The actual implementation only
exists if the system is compiled with the cflag -DO DEBUG or -DO MAINTENANCE. This is
not the default.

The Prolog kernel sources use the macro DEBUG(Topic, Code). These macros are disabled in the
production version and must be enabled by recompiling the system as described above. Specific topics

SWI-Prolog 9.3 Reference Manual

524 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

can be enabled and disabled using the predicates prolog debug/1 and prolog nodebug/1. In
addition, they can be activated from the commandline using commandline option -d topics, where
topics is a comma-separated list of debug topics to enable. For example, the code below adds many
consistency checks and prints messages if the Prolog signal handler dispatches signals.

$ swipl -d chk_secure,msg_signal

prolog debug(+Topic)
prolog nodebug(+Topic)

Enable/disable a debug topic. Topic is an atom that identifies the desired topic. The available
topics are defined in src/pl-debug.h. Please search the sources to find out what is actually
printed and when. We highlight one topic here:

chk secure(A)
dd many expensive consistency checks to the system. This should typically be used
when the system crashes, notably in the garbage collector. Garbage collection crashes
are in most cases caused by invalid data on the Prolog stacks. This debug topic may help
locating how the invalid data was created.

These predicates require the system to be compiled for debugging using
cmake -DCMAKE BUILD TYPE=Debug.

int PL prolog debug(const char *topic)
int PL prolog nodebug(const char *topic)

(De)activate debug topics. The topics argument is a comma-separated string of topics
to enable or disable. Matching is case-insensitive. See also prolog debug/1 and
prolog nodebug/1.

These functions require the system to be compiled for debugging using
cmake -DCMAKE BUILD TYPE=Debug.

12.8.2 Memory Allocation

SWI-Prolog’s heap memory allocation is based on the malloc(3) library routines. SWI-Prolog pro-
vides the functions below as a wrapper around malloc(). Allocation errors in these functions trap
SWI-Prolog’s fatal-error handler, in which case PL malloc() or PL realloc() do not return.

Portable applications must use PL free() to release strings returned by PL get chars()
using the BUF MALLOC argument. Portable applications may use both PL malloc() and friends or
malloc() and friends but should not mix these two sets of functions on the same memory.

void * PL malloc(size t bytes)
Allocate bytes of memory. On failure SWI-Prolog’s fatal-error handler is called and
PL malloc() does not return. Memory allocated using these functions must use
PL realloc() and PL free() rather than realloc() and free().

void * PL realloc(void *mem, size t size)
Change the size of the allocated chunk, possibly moving it. The mem argument must be ob-
tained from a previous PL malloc() or PL realloc() call.

SWI-Prolog 9.3 Reference Manual

12.8. NOTES ON USING FOREIGN CODE 525

void PL free(void *mem)
Release memory. The mem argument must be obtained from a previous PL malloc() or
PL realloc() call.

12.8.3 Compatibility between Prolog versions

Great care is taken to ensure binary compatibility of foreign extensions between different Prolog
versions. Only the much less frequently used stream interface has been responsible for binary incom-
patibilities.

Source code that relies on new features of the foreign interface can use the macro PLVERSION
to find the version of SWI-Prolog.h and PL query() using the option PL QUERY VERSION to
find the version of the attached Prolog system. Both follow the same numbering schema explained
with PL query().

12.8.4 Foreign hash tables

As of SWI-Prolog 8.3.2 the foreign API provides access to the internal thread-safe and lock-free hash
tables that associate pointers or objects that fit in a pointer such as atoms (atom t). An argument
against providing these functions is that they have little to do with Prolog. The argument in favor is
that it is hard to implement efficient lock-free tables without low-level access to the underlying Prolog
threads and exporting this interface has a low cost.

The functions below can only be called if the calling thread is associated with a Prolog thread.
Failure to do so causes the call to be ignored or return the failure code where applicable.

hash table t PL new hash table(int size, void (*free symbol)(void *n, void *v))
Create a new table for size key-value pairs. The table is resized when needed. If you know the
table will hold 10,000 key-value pairs, providing a suitable initial size avoids resizing. The
free symbol function is called whenever a key-value pair is removed from the table. This can
be NULL.

int PL free hash table(hash table t table)
Destroy the hash table. First calls PL clear hash table().

void* PL lookup hash table(hash table t table, void *key)
Return the value matching key or NULL if key does not appear in the table.

void* PL add hash table(hash table t table, void *key, void *value, int flags)
Add key-value to the table. The behaviour if key is already in the table depends on flags. If
0, this function returns the existing value without updating the table. If PL HT UPDATE the
old value is replaced and the function returns the old value. If PL HT NEW, a message and
backtrace are printed and the function returns NULL if key is already in the table.

void* PL del hash table(hash table t table, void *key)
Delete key from the table, returning the old associated value or NULL

int PL clear hash table(hash table t table)
Delete all key-value pairs from the table. Call free symbol for each deleted pair.

SWI-Prolog 9.3 Reference Manual

526 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

hash table enum t PL new hash table enum(hash table t table)
Return a table enumerator (cursor) that can be used to enumerate all key-value pairs
using PL advance hash table enum(). The enumerator must be discarded using
PL free hash table enum(). It is safe for another thread to add symbols while the table
is being enumerated, but undefined whether or not these new symbols are visible. If another
thread deletes a key that is not yet enumerated it will not be enumerated.

void PL free hash table enum(hash table enum t e)
Discard an enumerator object created using PL new hash table enum(). Failure to do so
causes the table to use more and more memory on subsequent modifications.

int PL advance hash table enum(hash table enum t e, void **key, void **value)
Get the next key-value pair from a cursor.

12.8.5 Debugging and profiling foreign code (valgrind, asan)

This section is only relevant for Unix users on platforms supported by valgrind. Valgrind is an excel-
lent binary instrumentation platform. Unlike many other instrumentation platforms, valgrind can deal
with code loaded through dlopen().

The callgrind tool can be used to profile foreign code loaded under SWI-Prolog. Compile
the foreign library adding -g option to gcc or swipl-ld. By setting the environment variable
VALGRIND to yes, SWI-Prolog will not release loaded shared objects using dlclose(). This
trick is required to get source information on the loaded library. Without, valgrind claims that the
shared object has no debugging information.31 Here is the complete sequence using bash as login
shell:

% VALGRIND=yes valgrind --tool=callgrind pl <args>
<prolog interaction>
% kcachegrind callgrind.out.<pid>

Instead of valgrind, you can use AddressSanitizer. Here is a short example for building with
asan enabled and then running the resulting binary. When you exit swipl, a message is printed and
any leaks are printed. During execution, other messages may be printed out, such as freeing an address
twice or using freed or unallocated memory.

% cd build.sanitize
% cmake -G Ninja -DCMAKE_BUILD_TYPE=Sanitize ..
% ninja
% ASAN_OPTIONS=detect_leaks=1 build.sanitize/src/swipl
<prolog interaction>
% halt
Running LSAN memory leak check (reclaim_memory=1)
No leaks detected

31Tested using valgrind version 3.2.3 on x64.

SWI-Prolog 9.3 Reference Manual

http://valgrind.org/
https://github.com/google/sanitizers/wiki/AddressSanitizer

12.9. FOREIGN ACCESS TO PROLOG IO STREAMS 527

12.8.6 Name Conflicts in C modules

In the current version of the system all public C functions of SWI-Prolog are in the symbol table.
This can lead to name clashes with foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now I can only suggest you give
your function another name. You can do this using the C preprocessor. If—for example—your foreign
package uses a function warning(), which happens to exist in SWI-Prolog as well, the following
macro should fix the problem:

#define warning warning_

Note that shared libraries do not have this problem as the shared library loader will only look for
symbols in the main executable for symbols that are not defined in the library itself.

12.8.7 Compatibility of the Foreign Interface

The term reference mechanism was first used by Quintus Prolog version 3. SICStus Prolog version 3
is strongly based on the Quintus interface. The described SWI-Prolog interface is similar to using the
Quintus or SICStus interfaces, defining all foreign-predicate arguments of type +term. SWI-Prolog
explicitly uses type functor t, while Quintus and SICStus use ⟨name⟩ and ⟨arity⟩. As the names
of the functions differ from Prolog to Prolog, a simple macro layer dealing with the names can also
deal with this detail. For example:

#define QP_put_functor(t, n, a) \
PL_put_functor(t, PL_new_functor(n, a))

The PL unify *() functions are lacking from the Quintus and SICStus interface. They can easily
be emulated, or the put/unify approach should be used to write compatible code.

The PL open foreign frame()/PL close foreign frame() combination is
lacking from both other Prologs. SICStus has PL new term refs(0), followed by
PL reset term refs(), that allows for discarding term references.

The Prolog interface for the graphical user interface package XPCE shares about 90% of the code
using a simple macro layer to deal with different naming and calling conventions of the interfaces.

12.9 Foreign access to Prolog IO streams

The SWI-Prolog foreign language interface provides access to Prolog IO streams. This interface may
be used to get hold of Prolog streams for reading and writing. In addition, this interface allows to
define new stream types. For example, the Windows swipl-win.exe executable that runs Prolog
in a Windows GUI redefines the Prolog standard IO streams (user input, user output and
user error to read from and write to the GUI window.

The interface is built around the IOSTREAM type which plays a role similar to the POSIX
FILE type. Most of the functions are modeled after their FILE counterpart, prefixed by S, e.g.
Sfwrite(). The IOSTREAM type has considerably more features though. The IOSTREAM type is
practically disconnected from the rest of the Prolog system. Prolog refers to streams either by alias
(user input, etc. or created using the alias(Name) option of open/4) or using a stream handle

SWI-Prolog 9.3 Reference Manual

528 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

which is represented as a blob (see section 12.4.10). Foreign extensions that wish to access or define
streams should include SWI-Stream.h in addition to SWI-Prolog.h as below. Both headers
may be used with C as well as C++.

The interface also defines Sinput, Suser, Serror for direct access to the operating system’s
input and output streams, bypassing Prolog’s control - for example, these will not be affected by
with output to/3. There is also a convenience function for debugging, which goes directly to
stderr: Sdprintf().32

#include <SWI-Stream.h>
#include <SWI-Prolog.h>

12.9.1 Get IO stream handles

There are several ways to get access to an IO Stream handle, basically get them from Prolog, get access
to the standard streams and create a new stream. The standard streams are available as Sinput,
Soutput and Serror. Note that these are thread specific. Creating a new stream is discussed with
Snew(). Below are the functions to obtain a stream handle from a Prolog term, obtain and release
ownership.

int PL get stream(term t t, IOSTREAM **s, int flags)
Get a stream handle from the Prolog term t. Returns TRUE on success and FALSE on failure,
by default generating an exception. The flags argument is a bitwise disjunction of these flags:

SIO INPUT
Get an input stream. If t is a stream pair (see stream pair/3), return the input channel.
If t is an output stream the function fails.

SIO OUTPUT
Get an output stream. See SIO INPUT for details. If neither SIO OUTPUT nor
SIO INPUT is given t may not be a pair.

SIO TRYLOCK
Return FALSE if the stream cannot be locked immediately. No error is generated.

SIO NOERROR
If the function fails no exception is produced.

The returned stream is owned by the calling thread using PL acquire stream().

int PL get stream from blob(atom t b, IOSTREAM **s, int flags)
Same as PL get stream(), but operates directly on the blob b. This allows for foreign code
that wishes long term access to a stream to maintain a handle to the stream as a (registered)
atom t object rather than a IOSTREAM*.

IOSTREAM * PL acquire stream(IOSTREAM *s)
Obtain ownership of s and return s. The application must call PL release stream() when
done. Only one thread can own a stream and this call blocks if some other thread owns the
stream. This function may be called multiple times by the same thread (recursive lock). Note
that PL get stream() also acquires ownership.

32On Windows the output is also emitted using OutputDebugString().

SWI-Prolog 9.3 Reference Manual

12.9. FOREIGN ACCESS TO PROLOG IO STREAMS 529

int PL release stream(IOSTREAM *s)
Give up ownership acquired using PL acquire stream() or PL get stream(). If the
stream is an an error state, return FALSE with an exception. Otherwise return TRUE.

In general, stream functions do not set any Prolog error state; that is done by
PL release stream(). Once a stream is in an error state, all subsequent functions act as
no-ops (returning -1) unless Sclearerr() is called. Sferror() may be used to check
whether a stream is in an error condition. This error may be turned into a Prolog excep-
tion by calling PL acquire stream() followed by PL release stream(). In this case,
PL release stream() will set the Prolog exception and return FALSE.

Below is an example that writes “Hello World” to a stream provided by Prolog. Note that
PL release stream() raises an exception if the Sfprintf() failed and (thus) left the stream
in an error state.

static foreign_t
hello_world(term_t to)
{ IOSTREAM *s;

if (PL_get_stream(to, &s, SIO_OUTPUT))
{ Sfprintf(s, "Hello World!\n");

return PL_release_stream(s);
}

return FALSE;
}

... // fragment from install function
PL_register_foreign("hello world", 1, hello_world, 0);

12.9.2 Creating an IO stream

A new stream is created using Snew(). Before we can create a stream we must create a function
block of type IOFUNCTIONS that provide function pointers for the basic operations on the stream.
This type is defined as follows:

typedef struct io_functions
{ Sread_function read; /* fill the buffer */
Swrite_function write; /* empty the buffer */
Sseek_function seek; /* seek to position */
Sclose_function close; /* close stream */
Scontrol_function control; /* Info/control */
Sseek64_function seek64; /* seek to position (large files) */

} IOFUNCTIONS;

SWI-Prolog 9.3 Reference Manual

530 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

ssize t (*Sread function)(void *handle, char *buf, size t bufsize)
Read new data into buf that has size bufsize, return the number of bytes read or -1. Note that
this is the same interface as the POSIX read() API. See section 12.9.4 for raising errors.

ssize t (*Swrite function)(void *handle, char *buf, size t bufsize)
Write the bytes from buf with contains bufsize bytes and return the number of bytes written or
-1. The number of bytes written may be less than bufsize. Bytes that were not written remain
in the stream’s output buffer. Note that this is the same interface as the POSIX write() API.
See section 12.9.4 for raising errors.

long (*Sseek function)(void *handle, long pos, int whence)
int64 t (*Sseek64 function)(void *handle, int64 t pos, int whence)

Reposition the file pointer. These functions may be NULL if repositioning is not possible on
this type or they may return -1 and set errno to EPIPE if the pointer cannot be repositioned
on this instance. The function returns the new file position. See Sseek() for details on how
repositioning is implemented. See section 12.9.4 for raising errors.

int (*Sclose function)(void *handle)
Close the stream. This is used by Sclose(). Note that buffered output is first written using
the Swrite function(). See section 12.9.4 for raising errors.

int (*Scontrol function)(void *handle, int action, void *arg)
Obtain information about the stream or modify the stream. The function should return 0 on
success and -1 on failure. If some action is not implemented the function should return -1;

SIO GETPENDING, size t*
Return the number of bytes that may be written without blocking. Used by Spending().

SIO LASTERROR, char*
Called after an error is raised on a stream. May return a C string that sets error details
using Sseterr().

SIO SETENCODING, IOENC*
Called by Ssetenc() to change the encoding of the stream. If the call does not return 0
the encoding is not changed.

SIO FLUSHOUTPUT, NULL
Called by Sflush() after flushing the stream’s output buffer. Note that this is only
called on an explicit flush using Sflush() or flush output/1. An implicit flush
because the output buffer is full does not call this hook.

SIO GETSIZE, int64 t*
Get the size of the underlying object in bytes. Used by Ssize().

SIO GETFILENO, int*
If the stream is associated with an OS file handle, return this handle. Used by
Sfileno().

SIO GETWINSOCK, SOCKET*
Windows only. If the stream is associated to a Windows socket return this handle. Used
by Swinsock().

Given an IOFUNCTIONS block we can create a new stream from a handle using Snew():

SWI-Prolog 9.3 Reference Manual

12.9. FOREIGN ACCESS TO PROLOG IO STREAMS 531

IOSTREAM* Snew(void *handle, int flags, IOFUNCTIONS *functions)
Create an IOSTREAM* from a handle, flags and a block of callback functions. The flags
argument is a bitwise or of SIO * flags. Flags that control the creation are:

SIO INPUT
SIO OUTPUT

One of these flags mut be present to indicate whether this is an input or output stream.

SIO NBUF
SIO LBUF
SIO FBUF

One of these flags must be present to select the buffering as one of unbuffered
(SIO NBUF), line buffered (SIO LBUF) or fully buffered (SIO FBUF)

SIO TEXT
If given, this is a text stream and the encoding is set to the default encoding (see the
Prolog flag encoding). Otherwise this is a binary stream and the encoding is set to
ENC OCTET.

SIO RECORDPOS
If given, enable position maintenance on the stream. This is used by Stell(),
Sseek(), stream property/2 using the position property and related predi-
cates.

SIO NOMUTEX
Used internally to create a stream that cannot be owned or locked.

If the stream is associated with an OS file handle the system initializes the SIO ISATTY flag
(on POSIX systems) and if possible tells the OS not to inherit this stream to child processes.

The symbol Sfilefunctions is a IOFUNCTIONS struct that contains the callbacks for
accessing a regular file. After opening an file using the POSIX open() API we can create a
stream to this file using Snew():

int fno = open(path, O_RDONLY);
IOSTREAM *s;

if (fno >= 0)
s = Snew((void*)fno,

SIO_INPUT|SIO_FBUF|SIO_RECORDPOS|SIO_TEXT,
&Sfilefunctions);

...

Snew() can only fail if there is not enough memory. In that case the return value is NULL and
errno is set to ENOMEM.

IOSTREAM* Sopen pipe(const char *command, const char *type)
Start a process from command and connect the input or output to the returned stream. This
wraps the POSIX popen() API. The type string starts with r or w and may be followed by b
to create a binary stream. The default is to create a text stream using the platform conventions
and locale.

SWI-Prolog 9.3 Reference Manual

532 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

IOSTREAM* Sopenmem(char **buffer, size t *sizep, const char *mode)
Open a memory area as a stream. Output streams are automatically resized using realloc()
if *size = 0 or the stream is opened with mode "wa". If the buffer is allocated or enlarged, this
is achieved using malloc() or realloc(). In this case the returned buffer should be freed
by the caller when done. Example:

{ char buf[1024]; // don’t allocate for small stuff
char *s = buf;
IOSTREAM *fd;
size_t size = sizeof(buf);

fd = Sopenmem(&s, &size, "w");
...
Sclose(fd);
...
if (s != buf) // apparently moved

Sfree(s);
}

The mode is "r" or "w". The mode ”rF” calls PL free(buffer) when closed.

Note: Its is not allowed to access streams created with this call from multiple threads. This is
ok for all usage inside Prolog itself. This call is intended to use Sfprintf() and other output
functions to create strings.

void Sfree(void *ptr)
This function must be used to free objects that are allocated by the stream interface. Currently
this only applies to strings allocated by Sopenmem().

A stream can be made accessible from Prolog using PL unify stream():

int PL unify stream(term t t, IOSTREAM *s)
Unify t with a blob that points at s. Note that a blob provides a unique and reliable reference to
a stream. Blobs are subject to atom garbage collection. If an open stream is garbage collected
the behaviour depends on the Prolog flag agc close streams. See also Sgcclose().

12.9.3 Interacting with foreign streams

int Sset timeout(IOSTREAM *s, int milliseconds)
Set the timeout on an input stream to milliseconds. If this value is non-negative the the poll()
or select() API is used to wait until input is available. If no input is available within the
specified time an error is raised on the stream.

int Sunit size()
Returns the size of a code unit in bytes depending on the stream’s encoding. This returns
2 for the encodings ENC UNICODE BE and ENC UNICODE LE, sizeof(wchar t) for
ENC WCHAR and 1 for all other encodings (including multibyte encodings such as ENC UTF8.

SWI-Prolog 9.3 Reference Manual

12.9. FOREIGN ACCESS TO PROLOG IO STREAMS 533

int Sputc(int c, IOSTREAM *s)
Emit a byte to s. Flushes the buffer on \n when in SIO LBUF buffering mode and updates the
stream position information if enabled (SIO RECORDPOS). Returns 0 on success, -1 on error.

int Sgetc(IOSTREAM *s)
Read a byte from s. Fills the input buffer if buffering is enabled and the buffer is empty.
Updates the stream position information if enabled (SIO RECORDPOS). Returns -1 on end of
file or error. Use Sferror() or Sfeof() to distinguish end of file from an error. This is a
C macro.

int Sfgetc(IOSTREAM *s)
Function equivalent to Sgetc().

int Sungetc(int c, IOSTREAM *s)
Put a byte back into the input buffer. Returns -1 if this is not possible. Deprecated. New code
should use Speekcode() because that reliably maintains the position information on the
stream.

int Sputcode(int c, IOSTREAM *s)
Emit a Unicode code point to s. This function also performs newline encoding (see sec-
tion 12.9.6). If the encoding of s cannot represent c, the behaviour depends on the the following
flags. Only one of these flags may be enabled. If none of these flags is enabled an error is
raised and the function returns -1.

SIO REPXML
Emit as XML character entity, e.g. ႒

SIO REPPL
Emit as ISO escape, e.g., \x4242\

SIO REPPLU
Emit as Unicode escape, e.g., \u4242 or \U42424242

Updates the stream position information if enabled (SIO RECORDPOS)

int Sgetcode(IOSTREAM *s)
Read a Unicode code point from s. If it detects an invalid multibyte character a warning is
emitted and the code point 0xfffd is returned. Other errors and end-of-file return -1; Use
Sferror() or Sfeof() to distinguish end of file from an error.

int Speekcode(IOSTREAM *s)
As Sgetcode(), but leaves the character in the input buffer and does not update the stream
position. Returns -1 if the stream is not buffered (SIO NBUF).

int Sputw(int w, IOSTREAM *s)
int Sgetw(IOSTREAM *s)

Reads/writes an integer in native byte order. Deprecated.

size t Sfread(void *data, size t size, size t elems, IOSTREAM *s)
size t Sfwrite(const void *data, size t size, size t elems, IOSTREAM *s)

Emulations of the POSIX fread() and fwrite() calls for Prolog streams. These functions

SWI-Prolog 9.3 Reference Manual

534 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

read or write elems objects of size size and return the number of objects successfully read or
written. Data exchange is binary (even if the stream is in text mode) and unlike read() and
write(), these functions keep reading or writing until end-of-file (for Sfread()) or an
error.

int Sfeof(IOSTREAM *s)
Returns non-zero if the stream is at the end. It performs the following checks: (1) test the
SIO FEOF flag, (2) test whether the buffer is non-empty, (3) fill the buffer and return non-zero
if the Sread function() returned 0 (zero).

int Sfpasteof(IOSTREAM *s)
Returns non-zero when a read operation was performed after signalling end-of-file. On
other words, reaching end-of-file first triggers Sfeof() and after another read triggers
Sfpasteof().

int Ssetlocale(IOSTREAM *s, struct PL locale *new loc, struct PL locale **old loc)
Change the locale associated with a stream. The current system does not provide a public C
API for dealing with Prolog locale objects. See section 4.23.

int Sflush(IOSTREAM *s)
Flush buffered output, returning 0 on success and -1 after a (write) error occurred. Calls
Scontrol function() using the action SIO FLUSHOUTPUT after the buffer was
successfully written.

int64 t Ssize(IOSTREAM *s)
Returns the size in bytes of the object associated to the stream or -1 if this is not known.

int Sseek(IOSTREAM *s, long pos, int whence)
Deprecated - use Sseek64() instead because some platforms define long as 32-bits.

int Sseek64(IOSTREAM *s, int64 t pos, int whence)
Reposition the file pointer in the object associated to s, returning 0 on success and -1 oth-
erwise. If the stream is buffered and position information is maintained these functions
readjust the buffer information if possible. Otherwise they call Sseek64 function() or
Sseek function() as a fallback iff pos can be represented as a C long. Whence is one
of SIO SEEK SET, SIO SEEK CUR or SIO SEEK END, seeking relative to the start, current
position or end.

long Stell(IOSTREAM *s)
Deprecated - use Stell64() instead because some platforms define long as 32-bits.

int64 t Stell64(IOSTREAM *s)
Return the current position in the stream. This is obtained from the recorded position or based
on information from the seek handlers, adjusted with the buffer information.

int Sclose(IOSTREAM *s)
Close the stream. This first locks the stream (see PL acquire stream()). When successful
it flushes pending output and calls the Sclose function() hook. Finally, the stream is
unlocked and all memory associated to the stream is released. On success, the function returns
0. On failure a Prolog exception is raised and the return value is -1. Regardless of the return
value, s becomes invalid after completion of Sclose(). See also Sgcclose().

SWI-Prolog 9.3 Reference Manual

12.9. FOREIGN ACCESS TO PROLOG IO STREAMS 535

int Sgcclose(IOSTREAM *s, int flags)
As Sclose(), but intended to be used from the atom garbage collector if a stream is closed
because it is garbage. The SWI-Prolog atom garbage collector normally runs in a separate
thread and thus may be unable to obtain a lock on s if some thread lost access to the stream
while it is locked. For this situation flags may be SIO CLOSE TRYLOCK which causes
Sgcclose() to return -1 with errno set to EDEADLK if the stream is locked. Alternatively,
using SIO CLOSE FORCE the stream is closed and released without gaining a lock. This
should be safe because the stream is garbage and thus no thread can use the lock.

In addition, Sgcclose() never raises a Prolog exception because Prolog interaction is not
allowed from the blob release hook and there is no meaningful way to raise a Prolog exception
from this context.

char* Sfgets(char *buf, int n, IOSTREAM *s)
Read a line of input as a sequence of bytes. The buf is n bytes long. On success, buf is returned
and contains a 0-terminated C string that ends with a \n character. On end-of-file or an error,
NULL is returned. If the input line is longer that n bytes buf is not 0-terminated.

int Sgets(char *buf)
Shorthand for Sfgets(buf, Slinesize, Sinput). Deletes the terminating \n character. Slinesize
is a global variable that defines the length of the input buffer. Deprecated.

int Sread pending(IOSTREAM *s, char *buf, size t limit, int flags)
Return the data buffered on an input stream. If flags includes SIO RP BLOCK, fill the buffer
(possibly blocking) if the buffer is empty. Update the stream position information unless flags
include SIO RP NOPOS. This function effectively provides functionality similar to POSIX
read() on a stream. This function is used by read pending codes/3.

size t Spending(IOSTREAM *s)
Return the number of bytes that can be read from s without blocking. If there is buffered input,
this is the number of bytes buffered. Otherwise it is the result of the Scontrol function()
using the action SIO GETPENDING.

int Sfputs(const char *q, IOSTREAM *s)
Emit a 0-terminated C string. The input string q is handled as a sequence of unsigned characters
(code points 1 . . . 255.

int Sputs(const char *q)
Equivalent to Sfputs(q, Soutput).

int Sfprintf(IOSTREAM *s, const char *fm, ...)
Similar to POSIX fprintf(). This function largely accepts the same % escape sequences.
The % character is followed by numeric arguments and modifier characters. The generic format
of this is described by the regular expression [+-0 #]*(\d*|*)(.(\d*|*))?. Here,
+ implies right alignment, - left alignment, 0 0-padding and, a space white-space padding and
modified output. The two optional numerical arguments are separated by a full stop and may
be * to get them from the argument list. The first numerical argument specifies the field width
and the second the precision for floating point numbers.

SWI-Prolog 9.3 Reference Manual

536 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

This sequence is followed by optional type information. For integers this is one of l (long),
ll (long long) or z (size t). For strings this is one of L (ISO Latin 1), U (UTF-8) or W
(wchar t*).

Finally we come to the format specifier. This is one of

% Emit the % character itself.

c Emit a Unicode code point.

p Emit a pointer.

d

i Emit a a signed integer as decimal. The l (long), ll (long long) or z (size t) denote
the size.

o

u

x

X Emit a a unsigned integer as octal, decimal or hexadecimal.

f

e

E

g

G Emit a double.

s Emit a 0-terminated string.

Unlike the POSIX fprintf(), this function, and the related functions (Svprintf(), etc.)
returns the number of characters written. Due to multibyte encodings the number of bytes writ-
ten can be more. On error, it returns a negative value; in some cases there is extra information
(e.g., in errno) but it cannot be relied on.

Each call to Sfprintf() is atomic in the sense that another thread that calls Sfprintf()
on the same stream will block. If you wish to do a series of print statements without any
other thread interleaving, you should call PL acquire stream() and use its returned
IOSTREAM* value, then call PL release stream() at the end of the print statements.

int SfprintfX(IOSTREAM *s, const char *fm, ...)
Same as Sfprintf() but doesn’t have the format-checking attribute, which can trigger
compiler warnings if the format does not match the arguments. This is intended for formats
that include extended format specifiers such as "%Ws" or "%Us".

int Sprintf(const char *fm, ...)
Similar to Sfprintf(), printing to Soutput

int Svprintf(IOSTREAM *s, const char *fm, va list args)
Variadic argument list version of Sfprintf().

int Ssprintf(char *buf, const char *fm, ...)
Print to a C string. Deprecated. Use Ssnprintf() instead.

SWI-Prolog 9.3 Reference Manual

12.9. FOREIGN ACCESS TO PROLOG IO STREAMS 537

int Ssnprintf(char *buf, size t size, const char *fm, ...)
Print to a C string, emitting a maximum of size bytes while ensuring buf is 0-terminated. The
buf is written using UTF-8 encoding. Unlike snprintf(), the return value is the number of
logical code points written rather than the number of bytes and if the buffer is too small, -1 is
returned rather than the number of bytes that would be written. Future versions may improve
compatibility with the POSIX functions.

int SsnprintfX(char *buf, size t size, const char *fm, ...)
Same as Ssnprintf() but doesn’t have the format-checking attribute. This is intended for
formats that include extended format specifiers such as "%Ws" or "%Us".

int Svsprintf(char *buf, const char *fm, va list args)
Variadic argument list version of Ssprintf(). Deprecated. Use Svsnprintf() instead.

int Svsnprintf(char *buf, size t size, const char *fm, va list args)
Variadic argument list version of Ssnprintf().

int Sdprintf(const char *fm, ...)
Print to Serror. This function should be used for printing debug output from foreign code.

int SdprintfX(const char *fm, ...)
Same as Sdprintf() but doesn’t have the format-checking attribute. This is intended for
formats that include extended format specifiers such as "%Ws" and "%Us".

int Svdprintf(const char *fm, va list args)
Variadic argument list version of Sdprintf().

int Slock(IOSTREAM *s)
int StryLock(IOSTREAM *s)
int Sunlock(IOSTREAM *s)

Low level versions that perform only the (un)locking part of PL acquire stream() and
PL release stream().

int Sfileno(IOSTREAM *s)
If the stream is associated to a POSIX file handle, return this handle. Returns -1 otherwise.

SOCKET Swinsock(IOSTREAM *s)
Windows only. If the stream is associated to a Windows socket handle, returns this handle.
Otherwise return INVALID SOCKET

int Sclosehook(void (*hook)(IOSTREAM *s))
Register a hook function to be called by Sclose() just before the stream is deallocated. This
is used internally to update the Prolog administration of open streams on Sclose().

int Sset filter(IOSTREAM *parent, IOSTREAM *filter)
Register filter as a stream that reads from or writes to the stream parent.

void Ssetbuffer(IOSTREAM *s, char *buf, size t size)
Set the input or output buffer for s to size. The buf argument is either NULL, asking the system
to allocate a buffer or points at a buffer of (at least) the indicated size long. The default buffer
size is defined by the C macro SIO BUFSIZE

SWI-Prolog 9.3 Reference Manual

538 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

Writing Prolog terms to foreign streams

int PL write term(IOSTREAM *s, term t term, int precedence, int flags)
Write term to s. precedence is the initial operator precedence, typically 1200. flags is a bitwise
or of the constants below. These flags map to options for write term/2.

PL WRT QUOTED

PL WRT IGNOREOPS

PL WRT NUMBERVARS

PL WRT PORTRAY

PL WRT CHARESCAPES
PL WRT NO CHARESCAPES

The PL WRT NO CHARESCAPES does not map to a write term/2 option. If one of
PL WRT CHARESCAPES or PL WRT NO CHARESCAPES is specified, character escapes
are (not) applied. If neither is specified the default depends, like for write/1, on the
character escapes flag on the module user.33

PL WRT BACKQUOTED STRING

PL WRT ATTVAR IGNORE

PL WRT ATTVAR DOTS

PL WRT ATTVAR WRITE

PL WRT ATTVAR PORTRAY

PL WRT BLOB PORTRAY

PL WRT NO CYCLES

PL WRT NEWLINE

PL WRT VARNAMES

PL WRT BACKQUOTE IS SYMBOL

PL WRT DOTLISTS

33Prior to version 9.1.6 the default (no flag) was to escape the quotes and the backslash (\).

SWI-Prolog 9.3 Reference Manual

12.9. FOREIGN ACCESS TO PROLOG IO STREAMS 539

PL WRT BRACETERMS

PL WRT NODICT

PL WRT NODOTINATOM

PL WRT NO LISTS

PL WRT RAT NATURAL

PL WRT CHARESCAPES UNICODE

PL WRT QUOTE NON ASCII

PL WRT PARTIAL

For example, to print a term to user error as the toplevel does, use

PL_write_term(Suser_error, t, 1200,
PL_WRT_QUOTED|PL_WRT_PORTRAY|
PL_WRT_VARNAMES|PL_WRT_NEWLINE)

12.9.4 Foreign stream error handling

int Sferror(IOSTREAM *s)
Returns TRUE if the stream is in an error condition, FALSE if the stream is valid and in normal
condition and -1 if the stream is invalid.

void Sclearerr(IOSTREAM *s)
Clear the error state of a stream. This includes the end-of-file state, pending warnings and
errors and timeout.

int Sseterr(IOSTREAM *s, int which, const char *message)
Set an error or warning state on the stream. The which argument is one of SIO WARN or
SIO FERR. This causes PL release stream() to print a message (SIO WARN) or raise
an exception (SIO FERR).

int Sset exception(IOSTREAM *s, term t ex)
Associate a Prolog exception term with the stream or clear the associated exception if ex is
0 and set/clear the SIO FERR condition on the stream. If an exception is assocated
PL release stream() raises this exception.

SWI-Prolog 9.3 Reference Manual

540 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

12.9.5 Foreign stream encoding

IOSTREAM has a field encoding that is managed at initialization from SIO TEXT. The available
encodings are defined as a C enum as below.

typedef enum
{ ENC_UNKNOWN = 0, /* invalid/unknown */
ENC_OCTET, /* raw 8 bit input */
ENC_ASCII, /* US-ASCII (0..127) */
ENC_ISO_LATIN_1, /* ISO Latin-1 (0..256) */
ENC_ANSI, /* default (multibyte) codepage */
ENC_UTF8,
ENC_UNICODE_BE, /* big endian unicode file */
ENC_UNICODE_LE, /* little endian unicode file */
ENC_WCHAR /* wchar_t */

} IOENC;

Binary streams always have the encoding ENC OCTET. The default encoding of a text stream depends
on the Prolog flag encoding. The encoding is used by all functions that perform text I/O on a stream.
The encoding can be changed at any moment using Ssetenc()which is available from Prolog using
the set stream/2 encoding(Encoding) property. Functions that explicitly manage the encoding
are:

int Ssetenc(IOSTREAM *s, IOENC new enc, IOENC *old enc)
Set the encoding for s to new enc and, if old enc is not NULL, return the old encoding. This
function may fail, returning -1 if the Scontrol function() of the stream returns -1 on the
SIO SETENCODING request. On success it returns 0. If new enc is ENC OCTET the stream is
switched to binary mode. Otherwise text mode is enabled.

int ScheckBOM(IOSTREAM *s)
This function may be called on a buffered input stream immediately after opening the stream.
If the stream starts with a known Byte Order Mark (BOM) the encoding is set accordingly
and the flag SIO BOM is set on the stream. Possibly resulting encodings are ENC UTF8,
ENC UNICODE BE and ENC UNICODE LE.

int SwriteBOM(IOSTREAM *s)
This function writes a Byte Order Mark (BOM) to s and should be called immediately after
opening a stream for writing. If the encoding is one of ENC UTF8, ENC UNICODE BE or
ENC UNICODE LE it writes the code point \ufeff (a zero-width white space) to the stream
in the current encoding and sets the SIO BOM flag on the stream.

int Scanrepresent(int c, IOSTREAM *s)
Returns 0 if the encoding of s can represent the code point c and -1 otherwise.

12.9.6 Foreign stream line endings

Text streams have a field newline that controls the handling of the newline convention. Note that
inside Prolog all lines end with a single newline (\u000a, \n) code point. The values are described

SWI-Prolog 9.3 Reference Manual

12.9. FOREIGN ACCESS TO PROLOG IO STREAMS 541

below. The default depends on the OS and can be manipulated using the newline(Mode) property
of set stream/2.

SIO NL DETECT
This mode may be enabled on an input stream. It causes the stream to read up to the first
newline to set the newline mode accordingly.

SIO NL POSIX
Do not do any translation on input or output.

SIO NL DOS
Emit a newline (\n) as \r\n. Discard \r from the input.34

12.9.7 Foreign stream position information

The IOSTREAM has a field position that points at a structure of type IOPOS. This structure is
defined as below.

typedef struct io_position
{ int64_t byteno; /* byte-position in file */
int64_t charno; /* character position in file */
int lineno; /* lineno in file */
int linepos; /* position in line */
intptr_t reserved[2]; /* future extensions */

} IOPOS;

If a stream is created using the flag SIO RECORDPOS the IO functions maintain the position infor-
mation. Note that, supporting the ISO stream position data (see stream property/2), both the
byte and character position is maintained. These may differ if the stream uses a multibyte encoding.

The linepos is updated as follows: \n and \r reset the position to 0 (zero). The backspace
(\b) decrements the position if it is positive. The tab (\t) tabs to the next multiple of 8. Any other
character increments the line position by one. Future versions may change that, notably the tab width
might no longer be hard coded.

12.9.8 Support functions for blob save/load

The functions in this sections are intended to support blobs to define save() and load() functions
so they can be part of a saved state or .qlf file. The matching pair of functions is guaranteed to
give the same result, regardless of byte ordering (big or little endian). The user must not make any
assumptions on the exact data format used for storing the data. The atom read/write functions can
only be used from the blob callback functions.

For saving an uninterpreted array of bytes, it is suggested that the length is output as a size t
value using PL qlf put uint32() followed by the bytes using Sfwrite(); and for loading,
the length is read using PL qlf get uint32(), a buffer is allocated, and the bytes are read using
Sfread().

34The current implementation does not check that the character is followed by \n.

SWI-Prolog 9.3 Reference Manual

542 CHAPTER 12. FOREIGN LANGUAGE INTERFACE

int PL qlf put int64(int64 t i, IOSTREAM *s)
int PL qlf put int32(int32 t i, IOSTREAM *s)
int PL qlf put uint32(uint32 i, IOSTREAM *s)

Write integers of several sizes. Signed integers are written in zigzag encoding. For unsigned
integers we only write the non-zero bytes. The result is compact and the same for big or little
endian.

int PL qlf put double(double f, IOSTREAM *s)
Write double as 8 byte big endian.

int PL qlf put atom(atom t a, IOSTREAM *s)
Write an atom. The atom may be a blob. Note that this function may only be used from a blob
save() function. Calling from another context results in a fatal error.

int PL qlf get int64(IOSTREAM *s, int64 t *ip)
int PL qlf get int32(IOSTREAM *s, int32 t *ip)
int PL qlf get uint32(IOSTREAM *s, uint32 t *ip)
int PL qlf get double(IOSTREAM *s, double *fp)

Counterparts of corresponding PL qlf put *() functions.

int PL qlf get atom(IOSTREAM *s, atom t *ap)
Counterpart of PL qlf put atom(). Again, this may only be used in the context of a blob
load() function.

SWI-Prolog 9.3 Reference Manual

Using SWI-Prolog in your
browser (WASM) 13
The SWI-Prolog WebAssembly (WASM) port lets you run SWI-Prolog directly in your browser. This
is a fairly comprehensive version of SWI-Prolog that supports the core system as well as a good
selection of packages, including many of the foreign packages.

The WASM port uses Emscripten to compile the SWI-Prolog source code to WASM, which runs
on a virtual machine that is provided by almost all modern browsers.

To build the SWI-Prolog WASM port, see the building instructions on the wiki page

13.1 Loading and initializing Prolog

The WASM SWI-Prolog distribution consists of three files:

swipl-web.js This is the main file that must be loaded using a <script> element. It defines
a global function SWIPL that loads the other components and gives access to the SWI-Prolog
system.

swipl-web.wasm This is the actual WASM binary containing the compiled C code of the core,
foreign packages and required libraries.

swipl-web.data This data contains a file system that is mounted on /swipl. It contains the
Prolog startup code and libraries.

Below is the skeleton for getting access to the Prolog system. We first define the global Prolog
and Module objects. The options object provides module configuration options. SWIPL() returns
a Promise that resolves when the WASM system is loaded and initialized. It returns the WASM
module, which contains Module.prolog to an instance of the class Prolog that provides a high
level interface from JavaScript.

let Prolog;
let Module;
const options = {
// Provide options for customization

};

SWIPL(options).then((module) =>
{ Module = module;
Prolog = Module.prolog;

// Start using Prolog
};

SWI-Prolog 9.3 Reference Manual

https://emscripten.org/
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650

544 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

The options object defines customization properties for the Emscripten module as well as for Prolog.
We highlight the important properties below.

arguments
An Array of String objects that define the commandline arguments for initializing Prolog.
argv[0] is not part of this array. Few arguments are useful in this context. The -q may be
used to suppress the Prolog banner.

locateFile
A Function that is used to translate swipl-web.wasm and swipl-web.data into
a (relative) URL. Default is to find these resources in the same directory of the server. For
example, to load swipl-web.wasm and swipl-web.data from /wasm use

var Module = {
...,
locateFile: (file) => ’/wasm/’ + file

}

on output
A Function that is called when Prolog writes to user output or user error. It is
passed two arguments: a String containing the text to emit and one of the constant
strings "stdout" or "stderr" to indicate the output stream. This uses the Emscripten
Module.FS.init option to rebind the output and error streams, providing behaviour that
is similar to the Emscripten properties print and printErr. However, our passed string
contains the newline character and the handler is called when Prolog flushes the output.
Normally the callback should insert a element that has (at least) the following style:

.stderr, .stdout {
white-space: pre-wrap;
font-family: monospace;
overflow-wrap: anywhere;

}

Here is a simple implementation of print(), assuming the document has a
<div id="output"> node.

function print(line, cls)
{ const output = document.getElementById("output");

const node = document.createElement(’span’);

node.className = cls;
node.textContent = line;
output.appendChild(node);

};

SWI-Prolog 9.3 Reference Manual

13.1. LOADING AND INITIALIZING PROLOG 545

13.1.1 Loading Prolog files

The WASM build ships with the Prolog library and thus Prolog libraries can be loaded as normal using
use module/1, etc., for example, we can include the lists library using this directive. Note that
the normal autoloading of library code works in the WASM version.

:- use_module(library(lists)).

When Prolog is in asynchronous mode, i.e., called through Prolog.forEach(), we can also load
code from a URL. For example, we can load the CHAT80 demo program directly from GitHub using1

?- consult(’https://raw.githubusercontent.com/JanWielemaker/\c
chat80/master/prolog/chat80.pl’).

Larger files can be loaded as .qlf files. See section 4.3.3 and qcompile/2. Notably we can create
a single qlf file from an application using the include(user) option. Below we create a .qlf file
from CHAT80. The resulting chat80.qlf can be loaded from a URL using consult/1 as above.

?- qcompile(’chat80.pl’, [include(user)]).

There are three ways to load Prolog code from JavaScript: (1) loading from a string, (2) loading from
<script> elements and (3) loading from URL. Note that all the loading methods return a Promise
that is resolved when loading the data is completed.

Promise Prolog.load string(String, Id)
Load Prolog code from String, pretending it was loaded from the file Id. The Id is optional.
When omitted it generates /string/1, /string/2,

Promise Prolog.load scripts()
Load all scripts from the current document that have their type set to text/prolog. The
file reference for the loaded script is /script/Id, where Id is derived from (1) the id of
the script, (2) the name of the script or (3) being the nth Prolog script in the document. When
resolved, the promise returns an array with the names of the loaded scripts.

Promise Prolog.consult(...Sources[, Options])
Load the given Sources. Each source is either a file from the local file system, e.g.,
library(lists) or a URL. The sources are downloaded and processed sequentially. This
uses Prolog.forEach() calling load files/1. The returned Promise returns 1 on
success. If the last argument is an object, it is treated as options. Options processed:

module: module
Defines the module into which a non-module file is loaded or into which the exports of a
module file are imported. Default is "user".

engine: engine
If true, run the compilation in a temporary engine. This keeps the main Prolog engine
available for other tasks while the file is being loaded.

1The \c continues the quoted atom from the next line after removing leading white space.

SWI-Prolog 9.3 Reference Manual

https://github.com/JanWielemaker/chat80
https://github.com/JanWielemaker/chat80

546 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

13.2 Calling Prolog from JavaScript

The Prolog class provides several methods for calling Prolog from JavaScript.

Boolean Prolog.call(Goal)
Processes a Prolog goal represented as a String and returns true or false. This simple
calling pattern is intended for trivial goals such as setting a Prolog flag. For example, the call
below limits the Prolog stacks to 10Mb.

Prolog.call("set_prolog_flag(stack_limit, 10 000 000)");

Query Prolog.query(Goal)
Query Prolog.query(Goal, Input)
Query Prolog.query(Goal, Input, Options)

Create a Prolog query from a String, optionally binding Prolog variables embedded in Goal
from properties of the Object Input. The returned object is an instance of class Query.
This instance can be used as a JavaScript iterator. The value returned in each iteration is an
Object with properties for each variable in Goal that is not in Input and does not start with an
underscore. For example, we can iterate over the members of a list like below. Further details
on class Query are provided in section 13.2.1. The translation of data between Prolog and
JavaScript is described in section 13.2.3.

for(let r of Prolog.query("member(Elem,List)",
{List: ["aap", "noot", "mies"]}))

{ console.log(r.Elem);
}

This interface is also practical for calling (fast) Prolog predicates to compute a single answer
from an input using the Query.once() method. Assuming a Prolog predicate fib/2 that
computes the nth Fibonacci number, we can call this using the code below. Note that if the
fib/2 fails or raises an exception the object returned by Query.once() does not contain
the Out key and thus our function returns undefined.

function fib(in, out)
{ return Prolog.query("fib(In,Out)", {In:in}).once().Out;
}

The .query() method is indented for fast queries that do not require the yield mechanism,
i.e., the execution should not require asynchronous operations and the browser is not responsive
during the execution. Use Prolog.forEach() for asynchronous queries.

The optional Options parameter defines the following options

engine: engine
If true, run the query in a temporary engine. Note that JavaScript can only interact with
the innermost query of an engine. By using a new engine we can interact with multiple
queries, using them as coroutines. Prolog.Engine() for details.

SWI-Prolog 9.3 Reference Manual

13.2. CALLING PROLOG FROM JAVASCRIPT 547

string: string
Prolog type to use for JavaScript strings when converting the input. Default is string.
Alternatively one may use atom.

nodebug: nodebug
If set to true, the execution cannot be seen in the debugger.

Promise Prolog.forEach(Goal, [Input], [OnAnswer], [Options])
This method executes Goal asynchronously. This implies that Goal may execute asynchronous
operations and the browser remains responsive while executing Goal. Goal and Input are
processed as with Prolog.query(). If OnAnswer is provided, this Function is called
with a Object that holds the bindings for the output arguments of Goal for each answer.
Options supports the following options

engine: engine
If true, create an engine that will be destroyed when the query completes.

heartbeat: heartbeat
Sets the heartbeat rate. This is the number of Prolog inferences executed before yielding.
The default is 10,000. Lower values improve interactive behaviour but lower Prolog
performance.

All default parameters may be omitted. A JavaScript type check is used to discover whether
the Input or OnAnswer parameter is omitted. Use an empty Input to specify Options without
inputs, e.g. forEach(goal, {}, {engine:true})

The returned Promise is resolved when the query completes. The value passed to the
.then() method of the Promise is the number of answers if OnAnswer is provided or
an Array of answers if OnAnswer is omitted. If Goal raises an exception the Promise is
rejected.

Multiple calls to Prolog can be activated on the same engine at any time. Prolog processes such
queries in LIFO (Last In, First Out) mode. If queries need to be processed sequentially use
JavaScript await or the Promise.finally() method to wait for completion. Multiple
Prolog.forEach() queries that run in separate engines act as cooperative threads, i.e., all
make progress. For example, a goal can be started to run as cooperative thread using:

setTimeout(async () => {
await Prolog.forEach(goal, input, onanswer,

{engine:true});
});

13.2.1 The JavaScript class Query

The method Prolog.query() returns an instance of the JavaScript class Query that may be used
to explore the solutions of the query. The Query class implements the JavaScript iterator protocol.

Object Query.next()
Implements the iterator protocol. This returns an object holding the keys done and
value. If exception handling is enabled it returns an object {done:true, error:true,
message:String}.

SWI-Prolog 9.3 Reference Manual

548 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

Object Query.once()
Close the query after the first answer. Returns the .value of the object returned by .next()
on success and the complete object on failure or error. In addition, on a logical result (no error),
a field success is added with a boolean value. Thus, the return value may contain these keys:

{Bindings}
Query succeeded. Objects holds a key for each output variable. In addition the success
key is set to true.

{success:false}
Query failed. Note that the binding keys all start with an uppercase letter and this is thus
not ambiguous.

{error:true, message:String}
Query raised an exception.

Object Query.close()
Closes the query. This can be used inside the iterator to stop further enumeration.

13.2.2 Using engines

The WASM version of SWI-Prolog supports engines. The initial engine is called main. Additional
engines can be used to enumerate answers of multiple open queries as well as for implementing corou-
tines. Combined with JavaScript async functions, engines can provide cooperative multi-threading.
For example, to enumerate the answers of two queries we may use the following code

const e1 = new Prolog.Engine({auto_close:true});
const e2 = new Prolog.Engine({auto_close:true});

const q1 = e1.query(Query1); // see Prolog.query()
const q2 = e2.query(Query2);

try
{ for(;;)

{ const n1 = q1.next();
const n2 = q2.next();
if (n1.done && n2.done)

break;
// Handle answers

}
} finally
{ q1.close(); // also closes e1

q2.close();
}
...

Engines can also be used to create a cooperative thread. The example below creates a Prolog task that
prints the numbers 1..20 to the console, one number every second.

SWI-Prolog 9.3 Reference Manual

13.2. CALLING PROLOG FROM JAVASCRIPT 549

...
setTimeout(async () => {

const e = new Prolog.Engine({auto_close:true});
await e.forEach("between(1,20,X),sleep(1)",

(a) => console.out(a.X));
});

Engine Prolog.Engine([name], [options])
Create a new engine. The name argument names the engine. When omitted, engines are
named engineN , where N is defined by a counter. The options argument provides additional
configuration. Both arguments are optional.

Boolean auto close
When true (default false, closing the last query associated with the engine also closes
the engine.

undefined close()
Terminate the engine. This may be called safely multiple times on the same instance.

Boolean Engine.call(Goal)
Object query(...args)
Object forEach(goal, ...args)
Any with frame(function, persist)

Same as the corresponding methods on class Prolog, using the specified engine for running the
Prolog goals.

Any with(function)
Run function using the specified Engine instance.

13.2.3 Translating data between JavaScript and Prolog

JavaScript and Prolog are both dynamically typed languages. The WASM module defines a faithful
translation between JavaScript data and Prolog data that aims at completeness as well as keeping
the data representation clean in the common cases. We describe the translation in two descriptions
because round tripping does not always result in the original object.

Translating JavaScript data to Prolog

This section describes how data from JavaScript is translated into Prolog. The interface is primarily
designed for passing JavaScript data as typically used to a natural Prolog representation. In addition a
number of classes are provided to create Prolog specific data structures such as strings (as opposed to
atoms), variables, compound terms, etc.

Number
Translate to a Prolog integer or floating point number.

BigInt
Translate to a Prolog integer.

SWI-Prolog 9.3 Reference Manual

550 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

String
Translate to a Prolog atom. Use new Prolog.String(text) to create a Prolog string. See
below.

Boolean
Translate to one of the Prolog atoms true or false.

undefined
Translate the Prolog atom undefined.

null
Translate the Prolog atom null.

Array
Translate to a Prolog list.

Objects holding the key $t:Type
Such objects are converted depending on the value for this key. The interface defines classes to
simplify creating such objects.

s
Represent a Prolog string. The key v holds the text. May be cre-
ated using new Prolog.string(text). May be created using
new Prolog.String(text).

r
Represent a Prolog rational number. The keys n and d represent the numerator and
denominator. For example, to represent 1r3, use {$t:”r”, n:1, d:3}. May be created
using new Prolog.Rational(n, d), where n and d can be JavaScript numbers or
big integers.

t
Represent a Prolog compound term. The object should hold exactly one key
whose value is an array that holds the argument values. For example a term
point(1,2) is constructed using {$t:”t”, point:[1,2]}. May be created using
new Prolog.Compound(functor, args)

v
Represent a variable. If the key v is present this identifies the variable. Two variables
processed in the same translation with the same identifier represent the same Prolog
variable. If the v key is omitted the variable will be unique. May be created using
new Prolog.Var(id).

l
Represent a Prolog list. As a JavaScript Array we only need this typed object to create a
partial list. The v key contains the “normal” elements and the key tail contains the tail
of the list. May be created using new Prolog.List(array, tail).

Object of class Object
Plain JavaScript objects are translated into a Prolog dict. Note that JavaScript object keys
are always strings and (thus) all dict keys are atoms. This, {1:”one”} is translated into
_{’1’: one}.

SWI-Prolog 9.3 Reference Manual

13.2. CALLING PROLOG FROM JAVASCRIPT 551

ArrayBuffer
Instances of ArrayBuffer are translated into a Prolog string that consists of characters in
the range 0 . . . 255.

Objects of a one class not being Object
Instances of non-plain JavaScript objects are translated into a Prolog blob. Such objects are
written as <js_Class(id)>. The Prolog interface allows for passing the objects back and
calling methods on them. See section 13.3.

Translating Prolog data to JavaScript

Most of the translation from Prolog data to JavaScript is the reverse of the translation described in
section 13.2.3. In some cases however reverse translation is ambiguous. For example, both 42 and
42n (a JavaScript BigInt) translate to a simple Prolog integer. The other way around, as JavaScript
Number is a float, both Prolog 42 and 42.0 translate to 42 in JavaScript.

Variable
Translate to a JavaScript Prolog.Variable instance where the identifier is a unique number
of each unique variable.

Integer
Translate to a JavaScript Number when possible or BigInt otherwise. Currently JavaScript
Number can represent integers up to 253 precisely.

Rational
Translate to a JavaScript Prolog.Rational instance.

Float
Translate to a JavaScript Number.

Atom
Translate to a JavaScript String.

String
Translate to a JavaScript Prolog.String instance.

List
When a proper list create a JavaScript Array, otherwise create a JavaScript Prolog.List
instance.

Compound term
Create a JavaScript Prolog.Compound instance.

Dict
Create a plain JavaScript Object with the same keys. If the dict has a non-var tag, add a
$tag property.

SWI-Prolog 9.3 Reference Manual

552 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

13.3 Accessing JavaScript from Prolog

This section describes how we can interact with JavaScript from Prolog. The interface is captured in
a single predicate :=/2/.

Left := Right
Depending on Left, this predicate implements two different actions. If Left is a Prolog variable,
it evaluates the expression Right in JavaScript and unifies the result to Left. If Left is a term
Obj[Key], where Key is an atom, it accesses a JavaScript setter. The general form of an
expression is Expression[Callable] or simply Callable. If Callable is compound it expresses
a function (or method) call. Otherwise we call JavaScript eval(), except for these special
values:

window
The main browser window itself (undefined when not in a browser).

prolog
The Prolog instance.

Prolog values are translated according to the rules in section 13.2.3 and the result is translated
back to Prolog according to the rules in section 13.2.3. Because callables are translated to
function calls, object properties or global variables we need an escape to pass them as data. This
is achieved using the prefix operator #. Note that lists are passed as JavaScript arrays rather than
calls to the list functor. For convenience Prolog strings are by default translated to JavaScript
String objects rather than Prolog.String instances. Below are some examples:

?- Res := myfunc([1,2,3]).
?- Max := ’Math’.max(10, 20).
?- Out := document.getElementById(’output’).
?- Par := document.createElement(p),

Par.textContent := #Text.
?- Par.textContent := "aap" + " " + "noot".

Some JavaScript expressions are not implemented as functions. The following “functions” are
handled directly by the implementation.

instanceof
Returns the name of the class to which the object belongs. Same as
Obj.constructor.name.

instanceof(ClassName)
Returns a Boolean indicating whether the object is an instance of ClassName. Note
that the class name must be an atom and as JavaScript class names normally start with a
capital, the names typically need to be quoted using single quotes. For example:

?- W := window, T := W.instanceof(’Window’).
W = <js_Window>(1),
T = true.

SWI-Prolog 9.3 Reference Manual

13.3. ACCESSING JAVASCRIPT FROM PROLOG 553

-(Any)
Numerical negation

!(Any)
Logical negation.

+(Any, Any)
-(Any, Any)
*(Any, Any)
/(Any, Any)
&(Any, Any)
|(Any, Any)

&&(Any, Any)
||(Any, Any)

Binary operators. Note that some are not defined as Prolog operators and thus one must
write e.g. A := &&(true,false). || is not a Prolog atom, so logical disjunction
gets A := ’||’(false,false).

is object(@Term) [semidet]

True if Term is a reference to a JavaScript object.

is object(@Term, ?Class) [semidet]

True when Term is an instance of Class. If Class is unbound it is unified with the name of the
constructor, otherwise a JavaScript Term instanceof Class is executed.

js script(+String, +Options)
Evaluate String as JavaScript. This is designed to cooperate with string quasi quotations, so we
can write e.g.,

:- use_module(library(strings)).
:- js_script({|string||
function myfunc(a)
...
|}).

The implementation uses =:/2, calling the JavaScript function eval().

fetch(+URL, +Type, -Data)
Wrapper around JavaScript fetch(), conversion of the Response object and waiting for
the Promise. Type is an atom or string that is used as method on the Response object.
Examples are text, json, html or blob. The blob type returns the Data as a string of
bytes, i.e., character codes in the range 0 . . . 255.

Asynchronous access to JavaScript from Prolog

While section 13.3 describes synchronous calls from Prolog to JavaScript, we also need asynchronous
calling to implement sleep/1, wait for user input, downloading documents from the web, etc.
Asynchronous calling is achieved by yielding from the Prolog virtual machine. This can only be done

SWI-Prolog 9.3 Reference Manual

554 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

when Prolog is told to expect that the VM may yield. This is implemented by Prolog.forEach()
as described in section 13.2.

await(+Promise, -Result) [det]

Yield the Prolog VM, returning control back to JavaScript. When this is called from Prolog
invoked using Prolog.forEach(), execution of await/2 completes when the Promise
resolves and Result is unified with the value passed to the Promise.then() method. As
an exception to the normal conversion rules, if the result is a single String, it is returned
as a Prolog string rather than an atom. When the Promise is rejected await/2 throws an
exception. Note that await/2 allows, for example, downloading a URL from Prolog:

?- FP := fetch("test.pl"), await(FP, Response),
TP := Response.text(), await(TP, T).

FP = <js_Promise>(4),
Response = <js_Response>(5),
TP = <js_Promise>(6),
T = "% :- debug(js) ...".

Calls to await/2 may be asynchronously aborted by calling Prolog.abort() if Promise
implements .abort(). See section 13.3 for implementing such a promise.

is async [semidet]

True when we can call await/2 in the current state. This implies Prolog has been called from
JavaScript code that is prepared to deal with Prolog yielding and Prolog is not inside a callback
from C (WASM).

JavaScript Promise that can be aborted

A Promise resolves or is rejected. As Prolog waits for a specific promise on a call to await/2 we
may want to abort long running operations. This may be achieved using the class Prolog.Promise
which extends Promise. To make the promise abortable the executor function must have an abort
property. Below is the code for Prolog.promise sleep() that implements this schema. First we
create the executor and use properties on the function itself to represent the necessary state information
(here, the running timer). Next, we add an abort property the clears the timer and runs the reject
callback of the Promise. Finally we return an instance of Prolog.Promise which implements
.abort().

promise_sleep(time)
{ const f = function(resolve, reject)
{ f.reject = reject;

f.timer = setTimeout(() =>
{ f.timer = undefined;

resolve(true);
}, time*1000);

};

f.abort = function()

SWI-Prolog 9.3 Reference Manual

13.4. LIBRARY(WASM): WASM VERSION SUPPORT 555

{ if (f.timer)
{ clearTimeout(f.timer);
f.timer = undefined;
f.reject("abort");

}
}

return new Prolog.Promise(f);
}

13.4 library(wasm): WASM version support
See also library(dom) implements a Tau-Prolog compatible Prolog interface to the browser’s DOM.

This library is only available in the WASM version. It provides helper predicates for the JavaScript
part as well as Prolog utility predicates that help in communicating with JavaScript.

await(+Request, =Result) [det]

Call asynchronous behavior. Request is normally a JavaScript Promise instance. If we want
Prolog to wait for some task to complete, we first write a JavaScript function that returns a
Promise that resolves when the task is complete. Next, we use :=/2 to get the Promise and
finally we use await/2 to wait for the Promise. On success, Result is unified to the value with
which the Promise was resolved. If the Promise is rejected, this predicate raises an exception
using the value passed to reject().

Errors permission_error(run, goal, Goal) if the current query is not aynchronous.
See also sleep/1, fetch/3 and wait/3 in this library use await/2.

is async [semidet]

True when we can call await/2. We can not yield when we are in a callback from C (WASM)
to Prolog.

must be async(+Message) [det]

True when the engine is in async state (see is async/0).

Errors permission_error(run, goal, Message) if the system is not in async state.

sleep(+Seconds) [det]

Sleep by yielding when possible. Note that this defines sleep/1 in user, overruling
system:sleep/1.

is object(@Term) [semidet]

is object(@Term, ?Class) [semidet]

Test whether a Prolog term is a JavaScript object.

SWI-Prolog 9.3 Reference Manual

556 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

-Result := +Call
+Target := +Value

Call a JavaScript function expressed by Call. Call is a compound. The functor name denotes
the function to be called and the arguments are converted using Prolog.toJSON. The
function return value can be accessed using js_call(Return = Call). In this case
Return is the return value of the function converted by Prolog.toProlog(). Examples:

?- Res := myfunc([1,2,3]).
?- Max := ’Math’.max(10, 20).
?- Out := document.getElementById(’output’).
?- Par := document.createElement(p),

Par.textContent := #Text.
?- Par.textContent := "aap" + " " + "noot".

js script(+String, +Options) [det]

Evaluate String as JavaScript, for example for defining a function. This may be used together
with the strings quasi quotation facility to easily support long strings that may also use double
quotes.

:- use_module(library(strings)).
:- js_script({|string||
function myfunc(a)
...
|}).

Options is currently ignored. While this used to add a <script> node to the document it now
uses (=:)/2 to evaluate the script. I.e. js script is the same as:

?- _ := eval(String).

fetch(+URL, +Type, -Data) [det]

Fetch the content from URL asynchronously. Type is a method name on the Response object
returned by fetch(), e.g., text, json, html, blob.

13.5 library(dom): Browser DOM manipulation
See also library(dialect/tau/dom).

This library allows manipulating the browser DOM and bind event handlers to create and manage
interactive pages. All manipulations to the DOM can be done using :=/2 from library(wasm),
e.g.

?- Elem := document.createElement("div").

This library leverages html//1 interface as introduced for server-side HTML generation to cre-
ate complex DOM structures from Prolog terms. It provides three ways to facilitate reuse.

SWI-Prolog 9.3 Reference Manual

13.5. LIBRARY(DOM): BROWSER DOM MANIPULATION 557

• Use \Rule in the global structure. This calls the DCG Rule, which should call html//1 to
add any structure in this place. This approach is compatible to html//1 as used for server-side
generation.

• Create the global structure and use Var=Spec to get access to some of the containers and later
fill them using append html/2.

• Create sub structures using html//1 and use them in html//1 calls that create the global
structure.

append html(+Elem, :HTML) [det]

Extend the HTMLElement Elem using DOM elements created from Spec using html//1.
For example:

?- Elem := document.getElementById("mydiv"),
append_html(Elem, ["Hello ", b(world), "!"]).

See also html//1.

html(:Spec) //
This DCG transforms a DOM specification into a list of HTMLElement objects. This predicate
is similar to html//1 from library(http/html_write). The differences are:

• This predicate creates a list of HTMLElement JavaScript objects rather than a list of
HTML tokens. The translation is done by means of JavaScript calls that create and manage
objects.

• This version allows for nodes to be specified as Var=Spec. This processes Spec normally
and binds Var to the created element.

The following terms are processed:

Var = Spec
Create Spec and bind Var to the created node.

Format - Args
Create a text node from the result of calling format/3.

&(Entity)
Create a text node with one character if Entity is an integer or a holding the
entity otherwise.

\ Rule
Call call(Rule), allowing for a user-defined rule. This rule should call html//1 to
produce elements.

M : Rule
As \Rule, but calling in a module. This is the same as \(M:Rule).

List
Emit each element of the list.

SWI-Prolog 9.3 Reference Manual

558 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

Compound
This must but a term Tag(Content) or Tag(Attributes,Content). If Tag is an HTML element
that has no content, a single argument is intepreted as Tag(Attributes). Attributes is
either a single attribute of a list of attributes. Each attribute is either term Attr(Value) or
Attr=Value. If Value is a list, it is concatenated with a separating space. The attribute
names can either be the HTML name in lowercase or the DOM camelCase attribute name.
HTML names are mapped by the multifile predicate html dom/2.

JavaScriptObjecty
This should be an HTMLElement. It is inserted at this place.

Atomic
Atomic data creates a text node.

html dom(?HTMLAttr, ?DOMAttr) [multifile]

Mapping of HTML attribute names to DOM element attributes.

See also https://stackoverflow.com/questions/14544481/
is-there-a-mapping-from-html-property-names-to-dom-propety-names

bind(+Elem, +EventType, -Event, :Goal) [det]

bind async(+Elem, +EventType, -Event, :Goal) [det]

Bind EventType on Elem to call Goal. If Event appears in Goal is is bound to the current event.

The bind async/4 variation runs the event handler on a new Prolog engine using
Prolog.forEach(). This implies that the handler runs asynchronously and all its solutions
are enumerated.

Compatibility bind async/5 is a SWI-Prolog extension to the Tau library

unbind(+Elem, +EventType) [det]

Remove the event listener for EventType.

wait(+Elem, +EventType, =Event) [det]

Make the calling task wait for EventType on Elem. If the event is triggered, Event is unified
with the event object.

13.6 library(dialect/tau/dom): Tau-Prolog compatible DOM manipula-
tion

See also https://tau-prolog.org/documentation#prolog

This module is part of the WASM distribution of SWI-Prolog. It implements the Tau-Prolog DOM
library.

add class(+Elem, +Class) [det]

Add classes to a Elem. Class is either a list of classes or an atom (or string) containing one or
more classes separated by white space.

SWI-Prolog 9.3 Reference Manual

https://stackoverflow.com/questions/14544481/is-there-a-mapping-from-html-property-names-to-dom-propety-names
https://stackoverflow.com/questions/14544481/is-there-a-mapping-from-html-property-names-to-dom-propety-names
https://tau-prolog.org/documentation#prolog

13.6. LIBRARY(DIALECT/TAU/DOM): TAU-PROLOG COMPATIBLE DOM
MANIPULATION 559

append child(+Elem, +Child) [det]

Add Child as a child to Elem.

attr(+Elem, +Name, ?Value) [det]

Set (if Value is ground) or unify an attribute value. This used the setAttribute() or
getAttribute()methods unless Name is value. @see get attr/3 and set attr/3.

body(-Body) [det]

True when Body is the HTML Element that holds the body.

create(+TagName, –Elem) [det]

Create a node from TagName and make it available as Elem.

document(=Document) [det]

True when Document is the HTML element representing the document.

get attr(+Elem, +Name, =Value) [semidet]

get attribute(+Elem, +Name, =Value) [semidet]

Get an attribute (property) from a JavaScript object. Fails if the attribute is undefined.

Note that this predicate conflicts with SWI-Prolog get attr/3 to get attributes from a vari-
able. For this reason we also make this predicate available as get attribute/3.

get by class(+Class, -Elem) [nondet]

True when Elem is an HTML element with class Class.

get by class(+Parent, +Class, -Elem) [nondet]

True when Elem is an HTML element with class Class below Parent.

get by id(+Id, -Element) [semidet]

True when the current document has Element with Id.

get by name(+Name, -Elem) [nondet]

True when Elem is an HTML element with name Name.

get by tag(+TagName, =Elem) [nondet]

True when Elem is an HTML element with tag Tag.

get html(+Elem, -HTML:string) [det]

Get the innerHTML of an element.

get style(+Elem, +Attr, =Value) [semidet]

True when Value is the computed value for the given style attribute. If the computed style
is undefined, Value is unified to the element style. The DOM style string is translated into a
Prolog term according to these rules:

• px(N) maps to Npx
• ’%’(N) maps to N%
• url(URL) maps to url("URL")
• rgb(R,G,B) maps to rgb(R,G,B)

SWI-Prolog 9.3 Reference Manual

560 CHAPTER 13. USING SWI-PROLOG IN YOUR BROWSER (WASM)

has class(+Elem, +Class) [semidet]

True if Elem has Class.

head(=Elem) [det]

True when Elem is the HTML Element that holds the head.

html(+Elem, ?InnerHTML) [det]

Get or set the innerHTML if Elem. See also get html/2 and set html/2.

insert after(+Elem, +Reference) [det]

Insert Elem after Reference.

insert before(+Elem, +Reference) [det]

Insert Elem before Reference.

parent of(?Child, ?Parent) [nondet]

True when Child is a direct Child of Parent. One of the arguments must be instantiated.

prepend child(+Elem, +Child) [det]

Add Child as first child of Elem.

remove(+Elem) [det]

Remove an element from the DOM tree.

remove class(+Elem, +Class) [det]

Remove Class from the classList of Elem.

set attr(+Elem, +Attr, +Value) [det]

Use the setAttribute() interface to set Attr to Value. If Attr = value, use
Elem.value = Value.

set html(+Elem, +HTML:string) [det]

Set the innerHTML of Elem.

set style(+Elem, +Attr, +Value) [det]

Set a style attribute for Elem. Value is either an atom, string or term as defined by
get style/3.

sibling(?Elem1, ?Elem2) [semidet]

Get the next or previous sibling depending on the mode. This uses the
nextElementSibling or previousElementSibling, skipping possible inter-
mediate nodes. Fails for getting the previous of the first or next of the last.

style(+Elem, +Attr, ?Style) [det]

Set or get a style attribute.

event property(+Event, +Prop, =Value) [semidet]

Extract a property from the event.

prevent default(+Event) [det]

Prevent default behaviour in an event.

SWI-Prolog 9.3 Reference Manual

13.6. LIBRARY(DIALECT/TAU/DOM): TAU-PROLOG COMPATIBLE DOM
MANIPULATION 561

hide(+Elem) [det]

show(+Elem) [det]

toggle(+Elem) [det]

Manage the visibility of Elem. The predicate hide/1 saves the old display value, which is
restored by show/1. If there is no old display value, show/1 uses block.

bind(+Elem, +EventType, -Event, :Goal) [det]

bind async(+Elem, +EventType, -Event, :Goal) [det]

Bind EventType on Elem to call Goal. If Event appears in Goal is is bound to the current event.

The bind async/4 variation runs the event handler on a new Prolog engine using
Prolog.forEach(). This implies that the handler runs asynchronously and all its solutions
are enumerated.

Compatibility bind async/5 is a SWI-Prolog extension to the Tau library

unbind(+Elem, +EventType) [det]

Remove the event listener for EventType.

SWI-Prolog 9.3 Reference Manual

Deploying applications 14
This chapter describes the features of SWI-Prolog for delivering applications using saved states.

14.1 Deployment options

There are several ways to make a Prolog application available to your users. By far the easiest way is
to require the user to install SWI-Prolog and deliver the application as a directory holding source files,
other resources the application may need and a Prolog Script file that provides the executable. See
section 2.11.1. The two-step installation may be slightly less convenient for the end user, but enables
the end-user to conveniently run your program on a different operating system or architecture. This
mechanism is obviously not suitable if you want to keep the source of your program secret.

Another solution is to use saved states, the main topic of this chapter, together with the installed
development system and disable autoloading requirements into the state using --no-autoload
or the autoload(false) option of qsave program/2. This allows creating the application as a
single file, while avoiding the need to ensure that the state is self-contained. For large programs this
technique typically reduces startup time by an order of magnitude. This mechanism is particularly
suitable for in-house and cloud deployment. It provides some protection against inspecting the source.
See section 14.6 for details.

The final solution is to make sure all required resources are present in the saved state. In this case
the state may be added to the emulator and the application consists of the emulator with state and the
shared objects/DLLs required to make the emulator work. If the emulator can be statically linked for
the target platform this creates a single file executable that does not require SWI-Prolog installed on
the target computer.

14.2 Understanding saved states

A SWI-Prolog saved state is a resource archive that contains the compiled program in a machine-
independent format,1 startup options, optionally shared objects/DLLs and optionally additional re-
source files. As of version 7.7.13, the resource archive format is ZIP. A resource file is normally
created using the commandline option -c:

swipl -o mystate option ... -c file.pl ...

The above causes SWI-Prolog to load the given Prolog files and call qsave program/2 using
options created from the option . . . in the command above.

1Although the compiled code is independent from the CPU and operating system, 32-bit compiled code does not run
on the 64-bit emulator, nor the other way around. Conditionally compiled code (see if/1) may also reduce platform
independence.

SWI-Prolog 9.3 Reference Manual

14.2. UNDERSTANDING SAVED STATES 563

A saved state may be executed in several ways. The basic mechanism is to use the -x:

swipl -x mystate app-arg ...

Saved states may have an arbitrary payload at the start. This allows combining a (shell) script or the
emulator with the state to turn the state into a single file executable. By default a state starts with a shell
script (Unix) or the emulator (Windows).2 The options emulator(File) and stand alone(Bool)
control what is added at the start of the state. Finally, C/C++ programs that embed Prolog may use a
static C string that embeds the state into the executable. See PL set resource db mem().

14.2.1 Creating a saved state

The predicates in this section support creating a saved state. Note that states are commonly created
from the commandline using the -c, for example:

swipl -o mystate --foreign=save -c load.pl

Long (--) options are translated into options for qsave program/2. This transformation uses
the same conventions as used by argv options/3, except that the transformation is guided
by the option type. This implies that integer and callable options need to have valid syntax and
boolean options may be abbreviated to simply --autoload or --no-autoload as shorthands
for --autoload=true and --autoload=false.

qsave program(+File, +Options)
Saves the current state of the program to the file File. The result is a resource archive File
containing expresses all Prolog data from the running program, all user-defined resources (see
resource/2 and open resource/2) and optionally all shared objects/DLLs required by
the program for the current architecture. Depending on the stand alone option, the resource
is headed by the emulator, a Unix shell script or nothing. Options is a list of additional options:

stack limit(+Bytes)
Sets default stack limit for the new process. See the command line option
--stack-limit and the Prolog flag stack limit.

goal(:Callable)
Initialization goal for the new executable (see -g). Two values have special meaning:
prolog starts the Prolog toplevel and default runs halt/0 if there are initialization
goals and the prolog/0 toplevel otherwise.

toplevel(:Callable)
Top-level goal for the new executable (see -t). Similar to initialization/2 using
main, the default toplevel is to enter the Prolog interactive shell unless a goal has been
specified using goal(Callable).

init file(+Atom)
Default initialization file for the new executable. See -f.

2As the default emulator is a short program while the true emulator is in a DLL this keeps the state short.

SWI-Prolog 9.3 Reference Manual

564 CHAPTER 14. DEPLOYING APPLICATIONS

class(+Class)
If runtime (default), read resources from the state and disconnect the code loaded
into the state from the original source. If development, save the predicates in
their current state and keep reading resources from their source (if present). See also
open resource/3.

autoload(+Boolean)
If true (default), run autoload/0 first. If the class is runtime and autoload
is true, the state is supposed to be self contained and autoloading is disabled in the
restored state.

map(+File)
Dump a human-readable trace of what has been saved in File.

op(+Action)
One of save (default) to save the current operator table or standard to use the initial
table of the emulator.

stand alone(+Boolean)
If true, the emulator is the first part of the state. If the emulator is started it tests whether
a saved state is attached to itself and load this state. Provided the application has all
libraries loaded, the resulting executable is completely independent from the runtime
environment or location where it was built. See also section 2.11.1.

emulator(+File)
File to use for the emulator or executable used by the startup script. De-
fault is the running Prolog image after following symbolic links, e.g.,
/usr/lib/swipl/lib/x86_64-linux/swipl. To create a saved state based on
the public executable such that it can run on multiple architectures one can use e.g.

$ swipl -o myexe --emulator=$(which swipl) -c myload.pl

foreign(+Action)
If save, include shared objects (DLLs) for the current architecture into the saved state.
See current foreign library/2, and current prolog flag(arch, Arch). If the
program strip is available, this is first used to reduce the size of the shared object. If a
state is started, use foreign library/1 first tries to locate the foreign resource in
the resource database. When found it copies the content of the resource to a temporary
file and loads it. If possible (Unix), the temporary object is deleted immediately after
opening.34

If Action is of the form arch(ListOfArches) then the shared objects for the specified
architectures are stored in the saved state. On the command line, the list of architectures
can be passed as --foreign=⟨CommaSepArchesList⟩. In order to obtain the shared
object file for the specified architectures, qsave program/2 calls a user defined hook:
qsave:arch shlib(+Arch, +FileSpec, -SoPath). This hook needs to unify SoPath
with the absolute path to the shared object for the specified architecture. FileSpec is of
the form foreign(Name).

3This option is experimental and currently disabled by default. It will become the default if it proves robust.
4Creating a temporary file is the most portable way to load a shared object from a zip file but requires write access to the

file system. Future versions may provide shortcuts for specific platforms that bypass the file system.

SWI-Prolog 9.3 Reference Manual

14.2. UNDERSTANDING SAVED STATES 565

At runtime, SWI-Prolog will try to load the shared library which is compatible with the
current architecture, obtained by calling current prolog flag(arch, Arch). An ar-
chitecture is compatible if one of the two following conditions is true (tried in order):

1. There is a shared object in the saved state file which matches the current architecture
name (from current prolog flag/2) exactly.

2. The user definable qsave:compat arch(Arch1, Arch2) hook succeeds.

This last one is useful when one wants to produce one shared object file that works for
multiple architectures, usually compiling for the lowest common denominator of a certain
CPU type. For example, it is common to compile for armv7 if even if the code will be
running on newer arm CPUs. It is also useful to provide highly-optimized shared objects
for particular architectures.
If Action is copy, the foreign extensions are copied to the installation location. This feature
is currently only supported for Windows, where both DLLs required to run swipl.exe
and DLLs loaded through extensions are are copied to the same directory as where the
executable is saved. Required DLLs are found using win process modules/2. Thus,
we can create an executable using e.g.,

swipl -o dist/myprog.exe --foreign=copy -c myprog.pl

The --foreign=copy option is introduced in 9.3.6.

undefined(+Value)
Defines what happens if an undefined predicate is found during the code analysis. Values
are ignore (default) or error. In the latter case creating the state is aborted with a
message that indicates the undefines predicates and from where they are called.

obfuscate(+Boolean)
If true (default false), replace predicate names with generated symbols to make the
code harder to assess for reverse engineering. See section 14.6.1.

verbose(+Boolean)
If true (default false), report progress and status, notably regarding auto loading.

qsave program(+File)
Equivalent to qsave program(File, []).

autoload all
Check the current Prolog program for predicates that are referred to, are undefined, and have a
definition in the Prolog library. Load the appropriate libraries.

This predicate is used by qsave program/[1,2] to ensure the saved state does not depend
on availability of the libraries. The predicate autoload all/0 examines all clauses of the
loaded program (obtained with clause/2) and analyzes the body for referenced goals. Such
an analysis cannot be complete in Prolog, which allows for the creation of arbitrary terms at
runtime and the use of them as a goal. The current analysis is limited to the following:

• Direct goals appearing in the body

• Arguments of declared meta-predicates that are marked with an integer (0..9). See
meta predicate/1.

SWI-Prolog 9.3 Reference Manual

566 CHAPTER 14. DEPLOYING APPLICATIONS

The analysis of meta-predicate arguments is limited to cases where the argument appears liter-
ally in the clause or is assigned using =/2 before the meta-call. That is, the following fragment
is processed correctly:

...,
Goal = prove(Theory),
forall(current_theory(Theory),

Goal)),

But, the calls to prove simple/1 and prove complex/1 in the example below are not
discovered by the analysis and therefore the modules that define these predicates must be loaded
explicitly using use module/[1,2].

...,
member(Goal, [prove_simple(Theory),

prove_complex(Theory)
]),

forall(current_theory(Theory),
Goal)),

It is good practice to use gxref/0 to make sure that the program has sufficient decla-
rations such that the analysis tools can verify that all required predicates can be resolved
and that all code is called. See meta predicate/1, dynamic/1, public/1 and
prolog:called by/2.

volatile +Name/Arity, . . .
Declare that the clauses of specified predicates should not be saved to the program. The volatile
declaration is normally used to prevent the clauses of dynamic predicates that represent data
for the current session from being saved in the state file.

14.2.2 Limitations of qsave program

There are three areas that require special attention when using qsave program/[1,2].

• If the program is an embedded Prolog application or uses the foreign language interface, care
has to be taken to restore the appropriate foreign context. See section 14.2.3 for details.

• If the program uses directives (:- goal. lines) that perform other actions than setting pred-
icate attributes (dynamic/1, volatile/1, etc.) or loading files (use module/1, etc.).
Goals that need to be executed when the state is started must use initialization/1 (ISO
standard) or initialization/2 (SWI extension that provides more control over when the
goal is executed). For example, initialization/2 can be used to start the application:

:- initialization(go, main).

SWI-Prolog 9.3 Reference Manual

14.3. STATE INITIALIZATION 567

• Blobs used as references to the database (see clause/3, recorded/3), streams, threads,
etc. can not be saved. This implies that (dynamic) clauses may not contain such references at
the moment the qsave program/2 is called. Note that the required foreign context (stream,
etc.) cannot be present in the state anyway, making it pointless to save such references. An
attempt to save such objects results in a warning.

The volatile/1 directive may be used to prevent saving the clauses of predicates that hold
such references. The saved program must reinitialise such references using the normal program
initialization techniques: use initialization/1,2 directives, explicitly create them by the
entry point or make the various components recreate the context lazily when required.

• Blobs that properly implement the save() and load() callbacks can be saved and restored.
By default a blob is saved as an array of bytes, of the internal form of the blob. This means that
any saved program using such a blob is probably not portable to a different architecture.

14.2.3 Runtimes and Foreign Code

Many applications use packages that include foreign language components compiled to shared objects
or DLLs. This code is normally loaded using use foreign library/1 and the foreign file
search path. Below is an example from the socket library.

:- use_foreign_library(foreign(socket)).

There are two options to handle shared objects in runtime applications. The first is to use
the foreign(save) option of qsave program/2 or the --foreign=save commandline op-
tion. This causes the dependent shared objects to be included into the resource archive. The
use foreign library/1 directive first attempts to find the foreign file in the resource archive.
Alternatively, the shared objects may be placed in a directory that is distributed with the application.
In this cases the file search path foreign must be setup to point at this directory. For example, we
can place the shared objects in the same directory as the executable using the definition below. This
may be refined further by adding subdirectories depending on the architecture as available from the
Prolog flag arch.

:- multifile user:file_search_path/2.

user:file_search_path(foreign, Dir) :-
current_prolog_flag(executable, Exe),
file_directory_name(Exe, Dir).

14.3 State initialization

The initialization/1 and initialization/2 directive may be used to register goals to
be executed at various points in the life cycle of an executable. Alternatively, one may consider
lazy initialization which typically follows the pattern below. Single threaded code can avoid using
with mutex/2.

SWI-Prolog 9.3 Reference Manual

568 CHAPTER 14. DEPLOYING APPLICATIONS

:- dynamic x_done/0.
:- volatile x_done/0.

x(X) :-
x_done,
!,
use_x(X).

x(X) :-
with_mutex(x, create_x),
use_x(X).

create_x :-
x_done,
!.

create_x :-
<create x>
asserta(x_done).

14.4 Using program resources

A resource is similar to a file. Resources, however, can be represented in two different formats: on
files, as well as part of the resource archive of a saved state (see qsave program/2) that acts as a
virtual file system for the SWI-Prolog I/O predicates (see open/4, register iri scheme/3).

A resource has a name. The source data of a resource is a file. Resources are declared by adding
clauses to the predicate resource/2 or resource/3. Resources can be accessed from Prolog as
files that start with res:// or they can be opened using open resource/3.

14.4.1 Resources as files

As of SWI-Prolog 7.7.13, resources that are compiled into the program can be accessed using the
normal file handling predicates. Currently the following predicates transparently handle resources as
read-only files:

• open/3, open/4

• access file/2

• exists file/1

• exists directory/1

• time file/2

• size file/2

In addition, open shared object/3, underlying use foreign library/1 handles
shared objects or DLLs by copying them to a temporary file and opening this file. If the OS allows
for it, the copied file is deleted immediately, otherwise it is deleted on program termination.

SWI-Prolog 9.3 Reference Manual

14.4. USING PROGRAM RESOURCES 569

With the ability to open resources as if they were files we can use them for many tasks without
changing the source code as required when using open resource/2. Below we describe a typical
scenario.

• Related resources are placed in one or more directories. Consider a web application where we
have several directories holding icons. Add clauses to file search path/2 that makes all
icons accessible using the term icon(file).

• Add a clause as below before creating the state. This causes all icons to be become available as
res://app/icon/file.

resource(app/icon, icon(.)).

• Add a clause to file search path/2 that make the icons available from the resource data.
For example using the code below.

:- asserta(user:file_search_path(icon, ’res://app/icon’).

14.4.2 Access resources using open resource

Before the system had the ability to open resources as files, resources were opened using the predicates
open resource/2 or open resource/3. These predicates provide somewhat better dynamic
control over resources depending on whether the code is running from files or from a saved state. The
main disadvantage is that having a separate open call requires rewriting code to make it work with
resources rather than files.

open resource(+Name, -Stream)
open resource(+Name, -Stream, +Options)

Opens the resource specified by Name. If successful, Stream is unified with an input stream
that provides access to the resource. The stream can be tuned using the Options, which is a
subset of the options provided by open/4.

type(Type)
encoding(Encoding)
bom(Bool)

Options that determine the binary/text type, encoding for text streams and whether or not
the content should be checked for a BOM marker. The options have the same meaning as
the corresponding options for open/4.

The predicate open resource/3 first checks resource/2. When successful it will open
the returned resource source file. Otherwise it will look in the program’s resource database.
When creating a saved state, the system normally saves the resource contents into the resource
archive, but does not save the resource clauses.

This way, the development environment uses the files (and modifications) to the resource/3
declarations and/or files containing resource info, thus immediately affecting the running envi-
ronment, while the runtime system quickly accesses the system resources.

SWI-Prolog 9.3 Reference Manual

570 CHAPTER 14. DEPLOYING APPLICATIONS

14.4.3 Declaring resources

resource(:Name, +FileSpec)
resource(:Name, +FileSpec, +Options)

These predicates are defined as dynamic predicates in the module user. Clauses for them
may be defined in any module, including the user module. Name is the name of the resource
(an atom). A resource name may contain any character, except for $ and :, which are reserved
for internal usage by the resource library. FileSpec is a file specification that may exploit
file search path/2 (see absolute file name/2).

Often, resources are defined as unit clauses (facts), but the definition of this predicate also
allows for rules. For proper generation of the saved state, it must be possible to enumerate the
available resources by calling this predicate with all its arguments unbound.

If FileSpec points at a directory, the content of the directory is recursively added below Name.
If FileSpec a term of the form Alias(Name), all directories that match this specification are
enumerated and their content is added to the resource database. If an file appears in multiple
results of this search path only the first file is added. Note that this is consistent with the normal
behaviour where absolute file name/3 returns the first match. The Options can be used
to control what is saved from a directory.

include(+Patterns)
Only include a file from a directory if it matches at least one of the members of Patterns.

exclude(+Patterns)
Excludes a file from a directory if it matches at least one of the members of Patterns.

14.4.4 Managing resource files

As of version 7.7.13, SWI-Prolog resource files are zip(1) files. Prolog creates and accesses its re-
source files using the minizip project. The resource files may be examined and modified using any
tool that can process zip files.

14.5 Debugging and updating deployed systems

SWI-Prolog provides several facilities to debug and update running (server) applications. The core to
these facilities are:

• Hot-swap recompilation (section 4.3.2 and the library hotswap) allow, with some limitation,
making modifications to running services. This includes adding debugging and logging state-
ments.

• To make this useful some form of interaction is required. This can be implemented using
signal handlers (Unix), specific HTTP services, generic HTTP services (e.g., SWISH) or net-
worked interaction using the library prolog server that allow interaction using netcat (nc)
or telnet.

SWI-Prolog 9.3 Reference Manual

http://www.winimage.com/zLibDll/minizip.html
https://swish.swi-prolog.org

14.6. PROTECTING YOUR CODE 571

14.6 Protecting your code

Prolog in general, but SWI-Prolog in particular is an transparent environment. Prolog’s “code is data”
point of view makes this natural as it simplifies development and debugging. Some users though want
or need to protect their code against copying or reverse engineering.

There are three ways to distribute code: as source, as .qlf file and in a saved state. Both QLF
files and saved states contain the code as virtual machine code. QLF files capture the predicates and
directives, while saved state capture the current state of the program. From the viewpoint of protecting
code there is no significant difference.

There are two aspects to protection. One is to make sure the attacker has no access to the code in
any format and the other is to provide access to a non-human-readable version of the code. The second
approach is known as code obfuscation. Code obfuscation typically remove layout and comments and
rename all internal identifiers. If an attacker gets access to the SWI-Prolog virtual machine code
this can be decompiled. The decompiled code does not include layout information variable names
and comments. Other identifiers, notably predicate and module names are maintained. This provides
some protection against understanding the source as Prolog code without meaningful variable names
and comments is generally hard to follow.

For further protecting the code, there are several scenarios.

• If the user has unrestricted access to the file system on which the application is installed the user
can always access the state or QLF file. This data can be loaded into a compatible emulator and
be decompiled.

• If the user can run arbitrary Prolog code or shell commands the state can be protected by em-
bedding it as a string in the executable deny read access to the executable. This requires a
small C program that includes the string and uses PL set resource db mem() to regis-
ter the string as the resource database. See PL set resource db mem() for details. This
protection should be combined with the protect static code described below.

• Some extra protection can be provided using the Prolog flag protect static code, which
disables decompilation of static predicates. Note that most Prolog implementations cannot
decompile static code. Various SWI-Prolog tools depend on this ability though. Examples are
list undefined/0, autoload/0, show coverage/1, etc.

14.6.1 Obfuscating code in saved states

If the option obfuscate(true) is used with qsave program/2, certain atoms in the saved state
are renamed. The renaming is performed by library obfuscate. The current implementation is
rather conservative, renaming atoms that are used only to define the functor that names a predicate.
This is a safe operation, provided the application does not create new references to renamed predicates
by reading additional source code or constructing the atom that names the predicate dynamically in
some other way such as using atom concat/3. Predicates that are called this way must be declared
using public/1.

Note that more aggressive renaming is possible, but this requires more detailed analysis of the
various roles played by some atom. Helpful and descriptive predicate names tend to be unique and are
thus subject to this transformation. More general names tend to collide with other roles of the same
atom and thus prevent renaming.

SWI-Prolog 9.3 Reference Manual

572 CHAPTER 14. DEPLOYING APPLICATIONS

14.7 Finding Application files

If your application uses files that are not part of the saved program such as database files, configuration
files, etc., the runtime version has to be able to locate these files. The file search path/2
mechanism in combination with the -p alias command line argument provides a flexible mechanism
for locating runtime files.

SWI-Prolog 9.3 Reference Manual

Packs: community add-ons 15
SWI-Prolog has a mechanism for incorporating community extensions called packs. See the pack
landing page for details and available packs. This chapter discusses how packages can be attached to
the current Prolog process, how they can be installed as well as developing packages.

Packs are installed as self-containing directories that provide additional Prolog libraries and for-
eign modules, compiled native code plugins. In addition, a pack can define apps, command line tools
that can be started using swipl app [args] (see section 2.11.1). Packs are searched as sub-
directories of the Prolog search path pack. Initially, this search path is the user’s App data, followed
by the system’s App data. The searched directories can be found using

?- absolute_file_name(pack(.), Path, [solutions(all)]).

The search path can be managed using the environment variable SWIPL PACK PATH, the -p com-
mand line option or using attach packs/2.

15.1 Installing packs

As of version 9.1.22, SWI-Prolog supports three models for managing packs: shared packages are
added to the user or system environment, while project specific packages are added to a particular
project only. Finally, project specific packages can be managed as git submodules. These three ap-
proaches are discussed in more detail below.

Using pack install/2 we can install a package either for the current user or globally for all
users.

Shared packages System-wide installations is satisfactory as long as all projects can use the same
version of a pack, the packs required by all projects do not conflict, and redistribution of the projects
is not a primary concern. For example, if you frequently require RocksDB for several projects you
are working on, installing the rocksdb pack as user is appropriate.

The shared model is similar to e.g., Python’s pip installer. Python resolves dealing with packages
for a specific project using virtual environments, where each virtual environment provides a selection
of packages. A Python virtual environment may be activated for the current shell, which modifies the
shell’s environment variables.

Project specific packages Alternatively, SWI-Prolog allows packs to be installed as part of a
project. This approach is also found with npm, the Node.js package manager. Using project-specific
packs with SWI-Prolog requires calling attach packs/2 before loading any library from a pack.
To use (only) packs from the local sub directory packs, add this directive to the code that uses it:

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/pack/list
https://www.swi-prolog.org/pack/list

574 CHAPTER 15. PACKS: COMMUNITY ADD-ONS

:- attach_packs(packs, [replace(true)]).

Packs can be installed into the packs directory directly using pack install/2 with the
pack directory(Dir) option or using the pack app as

swipl pack install --dir=packs <pack>

The preferred way is to use pack install local/3. This predicate takes a closure to collect
the desired packages, creates an installation plan and executes this. This ensures a set of compatible
packs at their latest available version or explicitly specified versions. Typically, one would create a file
packs.pl according to the example below to install the packages required by a project. By using
such a file it is easy to replicate a suitable set of installed packs for anyone who wishes to use your
application.

:- module(packs, []).
:- use_module(library(prolog_pack)).
:- attach_packs(packs, [replace(true)]).

:- initialization(install, main).

pack(scasp, [commit(’HEAD’)]).
pack(environ, []).
pack(date_time, []).

install :-
pack_install_local(pack, packs, []).

Here, the attach packs/2 must be the same as used by the project. The first argument of
pack install local/2 refers to pack/2, generating a list of target packages and options for
each package. The options for each pack are defined by pack install/2. They typically refer to
the download location and required version. Given the above, we can install the packages we need for
a project using

swipl packs.pl

Using GIT submodules Alternative to the above, if the desired packs are all available as git repos-
itory, we can add packs to our git managed projects by adding the packs as git submodules to our
project. For example, we add a pack to the packs directory as

mkdir packs
git submodule add https://github.com/SWI-Prolog/sCASP.git packs/scasp
git submodule add https://github.com/fnogatz/tap.git tap

SWI-Prolog 9.3 Reference Manual

15.2. BUILT-IN PREDICATES FOR ATTACHING PACKS 575

As above, we can must make our project use the local packs by calling pack attach/2. After
fetching all submodules we can build the foreign components and/or run the tests of the attached
packs using the steps below

?- attach_packs(packs, [replace(true)]).
?- pack_rebuild.

Using git submodules gives full control of the pack versions you are using. It also makes you respon-
sible of adding dependencies and taking care of version dependencies between packs. Finally, it limits
you to using git based packages.

15.2 Built-in predicates for attaching packs

This section documents the built-in predicates to attach packs. Predicates for creating, registering and
installing packs are provided by the library prolog pack.

attach packs
Attaches all packs in subdirectories of directories that are accessible through the file search
path (see absolute file name/3) pack. The default for this search path is given below.
See file search path/2 for the app data search path.

user:file_search_path(pack, app_data(pack)).

The default path may be overruled with the environment variable SWIPL PACK PATH. This
variable must contain a list of directories separated by the OS-specific path sep.

The predicate attach packs/0 is called on startup of SWI-Prolog.

attach packs(+Directory)
attach packs(+Directory, +Options)

Attach all packs that are subdirectories of Directory. Directory is translated into a physical
directory using absolute file name/3. This implies it can be a term Alias(SubDir) and
the search is relative to the current source file if Directory is not an absolute path and these
predicates are used as a directive. Defined options are:

search(+Where)
Determines the order in which pack library directories are searched. Default is to add new
packages at the end (last). Using first, new packages are added at the start.

duplicate(+Action)
Determines what happens if a pack with the same name is already attached. Default is
warning, which prints a warning and ignores the new pack. Other options are keep,
which is like warning but operates silently and replace, which detaches the old pack
and attaches the new.

replace(+Boolean)
If true, unregister all packs before registering the new packs.

SWI-Prolog 9.3 Reference Manual

576 CHAPTER 15. PACKS: COMMUNITY ADD-ONS

The predicate attach packs/2 can be used to attach packages that are bundled with an
application. With the option replace(true), attach packs/2 ensures that the application
only relies on bundled packs.

pack attach(+PackDir, +Options)
Attach a single package in PackDir. PackDir is expected to contain a file ‘pack.pl‘ with the
pack metadata and a ‘prolog‘ directory. Options processed:

duplicate(+Action)
What to do if the same package is already installed in a different directory. Action is one
of

warning
Warn and ignore the package.

keep
Silently ignore the package.

replace
Unregister the existing and insert the new package

search(+Where)
Determines the order of searching package library directories. Default is last, alterna-
tive is first.

15.3 library(prolog pack): A package manager for Prolog

The library(prolog_pack) provides the SWI-Prolog package manager. This library lets you
inspect installed packages, install packages, remove packages, etc. This library complemented by the
built-in predicates such as attach packs/2 that makes installed packages available as libraries.

The important functionality of this library is encapsulated in the app pack. For help, run

swipl pack help

pack list installed [det]

List currently installed packages and report possible dependency issues.

pack info(+Pack)
Print more detailed information about Pack.

pack list(+Query) [det]

pack list(+Query, +Options) [det]

pack search(+Query) [det]

Query package server and installed packages and display results. Query is matches case-
insensitively against the name and title of known and installed packages. For each matching
package, a single line is displayed that provides:

• Installation status

SWI-Prolog 9.3 Reference Manual

15.3. LIBRARY(PROLOG PACK): A PACKAGE MANAGER FOR PROLOG 577

– p: package, not installed
– i: installed package; up-to-date with public version
– a: as i, but installed only as dependency
– U: installed package; can be upgraded
– A: installed package; newer than publically available
– l: installed package; not on server

• Name@Version

• Name@Version(ServerVersion)

• Title

Options processed:

installed(true)
Only list packages that are locally installed. Contacts the server to compare our local
version to the latest available version.

outdated(true)
Only list packages that need to be updated. This option implies installed(true).

server(Server|false)
If false, do not contact the server. This implies installed(true). Otherwise, use
the given pack server.

Hint: ?- pack_list(’’). lists all known packages.

The predicates pack list/1 and pack search/1 are synonyms. Both contact the pack-
age server at https://www.swi-prolog.org to find available packages. Contacting the
server can be avoided using the server(false) option.

pack install(+Spec:atom) [det]

pack install(+SpecOrList, +Options) [det]

Install one or more packs from SpecOrList. SpecOrList is a single specification or a list of
specifications. A specification is one of

• A pack name. This queries the pack repository at https://www.swi-prolog.org

• Archive file name

• A http(s) URL of an archive file name. This URL may contain a star (*) for the
version. In this case pack install/1 asks for the directory content and selects the
latest version.

• An https GIT URL

• A local directory name given as file:// URL

• ’.’, in which case a relative symlink is created to the current directory (all other options
for Spec make a copy of the files). Installation using a symlink is normally used during
development of a pack.

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org
https://www.swi-prolog.org

578 CHAPTER 15. PACKS: COMMUNITY ADD-ONS

Processes the options below. Default options as would be used by pack install/1 are used
to complete the provided Options. Note that pack install/2 can be used through the SWI-
Prolog command line app pack as below. Most of the options of this predicate are available as
command line options.

swipl pack install <name>

Options:

url(+URL)
Source for downloading the package

pack directory(+Dir)
Directory into which to install the package.

global(+Boolean)
If true, install in the XDG common application data path, making the pack accessible
to everyone. If false, install in the XDG user application data path, making the pack
accessible for the current user only. If the option is absent, use the first existing and
writable directory. If that doesn’t exist find locations where it can be created and prompt
the user to do so.

insecure(+Boolean)
When true (default false), do not perform any checks on SSL certificates when
downloading using https.

interactive(+Boolean)
Use default answer without asking the user if there is a default action.

silent(+Boolean)
If true (default false), suppress informational progress messages.

upgrade(+Boolean)
If true (default false), upgrade package if it is already installed.

rebuild(Condition)
Rebuild the foreign components. Condition is one of if_absent (default, do nothing
if the directory with foreign resources exists), make (run make) or true (run ‘make
distclean‘ followed by the default configure and build steps).

test(Boolean)
If true (default), run the pack tests.

git(+Boolean)
If true (default false unless URL ends with .git), assume the URL is a GIT reposi-
tory.

link(+Boolean)
Can be used if the installation source is a local directory and the file system supports
symbolic links. In this case the system adds the current directory to the pack registration
using a symbolic link and performs the local installation steps.

version(+Version)
Demand the pack to satisfy some version requirement. Version is as defined by
require version/3. For example ’1.5’ is the same as >=(’1.5’).

branch(+Branch)
When installing from a git repository, clone this branch.

SWI-Prolog 9.3 Reference Manual

15.3. LIBRARY(PROLOG PACK): A PACKAGE MANAGER FOR PROLOG 579

commit(+Commit)
When installing from a git repository, checkout this commit. Commit is either a hash, a
tag, a branch or ’HEAD’.

build type(+Type)
When building using CMake, use -DCMAKE_BUILD_TYPE=Type. Default is the build
type of Prolog or Release.

register(+Boolean)
If true (default), register packages as downloaded after performing the download. This
contacts the server with the meta-data of each pack that was downloaded. The server will
either register the location as a new version or increment the download count. The server
stores the IP address of the client. Subsequent downloads of the same version from the
same IP address are ignored.

server(+URL)
Pack server to contact. Default is the setting prolog_pack:server, by default set to
https://www.swi-prolog.org/pack/

Non-interactive installation can be established using the option interactive(false). It
is adviced to install from a particular trusted URL instead of the plain pack name for unattented
operation.

pack install local(:Spec, +Dir, +Options) [det]

Install a number of packages in a local directory. This predicate supports installing packages
local to an application rather than globally.

pack url file(+URL, -File) [det]

True if File is a unique id for the referenced pack and version. Normally, that is simply the base
name, but GitHub archives destroy this picture. Needed by the pack manager in the web server.

pack rebuild [det]

pack rebuild(+Pack) [det]

Rebuild possible foreign components of Pack. The predicate pack rebuild/0 rebuilds all
registered packs.

pack upgrade(+Pack) [semidet]

Upgrade Pack. Shorthand for pack_install(Pack, [upgrade(true)]).

pack remove(+Name) [det]

pack remove(+Name, +Options) [det]

Remove the indicated package. If packages depend (indirectly) on this pack, ask to remove
these as well. Options:

interactive(false)
Do not prompt the user.

dependencies(Boolean)
If true delete dependencies without asking.

pack publish(+Spec, +Options) [det]

Publish a package. There are two ways typical ways to call this. We recommend developing a
pack in a GIT repository. In this scenario the pack can be published using

SWI-Prolog 9.3 Reference Manual

580 CHAPTER 15. PACKS: COMMUNITY ADD-ONS

?- pack_publish(’.’, []).

Alternatively, an archive file has been uploaded to a public location. In this scenario we can
publish the pack using

?- pack_publish(URL, [])

In both scenarios, pack publish/2 by default creates an isolated environment and installs
the package in this directory from the public URL. On success it triggers the pack server to
register the URL as a new pack or a new release of a pack.

Packs may also be published using the app pack, e.g.

swipl pack publish .

Options:

git(Boolean)
If true, and Spec is a git managed directory, install using the remote repo.

sign(Boolean)
Sign the repository with the current version. This runs git tag -s <tag>.

force(Boolean)
Force the git tag. This runs git tag -f <tag>.

branch(+Branch)
Branch used for releases. Defined by git default branch/2 if not specified.

register(+Boolean)
If false (default true), perform the installation, but do not upload to the server. This
can be used for testing.

isolated(+Boolean)
If true (default), install and build all packages in an isolated package directory. If
false, use other packages installed for the environment. The latter may be used to
speedup debugging.

pack directory(+Dir)
Install the temporary packages in Dir. If omitted pack publish/2 creates a temporary
directory and deletes this directory after completion. An explict target Dir is created if it
does not exist and is not deleted on completion.

clean(+Boolean)
If true (default), clean the destination directory first

pack property(?Pack, ?Property) [nondet]

True when Property is a property of an installed Pack. This interface is intended for programs
that wish to interact with the package manager. Defined properties are:

directory(Directory)
Directory into which the package is installed

SWI-Prolog 9.3 Reference Manual

15.4. STRUCTURE OF A PACK 581

version(Version)
Installed version

title(Title)
Full title of the package

author(Author)
Registered author

download(URL)
Official download URL

readme(File)
Package README file (if present)

todo(File)
Package TODO file (if present)

15.4 Structure of a pack

A pack is a directory that has two obligatory components:

1. A directory named prolog. When the pack is attached, this directory is added to
the library file search path. This implies that any .pl file that appears in this
directory can be loaded into Prolog using :- use module(library(file)).
Alternatively, a file from a specific package can be loaded using e.g.,
:- use module(pack(environ/prolog/environ)).

2. A file pack.pl. This file provides the meta data for the pack. See section 15.5.1 for details.

In addition, a pack may, and often does, include foreign code. The current system provides support
for classical Unix make files, GNU autoconf/automake and CMake. See section 15.5.2 for details.
This build infrastructure is also used to test the package.

A pack can be made accessible in two ways

1. As an archive file. This file must be named as below, where version is a dotted version number
and ⟨ext⟩ is either .tgz (gzipped tar archive) or .zip.

<pack>-<version>.<ext>

The pack contains the contents of the package. The root of the archive is identified by locat-
ing the file pack.pl. Extraction ignores the path leading to this file. Typically, the archive
contains a single directory named after the package name without version.

Installing packs from archives requires that SWI-Prolog has the archive extension installed.
When a package is registered with the central package server the server identifies it by the SHA1
hash of the archive. It is therefore important that the archive is never modified after registration.
If any modification is required (including comments, documentation, etc,) the user must create
a new version.

2. A git repository. This is now the preferred option because it provides a persistent location and
easy version management.

SWI-Prolog 9.3 Reference Manual

582 CHAPTER 15. PACKS: COMMUNITY ADD-ONS

15.5 Developing a pack

We recommend using GIT for developing SWI-Prolog packages. To start a new package, invent a
name and verify that the name is not yet in use at The pack landing page. Create a directory with this
name, a sub-directory prolog and a the metadata file pack.pl that contains at least the name and
version of the pack. Below is a simple example. See section 15.5.1 for all possible metadata fields.

name(hello).
version(’1.0.0’).
title(’Hello world’).
keywords([demo]).
author(’Bob Programmer, ’bob123@programmer.me.).
download(’https://github/bob123/hello.git’).

Now, add the Prolog libraries provided to the prolog directory. While doing so, please pay attention
to the points below. If your are looking for examples of well structured libraries, please look at the
system libraries.

• Only add module files to the prolog directory.

• Be aware that the modules your pack provides are globally accessible as library(File). Thus,
make sure the name is fairly unique and the module name is typically the same as the base name
of the file.

• Modules that need not be immediately visible to the user should be placed in a subdirectory.
Typically one uses the pack name to name the subdirectory.1 Use e.g., pack ⟨name⟩ for the
module names of the private files.

• Consider documenting the files using PlDoc.

Once the pack is ready for a very first test, we can make it accessible using the command below.
On non-Windows systems, this makes the pack accessible using a symbolic link from your personal
pack directory to this directory.

swipl pack install .

After this command the new libraries should be available when you start a new SWI-Prolog
process. Another way to make the pack accessible is by using the pack search path (see
file search path/2). The command (from the pack directory) is

swipl -p pack=..

1Using e.g., private is not a good idea because the private directory of each pack using this would be available as
library(Pack/private).

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/pack/list

15.5. DEVELOPING A PACK 583

15.5.1 The pack meta data

A pack must have a file pack.pl in its root directory. The file contains Prolog terms. Defined terms
are below. The argument types are types registered with must be/2 and described in the running
text.

name(atom)
Name of the pack. This should be the same as the directory name. Names can be constructed
from the ASCII letters, underscore and digits, e.g., [a-zA-Z9-0_]+

title(atom)
Short summary of the package. Do not use line breaks and limit respect at maximum length of
about 40 characters.

keywords(list(atom))
List of keywords that help finding your pack. There is no fixed set of keywords to choose from.

description(list(atom))
Longer description as a list of lines.

version(version)
Current version of the pack. This is a list of integers separated by dots. There is no limit to the
number of sub revisions.

author(atom, email or url or empty)
Original author of the code. If the contact address is unknown it may be omitted (empty atom).
Repeat this term for multiple authors.

maintainer(atom, email or url)
packager(atom, email or url)

As author, but the contact cannot be empty. May be repeated.

pack version(nonneg)
Package convention number. Currently 1 (default) or 2. Version 2 provides better support for
building foreign extensions.

home(atom)
Location of th home page. This is typically a URL.

download(atom)
Location for downloading. This is either the URL of the GIT repository or a wildcard URL for
downloading the archive, e.g., https://me.com/packs/mypack-*.zip. An upgrade
request fetches the https://me.com/packs/, expecting an HTML page with links to the
available versions. It then selects the latest version.

provides(atom)
Announce that the pack provides facilities identified by the given token. Optionally, the token
may be given a version using @(Token,Version). A pack implicitly provides @(Pack-
Name,PackVersion). The supplied tokens operate in the same name space as packages and thus
the same care must be taken to select a name. Multiple of these claims may be present.

SWI-Prolog 9.3 Reference Manual

https://me.com/packs/mypack-*.zip
https://me.com/packs/

584 CHAPTER 15. PACKS: COMMUNITY ADD-ONS

requires(dependency)
The pack depends on the availability of Dependency. The Dependency is a token, normally the
name of another package. See provides. The dependency may be further refined by writing
Token Cmp Version, where Cmp is one of Prolog’s standard numerical comparison
operators. See cmp versions/3. This metadata is also used to state requirements on Prolog.
See section 15.5.1. Multiple requirements are expressed with multiple claims.

conflicts(dependency)
The pack cannot be use together with the indicated Dependency. This is the negation of
requires.

replaces(atom)
This pack replaces some other pack.

autoload(boolean)
If true, add the library for the package as autoload library. This implies that the exported
predicates may be used without explicitly importing the library. Use with care.

Pack requirements on Prolog

The file pack.pl may contain requires(Requirement) statements. Normally, Requirement is a
pack or token, optionally with a version requirement. The requirement prolog is reserved for re-
quirements on the Prolog version while prolog:Feature may be used to demand specific features.
Feature matching is described with require prolog version/2. Multiple requirements on Pro-
log must all be true. Below are some examples

requires(prolog >= ’9.2’). % 9.2.0 or later
requires(prolog:threads). % flag threads = true
requires(prolog:library(socket)). % library(socket) exists
requires(prolog:bounded(false)). % flag bounded = false

15.5.2 Packs with foreign code

Many packs include C or C++ resources. Such packs include the C or C++ resources in a subdirectory
of the pack. There are no restrictions for naming this subdirectory or structuring the source files in this
directory. The build process must create native modules in the directory lib/⟨arch⟩, where ⟨arch⟩ is
the architecture as obtained by the Prolog flag arch.

The build process identifies control files that tell the package manager which build tool to use.
The package manager populates the process environment with variables that provide details about the
running Prolog instance. This environment is saved in a file buildenv.sh in the pack root or build
directory. By sourcing this file, the user may run the build tools by hand for debugging purposes.

The build process consists of five steps that are described below

dependencies
This step currently only supports conan. It is executed if either conanfile.txt or
conanfile.py is found in the root directory of the pack.

SWI-Prolog 9.3 Reference Manual

15.5. DEVELOPING A PACK 585

configure
This preparation step is executed if one of CMakeLists.txt (cmake), configure,
configure.in (autoconf), configure.ac or Makefile.am (automake) are
found. The program to manage them is in parenthesis.

build
Build the process. When configured using (cmake) this will use (cmake). Otherwise either
Makefile or makefile is expected and Unix make is used to build the process.

test
Test the project. Either uses cmake or the GNU convention make check.

install
Install the project. Either uses cmake or the GNU convention make install.

While running the above tools, the environment is populated. The names of the variables provided
depends on the pack version(Version) metadata. We give the names for version 2, with the names
for version 1 in parenthesis if this differs from the version 2 name.

PATH
Contains the environment path with the directory holding the currently running SWI-Prolog
instance prepended in front of it. As a result, swipl is always present and runs the same
SWI-Prolog instance as the current Prolog process.

SWIPL
Contains the absolute file name of the running executable.

SWIPL PACK VERSION
Version of the pack system (1 or 2). If not present we must assume ‘1’.

SWIPL VERSION (SWIPLVERSION)
Contains the numeric SWI-Prolog version defined as Major×10000+Minor×100+Patch

SWIPL HOME DIR (SWIHOME)
Contains the directory holding the SWI-Prolog home.

SWIPL ARCH (SWIARCH)
contains the machine architecture identifier.

SWIPL MODULE DIR (PACKSODIR)
contains the destination directory for shared objects/DLLs relative to a Prolog pack, i.e.,
lib/\$SWIARCH.

SWIPL MODULE LIB (SWISOLIB)
The SWI-Prolog library or an empty string when it is not required to link modules against this
library (e.g., ELF systems)

SWIPL LIB (SWILIB)
The SWI-Prolog library we need to link to for programs that embed SWI-Prolog (normally
-lswipl)

SWI-Prolog 9.3 Reference Manual

586 CHAPTER 15. PACKS: COMMUNITY ADD-ONS

SWIPL INCLUDE DIRS
CMake style variable that contains the directory holding SWI-Prolog.h, SWI-Stream.h
and SWI-cpp2.h.

SWIPL LIBRARIES DIR
CMake style variable that contains the directory holding libswipl

SWIPL CC (CC)
C compiler used to build SWI-Prolog.

SWIPL CXX (CXX)
C++ compiler used to build SWI-Prolog.

SWIPL LD (LD)
Linker used to link SWI-Prolog.

SWIPL CFLAGS (CFLAGS)
C-Flags for building extensions. Always contains -ISWIPL-INCLUDE-DIR.

SWIPL MODULE LDFLAGS (LDSOFLAGS)
Link flags for linking modules.

SWIPL MODULE EXT (SOEXT)
File name extension for modules (e.g., .so or .dll)

SWIPL PREFIX (PREFIX)
Install prefix for global binaries, libraries and include files.

Compiling a foreign extension using a simple Makefile

If the package requires some C code to be compiled that has no dependencies and needs no configu-
ration it is probably easiest to use a simple Unix make file. We assume pack version(2). Here is
a simple Makefile. We assume the pack contains a file c/environ.c that contains the C source.
Following the GNU guidelines, the Makefile must define the following targets:

all (default)
Build the foreign extension. In this very simple case we build the resulting module directly in
the target directory.

check
Test the package. This is executed after the default build target.

install
Install the package. In this case this does nothing.

clean
Clean the package. This target disposes intermediate build products.

distclean
Restore the package to its fully clean state. This implies that all built products and intermediate
build products are removed. The distclean target is used by pack rebuild/1.

SWI-Prolog 9.3 Reference Manual

15.5. DEVELOPING A PACK 587

MODULE= $(SWIPL_MODULE_DIR)/environ.$(SOEXT)
CFLAGS= $(SWIPL_CFLAGS)

all: $(MODULE)

OBJ=c/environ.o

$(MODULE): $(OBJ)
mkdir -p $(SWIPL_MODULE_DIR)
$(SWIPL_LD) $(SWIPL_MODULE_LDFLAGS) -o $@ $(OBJ) $(SWIPL_MODULE_LIB)

check::
$(SWIPL) -g run_tests -t halt test/test_environ.pl

install::
clean:

rm -f $(OBJ)
distclean: clean

rm -f $(MODULE)

Publishing a pack

As described in section 15.4, a pack is distributed either as an archive file or as a GIT repository. We
strongly encourage using a GIT repository as that gives good version and provenance support. Packs
may be published by hand by making the archive or git repository available from a globally accessible
place on the internet and installing the pack from this location. This process is streamlined, notably
for GIT packs using pack publish/2 and the app pack. To publish a pack a local GIT repository
that has publicly accessible origin,

1. Update version(Version) in pack.pl

2. Commit all changes, make sure the the repository is clean.

3. Run

swipl pack publish .

This will

1. Verify the repository is clean and on the default branch.

2. Tag the repository with V⟨version⟩. By default, the tag will be signed. Please setup signing for
GIT or use the “–no-sign“ option.

3. Push the repository and release tag.

4. Figure out the download location, either from the download(URL) metadata or the GIT remote
information.

SWI-Prolog 9.3 Reference Manual

588 CHAPTER 15. PACKS: COMMUNITY ADD-ONS

5. Install the package and its dependencies in a temporary isolated pack environment.

6. On success, register the pack with the server.

7. Delete the isolated pack environment.

Similarly, a pack can be published from a public archive using the command below. When using
an archive, never change the content of the archive but, instead, create a new archive with a new
version.

swipl pack publish URL

Compiling a foreign extension using CMake

If the package is more complicated, a simple Makefile typically does not suffice. In this case we have
two options. One is to use the GNU autoconf or automake. However, cmake is getting more
popular and provides much better support for non-POSIX platforms, e.g., Windows. This section
discusses building the same package as section 15.5.2 using cmake.

To use cmake, add the content below as the file CMakeLists.txt to the root directory of the
pack. SWI-Prolog ships with a cmake include file named swipl.cmake that deals with most of
the configuration issues. Comments in the file below explain the various steps of the process.

cmake_minimum_required(VERSION 3.10)
project(swipl-pack-environ)

Include swipl.cmake from the running SWI-Prolog’s home
list(INSERT CMAKE_MODULE_PATH 0 $ENV{SWIPL_HOME_DIR}/cmake)
include(swipl)

Create the library as a CMake module
add_library(environ MODULE c/environ.c)

Link the library to SWI-Prolog. This also removes the ‘lib‘ prefix
from the target on systems that define a common library file prefix
target_link_swipl(environ)

Install the foreign target. ‘${swipl_module_dir}‘ contains the
directory for installing modules for this architecture.

install(TARGETS environ
DESTINATION ${CMAKE_CURRENT_SOURCE_DIR}/${swipl_module_dir})

Run tests. This is executed before the pack is installed.
swipl_test(name) runs Prolog with the command line below.
#
swipl -p foreign=${CMAKE_CURRENT_SOURCE_DIR}/${swipl_module_dir} \
-p library=${CMAKE_CURRENT_SOURCE_DIR}/prolog \

SWI-Prolog 9.3 Reference Manual

15.5. DEVELOPING A PACK 589

--on-error=status \
-g test_${name} \
-t halt \
${CMAKE_CURRENT_SOURCE_DIR}/test/test_${name}.pl
#
This implies that a test ‘name‘ must be defined in a file
‘test/test_${name}.pl‘, which exports a predicate ‘test_${name}‘. The
test succeeds if this predicate succeeds and no error messages are
printed.

enable_testing()
swipl_add_test(environ)

15.5.3 Updating a package

If a package needs a revision to fix bugs or add functionality it needs to be updated. First, we create a
development environment using

1. Clone the git repository that provides the pack.

2. Install the pack as a link using the command below. If the pack contains foreign build scripts,
this creates a file buildenv.sh that contains the environment variables for building the pack.

?- pack_install(.).

Next, we can edit the pack sources and rebuild it the chosen build tools after running
source buildenv.sh to set the appropriate environment variables. After validating that the
pack works as expected follow the instructions in section 15.5.2 to publish the new version.

SWI-Prolog 9.3 Reference Manual

The SWI-Prolog library A
This chapter documents the SWI-Prolog library. As SWI-Prolog provides auto-loading, there is little
difference between library predicates and built-in predicates. Part of the library is therefore docu-
mented in the rest of the manual. Library predicates differ from built-in predicates in the following
ways:

• User definition of a built-in leads to a permission error, while using the name of a library pred-
icate is allowed.

• If autoloading is disabled explicitly or because trapping unknown predicates is disabled (see
unknown/2 and current prolog flag/2), library predicates must be loaded explicitly.

• Using libraries reduces the footprint of applications that don’t need them.

The documentation of the library has just started. Material from the standard packages
should be moved here, some material from other parts of the manual should be moved
too and various libraries are not documented at all.

A.1 library(aggregate): Aggregation operators on backtrackable pred-
icates

Compatibility Quintus, SICStus 4. The forall/2 is a SWI-Prolog built-in and term variables/3
is a SWI-Prolog built-in with different semantics. The foldall/4 primitive is a SWI-Prolog
addition.

To be done
- Analysing the aggregation template and compiling a predicate for the list aggregation can be done at
compile time.
- aggregate all/3 can be rewritten to run in constant space using non-backtrackable assignment
on a term.

This library provides aggregating operators over the solutions of a predicate. The operations are
a generalisation of the bagof/3, setof/3 and findall/3 built-in predicates. Aggregations
that can be computed incrementally avoid findall/3 and run in constant memory. The defined
aggregation operations are counting, computing the sum, minimum, maximum, a bag of solutions and
a set of solutions. We first give a simple example, computing the country with the smallest area:

smallest_country(Name, Area) :-
aggregate(min(A, N), country(N, A), min(Area, Name)).

There are four aggregation predicates (aggregate/3, aggregate/4, aggregate all/3
and aggregate/4), distinguished on two properties.

SWI-Prolog 9.3 Reference Manual

A.1. LIBRARY(AGGREGATE): AGGREGATION OPERATORS ON BACKTRACKABLE
PREDICATES 591

• aggregate vs. aggregate all
The aggregate predicates use setof/3 (aggregate/4) or bagof/3 (aggregate/3),
dealing with existential qualified variables (VarˆGoal) and providing multiple solu-
tions for the remaining free variables in Goal. The aggregate all/3 predicate uses
findall/3, implicitly qualifying all free variables and providing exactly one solution, while
aggregate all/4 uses sort/2 over solutions that Discriminator (see below) generated
using findall/3.

• The Discriminator argument
The versions with 4 arguments deduplicate redundant solutions of Goal. Solutions for which
both the template variables and Discriminator are identical will be treated as one solution. For
example, if we wish to compute the total population of all countries, and for some reason
country(belgium, 11000000) may succeed twice, we can use the following to avoid
counting the population of Belgium twice:

aggregate(sum(P), Name, country(Name, P), Total)

All aggregation predicates support the following operators below in Template. In addition, they
allow for an arbitrary named compound term, where each of the arguments is a term from the list
below. For example, the term r(min(X), max(X)) computes both the minimum and maximum
binding for X.

count
Count number of solutions. Same as sum(1).

sum(Expr)
Sum of Expr for all solutions.

min(Expr)
Minimum of Expr for all solutions.

min(Expr, Witness)
A term min(Min, Witness), where Min is the minimal version of Expr over all solutions,
and Witness is any other template applied to solutions that produced Min. If multiple solutions
provide the same minimum, Witness corresponds to the first solution.

max(Expr)
Maximum of Expr for all solutions.

max(Expr, Witness)
As min(Expr, Witness), but producing the maximum result.

set(X)
An ordered set with all solutions for X.

bag(X)
A list of all solutions for X.

SWI-Prolog 9.3 Reference Manual

592 APPENDIX A. THE SWI-PROLOG LIBRARY

Acknowledgements
The development of this library was sponsored by SecuritEase, http://www.securitease.

com

aggregate(+Template, :Goal, -Result) [nondet]

Aggregate bindings in Goal according to Template. The aggregate/3 version performs
bagof/3 on Goal.

aggregate(+Template, +Discriminator, :Goal, -Result) [nondet]

Aggregate bindings in Goal according to Template. The aggregate/4 version performs
setof/3 on Goal.

aggregate all(+Template, :Goal, -Result) [semidet]

Aggregate bindings in Goal according to Template. The aggregate all/3 version per-
forms findall/3 on Goal. Note that this predicate fails if Template contains one or more of
min(X), max(X), min(X,Witness) or max(X,Witness) and Goal has no solutions,
i.e., the minimum and maximum of an empty set is undefined.

The Template values count, sum(X), max(X), min(X), max(X,W) and min(X,W) are
processed incrementally rather than using findall/3 and run in constant memory.

See also foldall/4 to ”fold” over all answers.

aggregate all(+Template, +Discriminator, :Goal, -Result) [semidet]

Aggregate bindings in Goal according to Template. The aggregate all/4 version per-
forms findall/3 followed by sort/2 on Goal. See aggregate all/3 to understand
why this predicate can fail.

foldall(:Folder, :Goal, +V0, -V) [det]

Use Folder to fold V0 to V using all answers of Goal. This predicate generates all answers
for Goal and for each answer it calls call(Folder,V0,V1). This predicate provides
behaviour similar to aggregate all/3-4, but operates in constant space and allows
for custom aggregation (Folder) operators. The example below uses plus/3 to realise
aggregate_all(sum(X), between(1,10,X), Sum).

?- foldall(plus(X), between(1,10,X), 0, Sum).
Sum = 55

The implementation uses nb setarg/3 for non-backtrackable state updates.

See also aggregate all/3-4, foldl/4-7, nb setarg/3.

foreach(:Generator, :Goal)
True when the conjunction of instances of Goal created from solutions for Generator is true.
Except for term copying, this could be implemented as below.

foreach(Generator, Goal) :-
findall(Goal, Generator, Goals),
maplist(call, Goals).

SWI-Prolog 9.3 Reference Manual

http://www.securitease.com
http://www.securitease.com

A.1. LIBRARY(AGGREGATE): AGGREGATION OPERATORS ON BACKTRACKABLE
PREDICATES 593

The actual implementation uses findall/3 on a template created from the variables shared
between Generator and Goal. Subsequently, it uses every instance of this template to instantiate
Goal, call Goal and undo only the instantiation of the template and not other instantiations
created by running Goal. Here is an example:

?- foreach(between(1,4,X), dif(X,Y)), Y = 5.
Y = 5.
?- foreach(between(1,4,X), dif(X,Y)), Y = 3.
false.

The predicate foreach/2 is mostly used if Goal performs backtrackable destructive assign-
ment on terms. Attributed variables (underlying constraints) are an example. Another example
of a backtrackable data structure is in library(hashtable). If we care only about the
side effects (I/O, dynamic database, etc.) or the truth value of Goal, forall/2 is a faster and
simpler alternative. If Goal instantiates its arguments it is will often fail as the argument cannot
be instantiated to multiple values. It is possible to incrementally grow an argument:

?- foreach(between(1,4,X), member(X, L)).
L = [1,2,3,4|_].

Note that SWI-Prolog up to version 8.3.4 created copies of Goal using copy term/2 for each
iteration, this makes the current implementation unable to properly handle compound terms (in
Goal’s arguments) that share variables with the Generator. As a workaround you can define a
goal that does not use compound terms, like in this example:

mem(E,L) :- % mem/2 hides the compound argument from foreach/2
member(r(E),L).

?- foreach(between(1,5,N), mem(N,L)).

free variables(:Generator, +Template, +VarList0, -VarList) [det]

Find free variables in bagof/setof template. In order to handle variables properly, we have to
find all the universally quantified variables in the Generator. All variables as yet unbound are
universally quantified, unless

1. they occur in the template

2. they are bound by XˆP, setof/3, or bagof/3

free_variables(Generator, Template, OldList, NewList) finds this set
using OldList as an accumulator.

author
- Richard O’Keefe
- Jan Wielemaker (made some SWI-Prolog enhancements)

license Public domain (from DEC10 library).
To be done

- Distinguish between control-structures and data terms.
- Exploit our built-in term variables/2 at some places?

SWI-Prolog 9.3 Reference Manual

594 APPENDIX A. THE SWI-PROLOG LIBRARY

sandbox:safe meta(+Goal, -Called) [semidet,multifile]

Declare the aggregate meta-calls safe. This cannot be proven due to the manipulations of the
argument Goal.

A.2 library(ansi term): Print decorated text to ANSI consoles
See also http://en.wikipedia.org/wiki/ANSI_escape_code

This library allows for exploiting the color and attribute facilities of most modern terminals using
ANSI escape sequences. This library provides the following:

• ansi format/3 allows writing messages to the terminal with ansi attributes.

• It defines the hook prolog:message line element/2, which provides ansi attributes
and hyperlinks for print message/2.

The behavior of this library is controlled by two Prolog flags:

[|](99, [111,108,111,114,95,116,101,114,109])
When true, activate the color output for this library. Otherwise simply call format/3.

[|](104, [121,112,101,114,108,105,110,107,95,116,101,114,109])
Emit terminal hyperlinks for url(Location) and url(URL, Label) elements of Prolog
messages.

ansi format(+ClassOrAttributes, +Format, +Args) [det]

Format text with ANSI attributes. This predicate behaves as format/2 using Format and
Args, but if the current_output is a terminal, it adds ANSI escape sequences according to
Attributes. For example, to print a text in bold cyan, do

?- ansi_format([bold,fg(cyan)], ’Hello ˜w’, [world]).

Attributes is either a single attribute, a list thereof or a term that is mapped to concrete at-
tributes based on the current theme (see prolog:console color/2). The attribute names
are derived from the ANSI specification. See the source for sgr code/2 for details. Some
commonly used attributes are:

bold

underline

fg(Color) , bg(Color) , hfg(Color) , hbg(Color)
For fg(Color) and bg(Color), the colour name can be ’#RGB’ or ’#RRGGBB’

fg8(Spec) , bg8(Spec)
8-bit color specification. Spec is a colour name, h(Color) or an integer 0..255.

SWI-Prolog 9.3 Reference Manual

http://en.wikipedia.org/wiki/ANSI_escape_code

A.2. LIBRARY(ANSI TERM): PRINT DECORATED TEXT TO ANSI CONSOLES 595

fg(R, G, B) , bg(R, G, B)
24-bit (direct color) specification. The components are integers in the range 0..255.

Defined color constants are below. default can be used to access the default color of the
terminal.

• black, red, green, yellow, blue, magenta, cyan, white

ANSI sequences are sent if and only if

• The current_output has the property tty(true) (see stream property/2).

• The Prolog flag color_term is true.

prolog:console color(+Term, -AnsiAttributes) [semidet,multifile]

Hook that allows for mapping abstract terms to concrete ANSI attributes. This hook is used by
theme files to adjust the rendering based on user preferences and context. Defaults are defined
in the file boot/messages.pl.

See also library(theme/dark) for an example implementation and the Term values used by the
system messages.

prolog:message line element(+Stream, +Term) [semidet,multifile]

Hook implementation that deals with ansi(+Attr, +Fmt, +Args) in message specifi-
cations.

ansi hyperlink(+Stream, +Location) [det]

ansi hyperlink(+Stream, +URL, +Label) [det]

Create a hyperlink for a terminal emulator. The file is fairly easy, but getting the line and
column across is not as there seems to be no established standard. The current implementation
emits, i.e., inserting a capital L before the line.

‘‘file://AbsFileName[#LLine[:Column]]‘‘

See also https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda

ansi get color(+Which, -RGB) [semidet]

Obtain the RGB color for an ANSI color parameter. Which is either a color alias or an integer
ANSI color id. Defined aliases are foreground and background. This predicate sends
a request to the console (user_output) and reads the reply. This assumes an xterm
compatible terminal.

Arguments
RGB is a term rgb(Red,Green,Blue). The color components are

integers in the range 0..65535.

SWI-Prolog 9.3 Reference Manual

https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda

596 APPENDIX A. THE SWI-PROLOG LIBRARY

A.3 library(apply): Apply predicates on a list
See also

- apply_macros.pl provides compile-time expansion for part of this library.
- http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm
- Unit test code in tests/library/test_apply.pl

To be done Add include/4, include/5, exclude/4, exclude/5

This module defines meta-predicates that apply a predicate on all members of a list.
All predicates support partial application in the Goal argument. This means that these calls are

identical:

?- maplist(=, [foo, foo], [X, Y]).
?- maplist(=(foo), [X, Y]).

include(:Goal, +List1, ?List2) [det]

Filter elements for which Goal succeeds. True if List2 contains those elements Xi of List1 for
which call(Goal, Xi) succeeds.

See also exclude/3, partition/4, convlist/3.
Compatibility Older versions of SWI-Prolog had sublist/3 with the same arguments and seman-

tics.

exclude(:Goal, +List1, ?List2) [det]

Filter elements for which Goal fails. True if List2 contains those elements Xi of List1 for which
call(Goal, Xi) fails.

See also include/3, partition/4

partition(:Pred, +List, ?Included, ?Excluded) [det]

Filter elements of List according to Pred. True if Included contains all elements for which
call(Pred, X) succeeds and Excluded contains the remaining elements.

See also include/3, exclude/3, partition/5.

partition(:Pred, +List, ?Less, ?Equal, ?Greater) [semidet]

Filter List according to Pred in three sets. For each element Xi of List, its destination is de-
termined by call(Pred, Xi, Place), where Place must be unified to one of <, = or >.
Pred must be deterministic.

See also partition/4

maplist(:Goal, ?List1)
maplist(:Goal, ?List1, ?List2)
maplist(:Goal, ?List1, ?List2, ?List3)
maplist(:Goal, ?List1, ?List2, ?List3, ?List4)

True if Goal is successfully applied on all matching elements of the list. The maplist family of
predicates is defined as:

SWI-Prolog 9.3 Reference Manual

http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

A.3. LIBRARY(APPLY): APPLY PREDICATES ON A LIST 597

maplist(G, [X_11, ..., X_1n],
[X_21, ..., X_2n],
...,
[X_m1, ..., X_mn]) :-

call(G, X_11, ..., X_m1),
call(G, X_12, ..., X_m2),
...
call(G, X_1n, ..., X_mn).

This family of predicates is deterministic iff Goal is deterministic and List1 is a proper list, i.e.,
a list that ends in [].

convlist(:Goal, +ListIn, -ListOut) [det]

Similar to maplist/3, but elements for which call(Goal, ElemIn, _) fails are omit-
ted from ListOut. For example (using library(yall)):

?- convlist([X,Y]>>(integer(X), Y is Xˆ2),
[3, 5, foo, 2], L).

L = [9, 25, 4].

Compatibility Also appears in YAP library(maplist) and SICStus library(lists).

foldl(:Goal, +List, +V0, -V)
foldl(:Goal, +List1, +List2, +V0, -V)
foldl(:Goal, +List1, +List2, +List3, +V0, -V)
foldl(:Goal, +List1, +List2, +List3, +List4, +V0, -V)

Fold an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”fold-left”), using columns
of m list elements as arguments for Goal. The foldl family of predicates is defined as
follows, with V0 an initial value and V the final value of the folding operation:

foldl(G, [X_11, ..., X_1n],
[X_21, ..., X_2n],
...,
[X_m1, ..., X_mn], V0, V) :-

call(G, X_11, ..., X_m1, V0, V1),
call(G, X_12, ..., X_m2, V1, V2),
...
call(G, X_1n, ..., X_mn, V<n-1>, V).

No implementation for a corresponding foldr is given. A foldr implementation would
consist in first calling reverse/2 on each of the m input lists, then applying the appropri-
ate foldl. This is actually more efficient than using a properly programmed-out recursive
algorithm that cannot be tail-call optimized.

scanl(:Goal, +List, +V0, -Values)
scanl(:Goal, +List1, +List2, +V0, -Values)

SWI-Prolog 9.3 Reference Manual

598 APPENDIX A. THE SWI-PROLOG LIBRARY

scanl(:Goal, +List1, +List2, +List3, +V0, -Values)
scanl(:Goal, +List1, +List2, +List3, +List4, +V0, -Values)

Scan an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”scan-left”), using columns
of m list elements as arguments for Goal. The scanl family of predicates is defined as
follows, with V0 an initial value and V the final value of the scanning operation:

scanl(G, [X_11, ..., X_1n],
[X_21, ..., X_2n],
...,
[X_m1, ..., X_mn], V0, [V0, V1, ..., Vn]) :-

call(G, X_11, ..., X_m1, V0, V1),
call(G, X_12, ..., X_m2, V1, V2),
...
call(G, X_1n, ..., X_mn, V<n-1>, Vn).

scanl behaves like a foldl that collects the sequence of values taken on by the Vx accumu-
lator into a list.

A.4 library(assoc): Association lists

Authors: Richard A. O’Keefe, L.Damas, V.S.Costa and Markus Triska

A.4.1 Introduction

An association list as implemented by this library is a collection of unique keys that are associated to
values. Keys must be ground, values need not be.

An association list can be used to fetch elements via their keys and to enumerate its elements in
ascending order of their keys.

This library uses AVL trees to implement association lists. This means that

• inserting a key

• changing an association

• fetching a single element

are all O(log(N)) worst-case (and expected) time operations, where N denotes the number of
elements in the association list.

The logarithmic overhead is often acceptable in practice. Notable advantages of association lists
over several other methods are:

• library(assoc) is written entirely in Prolog, making it portable to other systems

• the interface predicates fit the declarative nature of Prolog, avoiding destructive updates to terms

• AVL trees scale very predictably and can be used to represent sparse arrays efficiently.

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at

A.4. LIBRARY(ASSOC): ASSOCIATION LISTS 599

A.4.2 Creating association lists

An association list is created with one of the following predicates:

empty assoc(?Assoc) [semidet]

Is true if Assoc is the empty association list.

list to assoc(+Pairs, -Assoc) [det]

Create an association from a list Pairs of Key-Value pairs. List must not contain duplicate keys.

Errors domain_error(unique_key_pairs, List) if List contains duplicate keys

ord list to assoc(+Pairs, -Assoc) [det]

Assoc is created from an ordered list Pairs of Key-Value pairs. The pairs must occur in strictly
ascending order of their keys.

Errors domain_error(key_ordered_pairs, List) if pairs are not ordered.

A.4.3 Querying association lists

An association list can be queried with:

get assoc(+Key, +Assoc, -Value) [semidet]

True if Key-Value is an association in Assoc.

get assoc(+Key, +Assoc0, ?Val0, ?Assoc, ?Val) [semidet]

True if Key-Val0 is in Assoc0 and Key-Val is in Assoc.

max assoc(+Assoc, -Key, -Value) [semidet]

True if Key-Value is in Assoc and Key is the largest key.

min assoc(+Assoc, -Key, -Value) [semidet]

True if Key-Value is in assoc and Key is the smallest key.

gen assoc(?Key, +Assoc, ?Value) [nondet]

True if Key-Value is an association in Assoc. Enumerates keys in ascending order on backtrack-
ing.

See also get assoc/3.

A.4.4 Modifying association lists

Elements of an association list can be changed and inserted with:

put assoc(+Key, +Assoc0, +Value, -Assoc) [det]

Assoc is Assoc0, except that Key is associated with Value. This can be used to insert and change
associations.

del assoc(+Key, +Assoc0, ?Value, -Assoc) [semidet]

True if Key-Value is in Assoc0. Assoc is Assoc0 with Key-Value removed.

SWI-Prolog 9.3 Reference Manual

600 APPENDIX A. THE SWI-PROLOG LIBRARY

del min assoc(+Assoc0, ?Key, ?Val, -Assoc) [semidet]

True if Key-Value is in Assoc0 and Key is the smallest key. Assoc is Assoc0 with Key-Value
removed. Warning: This will succeed with no bindings for Key or Val if Assoc0 is empty.

del max assoc(+Assoc0, ?Key, ?Val, -Assoc) [semidet]

True if Key-Value is in Assoc0 and Key is the greatest key. Assoc is Assoc0 with Key-Value
removed. Warning: This will succeed with no bindings for Key or Val if Assoc0 is empty.

A.4.5 Conversion predicates

Conversion of (parts of) an association list to lists is possible with:

assoc to list(+Assoc, -Pairs) [det]

Translate Assoc to a list Pairs of Key-Value pairs. The keys in Pairs are sorted in ascending
order.

assoc to keys(+Assoc, -Keys) [det]

True if Keys is the list of keys in Assoc. The keys are sorted in ascending order.

assoc to values(+Assoc, -Values) [det]

True if Values is the list of values in Assoc. Values are ordered in ascending order of the key to
which they were associated. Values may contain duplicates.

A.4.6 Reasoning about association lists and their elements

Further inspection predicates of an association list and its elements are:

is assoc(+Assoc) [semidet]

True if Assoc is an association list. This predicate checks that the structure is valid, elements
are in order, and tree is balanced to the extent guaranteed by AVL trees. I.e., branches of each
subtree differ in depth by at most 1. Does not validate that keys are sufficiently instantiated to
ensure the tree remains valid if a key is further instantiated.

map assoc(:Pred, +Assoc) [semidet]

True if Pred(Value) is true for all values in Assoc.

map assoc(:Pred, +Assoc0, ?Assoc) [semidet]

Map corresponding values. True if Assoc is Assoc0 with Pred applied to all corresponding
pairs of of values.

A.5 library(broadcast): Broadcast and receive event notifications

The broadcast library was invented to realise GUI applications consisting of stand-alone compo-
nents that use the Prolog database for storing the application data. Figure A.1 illustrates the flow of
information using this design

The broadcasting service provides two services. Using the ‘shout’ service, an unknown number of
agents may listen to the message and act. The broadcaster is not (directly) aware of the implications.
Using the ‘request’ service, listening agents are asked for an answer one-by-one and the broadcaster
is allowed to reject answers using normal Prolog failure.

SWI-Prolog 9.3 Reference Manual

A.5. LIBRARY(BROADCAST): BROADCAST AND RECEIVE EVENT NOTIFICATIONS601

Interface
component

Database
manipulation

Prolog database

Broadcast

‘Ether’
Interface

component

listen

broadcast

assert/retract

Querying

Changed-messages

Figure A.1: Information-flow using broadcasting service

Shouting is often used to inform about changes made to a common database. Other messages can
be “save yourself” or “show this”.

Requesting is used to get information while the broadcaster is not aware who might be able to
answer the question. For example “who is showing X?”.

broadcast(+Term)
Broadcast Term. There are no limitations to Term, though being a global service, it is good
practice to use a descriptive and unique principal functor. All associated goals are started and
regardless of their success or failure, broadcast/1 always succeeds. Exceptions are passed.

broadcast request(+Term)
Unlike broadcast/1, this predicate stops if an associated goal succeeds. Backtracking
causes it to try other listeners. A broadcast request is used to fetch information without
knowing the identity of the agent providing it. C.f. “Is there someone who knows the age of
John?” could be asked using

...,
broadcast_request(age_of(’John’, Age)),

If there is an agent (listener) that registered an ‘age-of’ service and knows about the age of
‘John’ this question will be answered.

listen(+Template, :Goal)
Register a listen channel. Whenever a term unifying Template is broadcasted, call Goal. The
following example traps all broadcasted messages as a variable unifies to any message. It is
commonly used to debug usage of the library.

?- listen(Term, (writeln(Term),fail)).
?- broadcast(hello(world)).

SWI-Prolog 9.3 Reference Manual

602 APPENDIX A. THE SWI-PROLOG LIBRARY

hello(world)
true.

listen(+Listener, +Template, :Goal)
Declare Listener as the owner of the channel. Unlike a channel opened using listen/2,
channels that have an owner can terminate the channel. This is commonly used if an object is
listening to broadcast messages. In the example below we define a ‘name-item’ displaying the
name of an identifier represented by the predicate name of/2.

:- pce_begin_class(name_item, text_item).

variable(id, any, get, "Id visualised").

initialise(NI, Id:any) :->
name_of(Id, Name),
send_super(NI, initialise, name, Name,

message(NI, set_name, @arg1)),
send(NI, slot, id, Id),
listen(NI, name_of(Id, Name),

send(NI, selection, Name)).

unlink(NI) :->
unlisten(NI),
send_super(NI, unlink).

set_name(NI, Name:name) :->
get(NI, id, Id),
retractall(name_of(Id, _)),
assert(name_of(Id, Name)),
broadcast(name_of(Id, Name)).

:- pce_end_class.

unlisten(+Listener)
Deregister all entries created with listen/3 whose Listener unify.

unlisten(+Listener, +Template)
Deregister all entries created with listen/3 whose Listener and Template unify.

unlisten(+Listener, +Template, :Goal)
Deregister all entries created with listen/3 whose Listener, Template and Goal unify.

listening(?Listener, ?Template, ?Goal)
Examine the current listeners. This predicate is useful for debugging purposes.

SWI-Prolog 9.3 Reference Manual

A.6. LIBRARY(CHARSIO): I/O ON LISTS OF CHARACTER CODES 603

A.6 library(charsio): I/O on Lists of Character Codes
Compatibility The naming of this library is not in line with the ISO standard. We believe that the SWI-

Prolog native predicates form a more elegant alternative for this library.

This module emulates the Quintus/SICStus library charsio.pl for reading and writing from/to
lists of character codes. Most of these predicates are straight calls into similar SWI-Prolog primitives.
Some can even be replaced by ISO standard predicates.

format to chars(+Format, +Args, -Codes) [det]

Use format/2 to write to a list of character codes.

format to chars(+Format, +Args, -Codes, ?Tail) [det]

Use format/2 to write to a difference list of character codes.

write to chars(+Term, -Codes)
Write a term to a code list. True when Codes is a list of character codes written by write/1
on Term.

write to chars(+Term, -Codes, ?Tail)
Write a term to a code list. Codes\Tail is a difference list of character codes produced by
write/1 on Term.

atom to chars(+Atom, -Codes) [det]

Convert Atom into a list of character codes.

deprecated Use ISO atom codes/2.

atom to chars(+Atom, -Codes, ?Tail) [det]

Convert Atom into a difference list of character codes.

number to chars(+Number, -Codes) [det]

Convert Atom into a list of character codes.

deprecated Use ISO number codes/2.

number to chars(+Number, -Codes, ?Tail) [det]

Convert Number into a difference list of character codes.

read from chars(+Codes, -Term) [det]

Read Codes into Term.

Compatibility The SWI-Prolog version does not require Codes to end in a full-stop.

read term from chars(+Codes, -Term, +Options) [det]

Read Codes into Term. Options are processed by read term/3.

Compatibility sicstus

open chars stream(+Codes, -Stream) [det]

Open Codes as an input stream.

SWI-Prolog 9.3 Reference Manual

604 APPENDIX A. THE SWI-PROLOG LIBRARY

See also open string/2.

with output to chars(:Goal, -Codes) [det]

Run Goal as with once/1. Output written to current_output is collected in Codes.

with output to chars(:Goal, -Codes, ?Tail) [det]

Run Goal as with once/1. Output written to current_output is collected in Codes\Tail.

with output to chars(:Goal, -Stream, -Codes, ?Tail) [det]

Same as with output to chars/3 using an explicit stream. The difference list
Codes\Tail contains the character codes that Goal has written to Stream.

A.7 library(check): Consistency checking
See also

- gxref/0 provides a graphical cross referencer
- PceEmacs performs real time consistency checks while you edit
- library(prolog_xref) implements ‘offline’ cross-referencing
- library(prolog_codewalk) implements ‘online’ analysis

This library provides some consistency checks for the loaded Prolog program. The predicate
make/0 runs list undefined/0 to find undefined predicates in ‘user’ modules.

check [det]

Run all consistency checks defined by checker/2. Checks enabled by default are:

• list undefined/0 reports undefined predicates

• list trivial fails/0 reports calls for which there is no matching clause.

• list format errors/0 reports mismatches in format/2,3 templates and the list
of arguments.

• list redefined/0 reports predicates that have a local definition and a global defini-
tion. Note that these are not errors.

• list void declarations/0 reports on predicates with defined properties, but no
clauses.

• list autoload/0 lists predicates that will be defined at runtime using the autoloader.

• check predicate options/0 tests for options passed to predicates such as
open/4 that are unknown or are used with an invalid argument.

The checker can be expanded or restricted by modifying the dynamic multifile hook
checker/2.

The checker may be used in batch, e.g., for CI workflows by calling SWI-Prolog as be-
low. Note that by using -l to load the program, the program is not started if it used
initialization/2 of type main to start the program.

swipl -q --on-warning=status --on-error=status \
-g check -t halt -l myprogram.pl

SWI-Prolog 9.3 Reference Manual

A.7. LIBRARY(CHECK): CONSISTENCY CHECKING 605

list undefined [det]

list undefined(+Options) [det]

Report undefined predicates. This predicate finds undefined predicates by decompiling and
analyzing the body of all clauses. Options:

module class(+Classes)
Process modules of the given Classes. The default for classes is [user]. For example,
to include the libraries into the examination, use [user,library].

See also
- gxref/0 provides a graphical cross-referencer.
- make/0 calls list undefined/0

list autoload [det]

Report predicates that may be auto-loaded. These are predicates that are not defined, but will
be loaded on demand if referenced.

See also autoload/0
To be done This predicate uses an older mechanism for finding undefined predicates. Should be syn-

chronized with list undefined.

list redefined
Lists predicates that are defined in the global module user as well as in a normal module; that
is, predicates for which the local definition overrules the global default definition.

list cross module calls [det]

List calls from one module to another using Module:Goal where the callee is not defined
exported, public or multifile, i.e., where the callee should be considered private.

list void declarations [det]

List predicates that have declared attributes, but no clauses.

list trivial fails [det]

list trivial fails(+Options) [det]

List goals that trivially fail because there is no matching clause. Options:

module class(+Classes)
Process modules of the given Classes. The default for classes is [user]. For example,
to include the libraries into the examination, use [user,library].

trivial fail goal(:Goal) [multifile]

Multifile hook that tells list trivial fails/0 to accept Goal as valid.

list strings [det]

list strings(+Options) [det]

List strings that appear in clauses. This predicate is used to find portability issues for changing
the Prolog flag double_quotes from codes to string, creating packed string objects.
Warnings may be suppressed using the following multifile hooks:

• string predicate/1 to stop checking certain predicates

SWI-Prolog 9.3 Reference Manual

606 APPENDIX A. THE SWI-PROLOG LIBRARY

• valid string goal/1 to tell the checker that a goal is safe.

See also Prolog flag double_quotes.

list rationals [det]

list rationals(+Options) [det]

List rational numbers that appear in clauses. This predicate is used to find portability issues for
changing the Prolog flag rational_syntax to natural, creating rational numbers from
<integer>/<nonneg>. Options:

module class(+Classes)
Determines the modules classes processed. By default only user code is processed. See
prolog program clause/2.

arithmetic(+Bool)
If true (default false) also warn on rationals appearing in arithmetic expressions.

See also Prolog flag rational syntax and prefer_rationals.

list format errors [det]

list format errors(+Options) [det]

List argument errors for format/2,3.

string predicate(:PredicateIndicator) [multifile]

Multifile hook to disable list strings/0 on the given predicate. This is typically used for
facts that store strings.

valid string goal(+Goal) [semidet,multifile]

Multifile hook that qualifies Goal as valid for list strings/0. For example,
format("Hello world˜n") is considered proper use of string constants.

checker(:Goal, +Message:text) [nondet,multifile]

Register code validation routines. Each clause defines a Goal which performs a consistency
check executed by check/0. Message is a short description of the check. For example,
assuming the my_checks module defines a predicate list format mistakes/0:

:- multifile check:checker/2.
check:checker(my_checks:list_format_mistakes,

"errors with format/2 arguments").

The predicate is dynamic, so you can disable checks with retract/1. For example, to stop
reporting redefined predicates:

retract(check:checker(list_redefined,_)).

A.8 library(clpb): CLP(B): Constraint Logic Programming over
Boolean Variables

author Markus Triska

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at

A.8. LIBRARY(CLPB): CLP(B): CONSTRAINT LOGIC PROGRAMMING OVER
BOOLEAN VARIABLES 607

A.8.1 Introduction

This library provides CLP(B), Constraint Logic Programming over Boolean variables. It can be used
to model and solve combinatorial problems such as verification, allocation and covering tasks.

CLP(B) is an instance of the general CLP(X) scheme (section 8), extending logic programming
with reasoning over specialised domains.

The implementation is based on reduced and ordered Binary Decision Diagrams (BDDs).
Benchmarks and usage examples of this library are available from:

https://www.metalevel.at/clpb/
We recommend the following references for citing this library in scientific publications:

@inproceedings{Triska2016,
author = "Markus Triska",
title = "The {Boolean} Constraint Solver of {SWI-Prolog}:

System Description",
booktitle = "FLOPS",
series = "LNCS",
volume = 9613,
year = 2016,
pages = "45--61"

}

@article{Triska2018,
title = "Boolean constraints in {SWI-Prolog}:

A comprehensive system description",
journal = "Science of Computer Programming",
volume = "164",
pages = "98 - 115",
year = "2018",
note = "Special issue of selected papers from FLOPS 2016",
issn = "0167-6423",
doi = "https://doi.org/10.1016/j.scico.2018.02.001",
url = "http://www.sciencedirect.com/science/article/pii/S0167642318300273",
author = "Markus Triska",
keywords = "CLP(B), Boolean unification, Decision diagrams, BDD"

}

These papers are available from https://www.metalevel.at/swiclpb.pdf and
https://www.metalevel.at/boolean.pdf respectively.

A.8.2 Boolean expressions

A Boolean expression is one of:

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at/clpb/
https://www.metalevel.at/swiclpb.pdf
https://www.metalevel.at/boolean.pdf

608 APPENDIX A. THE SWI-PROLOG LIBRARY

0 false
1 true
variable unknown truth value
atom universally quantified variable
˜ Expr logical NOT
Expr + Expr logical OR
Expr * Expr logical AND
Expr # Expr exclusive OR
Var ˆ Expr existential quantification
Expr =:= Expr equality
Expr =\= Expr disequality (same as #)
Expr =< Expr less or equal (implication)
Expr >= Expr greater or equal
Expr < Expr less than
Expr > Expr greater than
card(Is,Exprs) cardinality constraint (see below)
+(Exprs) n-fold disjunction (see below)
*(Exprs) n-fold conjunction (see below)

where Expr again denotes a Boolean expression.
The Boolean expression card(Is,Exprs) is true iff the number of true expressions in the

list Exprs is a member of the list Is of integers and integer ranges of the form From-To. For
example, to state that precisely two of the three variables X, Y and Z are true, you can use
sat(card([2],[X,Y,Z])).

+(Exprs) and *(Exprs) denote, respectively, the disjunction and conjunction of all elements
in the list Exprs of Boolean expressions.

Atoms denote parametric values that are universally quantified. All universal quantifiers appear
implicitly in front of the entire expression. In residual goals, universally quantified variables always
appear on the right-hand side of equations. Therefore, they can be used to express functional depen-
dencies on input variables.

A.8.3 Interface predicates

The most frequently used CLP(B) predicates are:

sat(+Expr)
True iff the Boolean expression Expr is satisfiable.

taut(+Expr, -T)
If Expr is a tautology with respect to the posted constraints, succeeds with T = 1. If Expr cannot
be satisfied, succeeds with T = 0. Otherwise, it fails.

labeling(+Vs)
Assigns truth values to the variables Vs such that all constraints are satisfied.

The unification of a CLP(B) variable X with a term T is equivalent to posting the constraint
sat(X=:=T).

SWI-Prolog 9.3 Reference Manual

A.8. LIBRARY(CLPB): CLP(B): CONSTRAINT LOGIC PROGRAMMING OVER
BOOLEAN VARIABLES 609

A.8.4 Examples

Here is an example session with a few queries and their answers:

?- use_module(library(clpb)).
true.

?- sat(X*Y).
X = Y, Y = 1.

?- sat(X * ˜X).
false.

?- taut(X * ˜X, T).
T = 0,
sat(X=:=X).

?- sat(XˆYˆ(X+Y)).
sat(X=:=X),
sat(Y=:=Y).

?- sat(X*Y + X*Z), labeling([X,Y,Z]).
X = Z, Z = 1, Y = 0 ;
X = Y, Y = 1, Z = 0 ;
X = Y, Y = Z, Z = 1.

?- sat(X =< Y), sat(Y =< Z), taut(X =< Z, T).
T = 1,
sat(X=:=X*Y),
sat(Y=:=Y*Z).

?- sat(1#X#a#b).
sat(X=:=a#b).

The pending residual goals constrain remaining variables to Boolean expressions and are declar-
atively equivalent to the original query. The last example illustrates that when applicable, remaining
variables are expressed as functions of universally quantified variables.

A.8.5 Obtaining BDDs

By default, CLP(B) residual goals appear in (approximately) algebraic normal form (ANF). This
projection is often computationally expensive. We can set the Prolog flag clpb residuals to the
value bdd to see the BDD representation of all constraints. This results in faster projection to residual
goals, and is also useful for learning more about BDDs. For example:

?- set_prolog_flag(clpb_residuals, bdd).
true.

SWI-Prolog 9.3 Reference Manual

610 APPENDIX A. THE SWI-PROLOG LIBRARY

?- sat(X#Y).
node(3)- (v(X, 0)->node(2);node(1)),
node(1)- (v(Y, 1)->true;false),
node(2)- (v(Y, 1)->false;true).

Note that this representation cannot be pasted back on the toplevel, and its details are subject to
change. Use copy term/3 to obtain such answers as Prolog terms.

The variable order of the BDD is determined by the order in which the variables first appear in
constraints. To obtain different orders, we can for example use:

?- sat(+[1,Y,X]), sat(X#Y).
node(3)- (v(Y, 0)->node(2);node(1)),
node(1)- (v(X, 1)->true;false),
node(2)- (v(X, 1)->false;true).

A.8.6 Enabling monotonic CLP(B)

In the default execution mode, CLP(B) constraints are not monotonic. This means that adding con-
straints can yield new solutions. For example:

?- sat(X=:=1), X = 1+0.
false.

?- X = 1+0, sat(X=:=1), X = 1+0.
X = 1+0.

This behaviour is highly problematic from a logical point of view, and it may render declarative
debugging techniques inapplicable.

Set the flag clpb monotonic to true to make CLP(B) monotonic. If this mode is enabled,
then you must wrap CLP(B) variables with the functor v/1. For example:

?- set_prolog_flag(clpb_monotonic, true).
true.

?- sat(v(X)=:=1#1).
X = 0.

A.8.7 Example: Pigeons

In this example, we are attempting to place I pigeons into J holes in such a way that each hole contains
at most one pigeon. One interesting property of this task is that it can be formulated using only
cardinality constraints (card/2). Another interesting aspect is that this task has no short resolution
refutations in general.

In the following, we use Prolog DCG notation to describe a list Cs of CLP(B) constraints that
must all be satisfied.

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at/prolog/debugging
https://www.metalevel.at/prolog/debugging
https://www.metalevel.at/prolog/dcg

A.8. LIBRARY(CLPB): CLP(B): CONSTRAINT LOGIC PROGRAMMING OVER
BOOLEAN VARIABLES 611

:- use_module(library(clpb)).
:- use_module(library(clpfd)).

pigeon(I, J, Rows, Cs) :-
length(Rows, I), length(Row, J),
maplist(same_length(Row), Rows),
transpose(Rows, TRows),
phrase((all_cards(Rows,[1]),all_cards(TRows,[0,1])), Cs).

all_cards([], _) --> [].
all_cards([Ls|Lss], Cs) --> [card(Cs,Ls)], all_cards(Lss, Cs).

Example queries:

?- pigeon(9, 8, Rows, Cs), sat(*(Cs)).
false.

?- pigeon(2, 3, Rows, Cs), sat(*(Cs)),
append(Rows, Vs), labeling(Vs),
maplist(portray_clause, Rows).

[0, 0, 1].
[0, 1, 0].
etc.

A.8.8 Example: Boolean circuit

Consider a Boolean circuit that express the Boolean function XOR with 4 NAND gates. We can model
such a circuit with CLP(B) constraints as follows:

:- use_module(library(clpb)).

nand_gate(X, Y, Z) :- sat(Z =:= ˜(X*Y)).

xor(X, Y, Z) :-
nand_gate(X, Y, T1),
nand_gate(X, T1, T2),
nand_gate(Y, T1, T3),
nand_gate(T2, T3, Z).

Using universally quantified variables, we can show that the circuit does compute XOR as intended:

?- xor(x, y, Z).
sat(Z=:=x#y).

SWI-Prolog 9.3 Reference Manual

612 APPENDIX A. THE SWI-PROLOG LIBRARY

A.8.9 Acknowledgments

The interface predicates of this library follow the example of SICStus Prolog.
Use SICStus Prolog for higher performance in many cases.

A.8.10 CLP(B) predicate index

In the following, each CLP(B) predicate is described in more detail.
We recommend the following link to refer to this manual:
http://eu.swi-prolog.org/man/clpb.html

sat(+Expr) [semidet]

True iff Expr is a satisfiable Boolean expression.

taut(+Expr, -T) [semidet]

Tautology check. Succeeds with T = 0 if the Boolean expression Expr cannot be satisfied, and
with T = 1 if Expr is always true with respect to the current constraints. Fails otherwise.

labeling(+Vs) [multi]

Enumerate concrete solutions. Assigns truth values to the Boolean variables Vs such that all
stated constraints are satisfied.

sat count(+Expr, -Count) [det]

Count the number of admissible assignments. Count is the number of different assignments
of truth values to the variables in the Boolean expression Expr, such that Expr is true and all
posted constraints are satisfiable.

A common form of invocation is sat_count(+[1|Vs], Count): This counts the number
of admissible assignments to Vs without imposing any further constraints.

Examples:

?- sat(A =< B), Vs = [A,B], sat_count(+[1|Vs], Count).
Vs = [A, B],
Count = 3,
sat(A=:=A*B).

?- length(Vs, 120),
sat_count(+Vs, CountOr),
sat_count(*(Vs), CountAnd).

Vs = [...],
CountOr = 1329227995784915872903807060280344575,
CountAnd = 1.

weighted maximum(+Weights, +Vs, -Maximum) [multi]

Enumerate weighted optima over admissible assignments. Maximize a linear objective function
over Boolean variables Vs with integer coefficients Weights. This predicate assigns 0 and 1 to
the variables in Vs such that all stated constraints are satisfied, and Maximum is the maximum
of sum(Weight_i*V_i) over all admissible assignments. On backtracking, all admissible
assignments that attain the optimum are generated.

SWI-Prolog 9.3 Reference Manual

https://sicstus.sics.se
http://eu.swi-prolog.org/man/clpb.html

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 613

This predicate can also be used to minimize a linear Boolean program, since negative integers
can appear in Weights.

Example:

?- sat(A#B), weighted_maximum([1,2,1], [A,B,C], Maximum).
A = 0, B = 1, C = 1, Maximum = 3.

random labeling(+Seed, +Vs) [det]

Select a single random solution. An admissible assignment of truth values to the Boolean
variables in Vs is chosen in such a way that each admissible assignment is equally likely. Seed
is an integer, used as the initial seed for the random number generator.

A.9 library(clpfd): CLP(FD): Constraint Logic Programming over Fi-
nite Domains

author Markus Triska

Development of this library has moved to SICStus Prolog.
Please see CLP(Z) for more information.

A.9.1 Introduction

This library provides CLP(FD): Constraint Logic Programming over Finite Domains. This is an
instance of the general CLP(X) scheme (section 8), extending logic programming with reasoning
over specialised domains. CLP(FD) lets us reason about integers in a way that honors the relational
nature of Prolog.

Read The Power of Prolog to understand how this library is meant to be used in practice.
There are two major use cases of CLP(FD) constraints:

1. declarative integer arithmetic (section A.9.3)

2. solving combinatorial problems such as planning, scheduling and allocation tasks.

The predicates of this library can be classified as:

• arithmetic constraints like #=/2, #>/2 and #\=/2 (section A.9.17)

• the membership constraints in/2 and ins/2 (section A.9.17)

• the enumeration predicates indomain/1, label/1 and labeling/2 (section A.9.17)

• combinatorial constraints like all distinct/1 and global cardinality/2 (sec-
tion A.9.17)

• reification predicates such as #<==>/2 (section A.9.17)

• reflection predicates such as fd dom/2 (section A.9.17)

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at
https://github.com/triska/clpz
https://www.metalevel.at/prolog

614 APPENDIX A. THE SWI-PROLOG LIBRARY

In most cases, arithmetic constraints (section A.9.2) are the only predicates you will ever need
from this library. When reasoning over integers, simply replace low-level arithmetic predicates like
(is)/2 and (>)/2 by the corresponding CLP(FD) constraints like #=/2 and #>/2 to honor and
preserve declarative properties of your programs. For satisfactory performance, arithmetic constraints
are implicitly rewritten at compilation time so that low-level fallback predicates are automatically
used whenever possible.

Almost all Prolog programs also reason about integers. Therefore, it is highly advisable that you
make CLP(FD) constraints available in all your programs. One way to do this is to put the following
directive in your <config>/init.pl initialisation file:

:- use_module(library(clpfd)).

All example programs that appear in the CLP(FD) documentation assume that you have done this.
Important concepts and principles of this library are illustrated by means of usage examples that

are available in a public git repository: github.com/triska/clpfd
If you are used to the complicated operational considerations that low-level arithmetic primitives

necessitate, then moving to CLP(FD) constraints may, due to their power and convenience, at first
feel to you excessive and almost like cheating. It isn’t. Constraints are an integral part of all popular
Prolog systems, and they are designed to help you eliminate and avoid the use of low-level and less
general primitives by providing declarative alternatives that are meant to be used instead.

When teaching Prolog, CLP(FD) constraints should be introduced before explaining low-level
arithmetic predicates and their procedural idiosyncrasies. This is because constraints are easy to
explain, understand and use due to their purely relational nature. In contrast, the modedness and
directionality of low-level arithmetic primitives are impure limitations that are better deferred to more
advanced lectures.

We recommend the following reference (PDF: metalevel.at/swiclpfd.pdf) for citing this library in
scientific publications:

@inproceedings{Triska12,
author = {Markus Triska},
title = {The Finite Domain Constraint Solver of {SWI-Prolog}},
booktitle = {FLOPS},
series = {LNCS},
volume = {7294},
year = {2012},
pages = {307-316}

}

More information about CLP(FD) constraints and their implementation is contained in: met-
alevel.at/drt.pdf

The best way to discuss applying, improving and extending CLP(FD) constraints is to use the ded-
icated clpfd tag on stackoverflow.com. Several of the world’s foremost CLP(FD) experts regularly
participate in these discussions and will help you for free on this platform.

A.9.2 Arithmetic constraints

In modern Prolog systems, arithmetic constraints subsume and supersede low-level predicates over
integers. The main advantage of arithmetic constraints is that they are true relations and can be used

SWI-Prolog 9.3 Reference Manual

https://github.com/triska/clpfd
https://www.metalevel.at/swiclpfd.pdf
https://www.metalevel.at/drt.pdf
https://www.metalevel.at/drt.pdf
http://stackoverflow.com

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 615

in all directions. For most programs, arithmetic constraints are the only predicates you will ever need
from this library.

The most important arithmetic constraint is #=/2, which subsumes both (is)/2 and (=:=)/2
over integers. Use #=/2 to make your programs more general. See declarative integer arithmetic
(section A.9.3).

In total, the arithmetic constraints are:

Expr1 #= Expr2 Expr1 equals Expr2
Expr1 #\= Expr2 Expr1 is not equal to Expr2
Expr1 #>= Expr2 Expr1 is greater than or equal to Expr2
Expr1 #=< Expr2 Expr1 is less than or equal to Expr2
Expr1 #> Expr2 Expr1 is greater than Expr2
Expr1 #< Expr2 Expr1 is less than Expr2

Expr1 and Expr2 denote arithmetic expressions, which are:

integer Given value
variable Unknown integer
?(variable) Unknown integer
-Expr Unary minus
Expr + Expr Addition
Expr * Expr Multiplication
Expr - Expr Subtraction
Expr ˆ Expr Exponentiation
min(Expr,Expr) Minimum of two expressions
max(Expr,Expr) Maximum of two expressions
Expr mod Expr Modulo induced by floored division
Expr rem Expr Modulo induced by truncated division
abs(Expr) Absolute value
Expr // Expr Truncated integer division
Expr div Expr Floored integer division

where Expr again denotes an arithmetic expression.
The bitwise operations (\)/1, (/\)/2, (\/)/2, (>>)/2, (<<)/2, lsb/1, msb/1,

popcount/1 and (xor)/2 are also supported.

A.9.3 Declarative integer arithmetic

The arithmetic constraints (section A.9.2) #=/2, #>/2 etc. are meant to be used instead of the
primitives (is)/2, (=:=)/2, (>)/2 etc. over integers. Almost all Prolog programs also rea-
son about integers. Therefore, it is recommended that you put the following directive in your
<config>/init.pl initialisation file to make CLP(FD) constraints available in all your programs:

:- use_module(library(clpfd)).

Throughout the following, it is assumed that you have done this.
The most basic use of CLP(FD) constraints is evaluation of arithmetic expressions involving in-

tegers. For example:

SWI-Prolog 9.3 Reference Manual

616 APPENDIX A. THE SWI-PROLOG LIBRARY

?- X #= 1+2.
X = 3.

This could in principle also be achieved with the lower-level predicate (is)/2. However, an
important advantage of arithmetic constraints is their purely relational nature: Constraints can be used
in all directions, also if one or more of their arguments are only partially instantiated. For example:

?- 3 #= Y+2.
Y = 1.

This relational nature makes CLP(FD) constraints easy to explain and use, and well suited for
beginners and experienced Prolog programmers alike. In contrast, when using low-level integer arith-
metic, we get:

?- 3 is Y+2.
ERROR: is/2: Arguments are not sufficiently instantiated

?- 3 =:= Y+2.
ERROR: =:=/2: Arguments are not sufficiently instantiated

Due to the necessary operational considerations, the use of these low-level arithmetic predicates
is considerably harder to understand and should therefore be deferred to more advanced lectures.

For supported expressions, CLP(FD) constraints are drop-in replacements of these low-level arith-
metic predicates, often yielding more general programs. See n factorial/2 (section A.9.4) for
an example.

This library uses goal expansion/2 to automatically rewrite constraints at compilation time
so that low-level arithmetic predicates are automatically used whenever possible. For example, the
predicate:

positive_integer(N) :- N #>= 1.

is executed as if it were written as:

positive_integer(N) :-
(integer(N)
-> N >= 1
; N #>= 1
).

This illustrates why the performance of CLP(FD) constraints is almost always completely sat-
isfactory when they are used in modes that can be handled by low-level arithmetic. To disable the
automatic rewriting, set the Prolog flag optimise clpfd to false.

If you are used to the complicated operational considerations that low-level arithmetic primitives
necessitate, then moving to CLP(FD) constraints may, due to their power and convenience, at first
feel to you excessive and almost like cheating. It isn’t. Constraints are an integral part of all popular
Prolog systems, and they are designed to help you eliminate and avoid the use of low-level and less
general primitives by providing declarative alternatives that are meant to be used instead.

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 617

A.9.4 Example: Factorial relation

We illustrate the benefit of using #=/2 for more generality with a simple example.
Consider first a rather conventional definition of n factorial/2, relating each natural number

N to its factorial F:

n_factorial(0, 1).
n_factorial(N, F) :-

N #> 0,
N1 #= N - 1,
n_factorial(N1, F1),
F #= N * F1.

This program uses CLP(FD) constraints instead of low-level arithmetic throughout, and every-
thing that would have worked with low-level arithmetic also works with CLP(FD) constraints, retain-
ing roughly the same performance. For example:

?- n_factorial(47, F).
F = 258623241511168180642964355153611979969197632389120000000000 ;
false.

Now the point: Due to the increased flexibility and generality of CLP(FD) constraints, we are free
to reorder the goals as follows:

n_factorial(0, 1).
n_factorial(N, F) :-

N #> 0,
N1 #= N - 1,
F #= N * F1,
n_factorial(N1, F1).

In this concrete case, termination properties of the predicate are improved. For example, the
following queries now both terminate:

?- n_factorial(N, 1).
N = 0 ;
N = 1 ;
false.

?- n_factorial(N, 3).
false.

To make the predicate terminate if any argument is instantiated, add the (implied) constraint
F #\= 0 before the recursive call. Otherwise, the query n_factorial(N, 0) is the only non-
terminating case of this kind.

The value of CLP(FD) constraints does not lie in completely freeing us from all procedural phe-
nomena. For example, the two programs do not even have the same termination properties in all cases.

SWI-Prolog 9.3 Reference Manual

618 APPENDIX A. THE SWI-PROLOG LIBRARY

Instead, the primary benefit of CLP(FD) constraints is that they allow you to try different execution
orders and apply declarative debugging techniques at all! Reordering goals (and clauses) can sig-
nificantly impact the performance of Prolog programs, and you are free to try different variants if you
use declarative approaches. Moreover, since all CLP(FD) constraints always terminate, placing them
earlier can at most improve, never worsen, the termination properties of your programs. An additional
benefit of CLP(FD) constraints is that they eliminate the complexity of introducing (is)/2 and
(=:=)/2 to beginners, since both predicates are subsumed by #=/2 when reasoning over integers.

In the case above, the clauses are mutually exclusive if the first argument is sufficiently instan-
tiated. To make the predicate deterministic in such cases while retaining its generality, you can use
zcompare/3 to reify a comparison, making the different cases distinguishable by pattern matching.
For example, in this concrete case and others like it, you can use zcompare(Comp, 0, N) to
obtain as Comp the symbolic outcome (<, =, >) of 0 compared to N.

A.9.5 Combinatorial constraints

In addition to subsuming and replacing low-level arithmetic predicates, CLP(FD) constraints
are often used to solve combinatorial problems such as planning, scheduling and allocation
tasks. Among the most frequently used combinatorial constraints are all distinct/1,
global cardinality/2 and cumulative/2. This library also provides several other con-
straints like disjoint2/1 and automaton/8, which are useful in more specialized applications.

A.9.6 Domains

Each CLP(FD) variable has an associated set of admissible integers, which we call the variable’s
domain. Initially, the domain of each CLP(FD) variable is the set of all integers. CLP(FD) constraints
like #=/2, #>/2 and #\=/2 can at most reduce, and never extend, the domains of their arguments.
The constraints in/2 and ins/2 let us explicitly state domains of CLP(FD) variables. The process of
determining and adjusting domains of variables is called constraint propagation, and it is performed
automatically by this library. When the domain of a variable contains only one element, then the
variable is automatically unified to that element.

Domains are taken into account when further constraints are stated, and by enumeration predicates
like labeling/2.

A.9.7 Example: Sudoku

As another example, consider Sudoku: It is a popular puzzle over integers that can be easily solved
with CLP(FD) constraints.

sudoku(Rows) :-
length(Rows, 9), maplist(same_length(Rows), Rows),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns),
maplist(all_distinct, Columns),
Rows = [As,Bs,Cs,Ds,Es,Fs,Gs,Hs,Is],
blocks(As, Bs, Cs),
blocks(Ds, Es, Fs),
blocks(Gs, Hs, Is).

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at/prolog/debugging

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 619

blocks([], [], []).
blocks([N1,N2,N3|Ns1], [N4,N5,N6|Ns2], [N7,N8,N9|Ns3]) :-

all_distinct([N1,N2,N3,N4,N5,N6,N7,N8,N9]),
blocks(Ns1, Ns2, Ns3).

problem(1, [[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]).

Sample query:

?- problem(1, Rows), sudoku(Rows), maplist(portray_clause, Rows).
[9, 8, 7, 6, 5, 4, 3, 2, 1].
[2, 4, 6, 1, 7, 3, 9, 8, 5].
[3, 5, 1, 9, 2, 8, 7, 4, 6].
[1, 2, 8, 5, 3, 7, 6, 9, 4].
[6, 3, 4, 8, 9, 2, 1, 5, 7].
[7, 9, 5, 4, 6, 1, 8, 3, 2].
[5, 1, 9, 2, 8, 6, 4, 7, 3].
[4, 7, 2, 3, 1, 9, 5, 6, 8].
[8, 6, 3, 7, 4, 5, 2, 1, 9].
Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].

In this concrete case, the constraint solver is strong enough to find the unique solution without any
search. For the general case, see search (section A.9.9).

A.9.8 Residual goals

Here is an example session with a few queries and their answers:

?- X #> 3.
X in 4..sup.

?- X #\= 20.
X in inf..19\/21..sup.

?- 2*X #= 10.
X = 5.

SWI-Prolog 9.3 Reference Manual

620 APPENDIX A. THE SWI-PROLOG LIBRARY

?- X*X #= 144.
X in -12\/12.

?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.

?- X #= Y #<==> B, X in 0..3, Y in 4..5.
B = 0,
X in 0..3,
Y in 4..5.

The answers emitted by the toplevel are called residual programs, and the goals that comprise
each answer are called residual goals. In each case above, and as for all pure programs, the residual
program is declaratively equivalent to the original query. From the residual goals, it is clear that the
constraint solver has deduced additional domain restrictions in many cases.

To inspect residual goals, it is best to let the toplevel display them for us. Wrap the call of your
predicate into call residue vars/2 to make sure that all constrained variables are displayed. To
make the constraints a variable is involved in available as a Prolog term for further reasoning within
your program, use copy term/3. For example:

?- X #= Y + Z, X in 0..5, copy_term([X,Y,Z], [X,Y,Z], Gs).
Gs = [clpfd: (X in 0..5), clpfd: (Y+Z#=X)],
X in 0..5,
Y+Z#=X.

This library also provides reflection predicates (like fd dom/2, fd size/2 etc.) with which
we can inspect a variable’s current domain. These predicates can be useful if you want to implement
your own labeling strategies.

A.9.9 Core relations and search

Using CLP(FD) constraints to solve combinatorial tasks typically consists of two phases:

1. Modeling. In this phase, all relevant constraints are stated.

2. Search. In this phase, enumeration predicates are used to search for concrete solutions.

It is good practice to keep the modeling part, via a dedicated predicate called the core relation,
separate from the actual search for solutions. This lets us observe termination and determinism prop-
erties of the core relation in isolation from the search, and more easily try different search strategies.

As an example of a constraint satisfaction problem, consider the cryptoarithmetic puzzle SEND +
MORE = MONEY, where different letters denote distinct integers between 0 and 9. It can be modeled
in CLP(FD) as follows:

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 621

Vars ins 0..9,
all_different(Vars),

S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E #=

M*10000 + O*1000 + N*100 + E*10 + Y,
M #\= 0, S #\= 0.

Notice that we are not using labeling/2 in this predicate, so that we can first execute and
observe the modeling part in isolation. Sample query and its result (actual variables replaced for
readability):

?- puzzle(As+Bs=Cs).
As = [9, A2, A3, A4],
Bs = [1, 0, B3, A2],
Cs = [1, 0, A3, A2, C5],
A2 in 4..7,
all_different([9, A2, A3, A4, 1, 0, B3, C5]),
91*A2+A4+10*B3#=90*A3+C5,
A3 in 5..8,
A4 in 2..8,
B3 in 2..8,
C5 in 2..8.

From this answer, we see that this core relation terminates and is in fact deterministic. Moreover,
we see from the residual goals that the constraint solver has deduced more stringent bounds for all
variables. Such observations are only possible if modeling and search parts are cleanly separated.

Labeling can then be used to search for solutions in a separate predicate or goal:

?- puzzle(As+Bs=Cs), label(As).
As = [9, 5, 6, 7],
Bs = [1, 0, 8, 5],
Cs = [1, 0, 6, 5, 2] ;
false.

In this case, it suffices to label a subset of variables to find the puzzle’s unique solution, since the
constraint solver is strong enough to reduce the domains of remaining variables to singleton sets. In
general though, it is necessary to label all variables to obtain ground solutions.

A.9.10 Example: Eight queens puzzle

We illustrate the concepts of the preceding sections by means of the so-called eight queens puzzle.
The task is to place 8 queens on an 8x8 chessboard such that none of the queens is under attack. This
means that no two queens share the same row, column or diagonal.

To express this puzzle via CLP(FD) constraints, we must first pick a suitable representation. Since
CLP(FD) constraints reason over integers, we must find a way to map the positions of queens to
integers. Several such mappings are conceivable, and it is not immediately obvious which we should

SWI-Prolog 9.3 Reference Manual

622 APPENDIX A. THE SWI-PROLOG LIBRARY

use. On top of that, different constraints can be used to express the desired relations. For such reasons,
modeling combinatorial problems via CLP(FD) constraints often necessitates some creativity and has
been described as more of an art than a science.

In our concrete case, we observe that there must be exactly one queen per column. The following
representation therefore suggests itself: We are looking for 8 integers, one for each column, where
each integer denotes the row of the queen that is placed in the respective column, and which are subject
to certain constraints.

In fact, let us now generalize the task to the so-called N queens puzzle, which is obtained by re-
placing 8 by N everywhere it occurs in the above description. We implement the above considerations
in the core relation n queens/2, where the first argument is the number of queens (which is iden-
tical to the number of rows and columns of the generalized chessboard), and the second argument is a
list of N integers that represents a solution in the form described above.

n_queens(N, Qs) :-
length(Qs, N),
Qs ins 1..N,
safe_queens(Qs).

safe_queens([]).
safe_queens([Q|Qs]) :- safe_queens(Qs, Q, 1), safe_queens(Qs).

safe_queens([], _, _).
safe_queens([Q|Qs], Q0, D0) :-

Q0 #\= Q,
abs(Q0 - Q) #\= D0,
D1 #= D0 + 1,
safe_queens(Qs, Q0, D1).

Note that all these predicates can be used in all directions: We can use them to find solutions, test
solutions and complete partially instantiated solutions.

The original task can be readily solved with the following query:

?- n_queens(8, Qs), label(Qs).
Qs = [1, 5, 8, 6, 3, 7, 2, 4] .

Using suitable labeling strategies, we can easily find solutions with 80 queens and more:

?- n_queens(80, Qs), labeling([ff], Qs).
Qs = [1, 3, 5, 44, 42, 4, 50, 7, 68|...] .

?- time((n_queens(90, Qs), labeling([ff], Qs))).
% 5,904,401 inferences, 0.722 CPU in 0.737 seconds (98% CPU)
Qs = [1, 3, 5, 50, 42, 4, 49, 7, 59|...] .

Experimenting with different search strategies is easy because we have separated the core relation
from the actual search.

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 623

A.9.11 Optimisation

We can use labeling/2 to minimize or maximize the value of a CLP(FD) expression, and generate
solutions in increasing or decreasing order of the value. See the labeling options min(Expr) and
max(Expr), respectively.

Again, to easily try different labeling options in connection with optimisation, we recommend to
introduce a dedicated predicate for posting constraints, and to use labeling/2 in a separate goal.
This way, we can observe properties of the core relation in isolation, and try different labeling options
without recompiling our code.

If necessary, we can use once/1 to commit to the first optimal solution. However, it is often
very valuable to see alternative solutions that are also optimal, so that we can choose among optimal
solutions by other criteria. For the sake of purity and completeness, we recommend to avoid once/1
and other constructs that lead to impurities in CLP(FD) programs.

Related to optimisation with CLP(FD) constraints are library(simplex) and CLP(Q) which
reason about linear constraints over rational numbers.

A.9.12 Reification

The constraints in/2, #=/2, #\=/2, #</2, #>/2, #=</2, and #>=/2 can be reified, which
means reflecting their truth values into Boolean values represented by the integers 0 and 1. Let P and
Q denote reifiable constraints or Boolean variables, then:

#\ Q True iff Q is false
P #\/ Q True iff either P or Q
P #/\ Q True iff both P and Q
P #\ Q True iff either P or Q, but not both
P #<==> Q True iff P and Q are equivalent
P #==> Q True iff P implies Q
P #<== Q True iff Q implies P

The constraints of this table are reifiable as well.
When reasoning over Boolean variables, also consider using CLP(B) constraints as provided by

library(clpb).

A.9.13 Enabling monotonic CLP(FD)

In the default execution mode, CLP(FD) constraints still exhibit some non-relational properties. For
example, adding constraints can yield new solutions:

?- X #= 2, X = 1+1.
false.

?- X = 1+1, X #= 2, X = 1+1.
X = 1+1.

This behaviour is highly problematic from a logical point of view, and it may render declarative
debugging techniques inapplicable.

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at/prolog/purity
http://eu.swi-prolog.org/man/simplex.html
http://eu.swi-prolog.org/man/clpb.html

624 APPENDIX A. THE SWI-PROLOG LIBRARY

Set the Prolog flag clpfd monotonic to true to make CLP(FD) monotonic: This means that
adding new constraints cannot yield new solutions. When this flag is true, we must wrap variables
that occur in arithmetic expressions with the functor (?)/1 or (#)/1. For example:

?- set_prolog_flag(clpfd_monotonic, true).
true.

?- #(X) #= #(Y) + #(Z).
#(Y)+ #(Z)#= #(X).

?- X #= 2, X = 1+1.
ERROR: Arguments are not sufficiently instantiated

The wrapper can be omitted for variables that are already constrained to integers.

A.9.14 Custom constraints

We can define custom constraints. The mechanism to do this is not yet finalised, and we welcome
suggestions and descriptions of use cases that are important to you.

As an example of how it can be done currently, let us define a new custom constraint
oneground(X,Y,Z), where Z shall be 1 if at least one of X and Y is instantiated:

:- multifile clpfd:run_propagator/2.

oneground(X, Y, Z) :-
clpfd:make_propagator(oneground(X, Y, Z), Prop),
clpfd:init_propagator(X, Prop),
clpfd:init_propagator(Y, Prop),
clpfd:trigger_once(Prop).

clpfd:run_propagator(oneground(X, Y, Z), MState) :-
(integer(X) -> clpfd:kill(MState), Z = 1
; integer(Y) -> clpfd:kill(MState), Z = 1
; true
).

First, clpfd:make propagator/2 is used to transform a user-defined representation of the
new constraint to an internal form. With clpfd:init propagator/2, this internal form is
then attached to X and Y. From now on, the propagator will be invoked whenever the domains
of X or Y are changed. Then, clpfd:trigger once/1 is used to give the propagator its
first chance for propagation even though the variables’ domains have not yet changed. Finally,
clpfd:run propagator/2 is extended to define the actual propagator. As explained, this pred-
icate is automatically called by the constraint solver. The first argument is the user-defined represen-
tation of the constraint as used in clpfd:make propagator/2, and the second argument is a
mutable state that can be used to prevent further invocations of the propagator when the constraint has
become entailed, by using clpfd:kill/1. An example of using the new constraint:

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 625

?- oneground(X, Y, Z), Y = 5.
Y = 5,
Z = 1,
X in inf..sup.

A.9.15 Applications

CLP(FD) applications that we find particularly impressive and worth studying include:

• Michael Hendricks uses CLP(FD) constraints for flexible reasoning about dates and times in
the julian package.

• Julien Cumin uses CLP(FD) constraints for integer arithmetic in Brachylog.

A.9.16 Acknowledgments

This library gives you a glimpse of what SICStus Prolog can do. The API is intentionally mostly
compatible with that of SICStus Prolog, so that you can easily switch to a much more feature-rich
and much faster CLP(FD) system when you need it. I thank Mats Carlsson, the designer and main
implementor of SICStus Prolog, for his elegant example. I first encountered his system as part of the
excellent GUPU teaching environment by Ulrich Neumerkel. Ulrich was also the first and most de-
termined tester of the present system, filing hundreds of comments and suggestions for improvement.
Tom Schrijvers has contributed several constraint libraries to SWI-Prolog, and I learned a lot from his
coding style and implementation examples. Bart Demoen was a driving force behind the implemen-
tation of attributed variables in SWI-Prolog, and this library could not even have started without his
prior work and contributions. Thank you all!

A.9.17 CLP(FD) predicate index

In the following, each CLP(FD) predicate is described in more detail.
We recommend the following link to refer to this manual:
http://eu.swi-prolog.org/man/clpfd.html

Arithmetic constraints

Arithmetic constraints are the most basic use of CLP(FD). Every time you use (is)/2 or one of
the low-level arithmetic comparisons ((<)/2, (>)/2 etc.) over integers, consider using CLP(FD)
constraints instead. This can at most increase the generality of your programs. See declarative integer
arithmetic (section A.9.3).

?X #= ?Y
The arithmetic expression X equals Y. This is the most important arithmetic constraint (sec-
tion A.9.2), subsuming and replacing both (is)/2 and (=:=)/2 over integers. See
declarative integer arithmetic (section A.9.3).

?X #\= ?Y
The arithmetic expressions X and Y evaluate to distinct integers. When reasoning over integers,

SWI-Prolog 9.3 Reference Manual

http://www.swi-prolog.org/pack/list?p=julian
https://github.com/JCumin/Brachylog
https://sicstus.sics.se/
https://www.sics.se/~matsc/
http://www.complang.tuwien.ac.at/ulrich/gupu/
http://www.complang.tuwien.ac.at/ulrich/
https://people.cs.kuleuven.be/~tom.schrijvers/
https://people.cs.kuleuven.be/~bart.demoen/
http://eu.swi-prolog.org/man/clpfd.html

626 APPENDIX A. THE SWI-PROLOG LIBRARY

replace (=\=)/2 by #\=/2 to obtain more general relations. See declarative integer
arithmetic (section A.9.3).

?X #>= ?Y
Same as Y #=< X. When reasoning over integers, replace (>=)/2 by #>=/2 to obtain more
general relations. See declarative integer arithmetic (section A.9.3).

?X #=< ?Y
The arithmetic expression X is less than or equal to Y. When reasoning over integers, replace
(=<)/2 by #=</2 to obtain more general relations. See declarative integer arithmetic
(section A.9.3).

?X #> ?Y
Same as Y #< X. When reasoning over integers, replace (>)/2 by #>/2 to obtain more
general relations See declarative integer arithmetic (section A.9.3).

?X #< ?Y
The arithmetic expression X is less than Y. When reasoning over integers, replace (<)/2 by
#</2 to obtain more general relations. See declarative integer arithmetic (section A.9.3).

In addition to its regular use in tasks that require it, this constraint can also be useful to eliminate
uninteresting symmetries from a problem. For example, all possible matches between pairs built
from four players in total:

?- Vs = [A,B,C,D], Vs ins 1..4,
all_different(Vs),
A #< B, C #< D, A #< C,

findall(pair(A,B)-pair(C,D), label(Vs), Ms).
Ms = [pair(1, 2)-pair(3, 4),

pair(1, 3)-pair(2, 4),
pair(1, 4)-pair(2, 3)].

Membership constraints

If you are using CLP(FD) to model and solve combinatorial tasks, then you typically need to specify
the admissible domains of variables. The membership constraints in/2 and ins/2 are useful in
such cases.

?Var in +Domain
Var is an element of Domain. Domain is one of:

Integer
Singleton set consisting only of Integer.

Lower .. Upper
All integers I such that Lower =< I =< Upper. Lower must be an integer or the atom inf,
which denotes negative infinity. Upper must be an integer or the atom sup, which denotes
positive infinity.

Domain1 \/ Domain2
The union of Domain1 and Domain2.

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 627

+Vars ins +Domain
The variables in the list Vars are elements of Domain. See in/2 for the syntax of Domain.

Enumeration predicates

When modeling combinatorial tasks, the actual search for solutions is typically performed by enu-
meration predicates like labeling/2. See the the section about core relations and search for more
information.

indomain(?Var)
Bind Var to all feasible values of its domain on backtracking. The domain of Var must be finite.

label(+Vars)
Equivalent to labeling([], Vars). See labeling/2.

labeling(+Options, +Vars)
Assign a value to each variable in Vars. Labeling means systematically trying out values for
the finite domain variables Vars until all of them are ground. The domain of each variable in
Vars must be finite. Options is a list of options that let you exhibit some control over the search
process. Several categories of options exist:

The variable selection strategy lets you specify which variable of Vars is labeled next and is one
of:

leftmost
Label the variables in the order they occur in Vars. This is the default.

ff
First fail. Label the leftmost variable with smallest domain next, in order to detect infea-
sibility early. This is often a good strategy.

ffc
Of the variables with smallest domains, the leftmost one participating in most constraints
is labeled next.

min
Label the leftmost variable whose lower bound is the lowest next.

max
Label the leftmost variable whose upper bound is the highest next.

The value order is one of:

up
Try the elements of the chosen variable’s domain in ascending order. This is the default.

down
Try the domain elements in descending order.

The branching strategy is one of:

step
For each variable X, a choice is made between X = V and X #\=V, where V is determined
by the value ordering options. This is the default.

SWI-Prolog 9.3 Reference Manual

628 APPENDIX A. THE SWI-PROLOG LIBRARY

enum
For each variable X, a choice is made between X = V 1, X = V 2 etc., for all values V i
of the domain of X. The order is determined by the value ordering options.

bisect
For each variable X, a choice is made between X #=< M and X #> M, where M is the
midpoint of the domain of X.

At most one option of each category can be specified, and an option must not occur repeatedly.

The order of solutions can be influenced with:

• min(Expr)

• max(Expr)

This generates solutions in ascending/descending order with respect to the evaluation of the
arithmetic expression Expr. Labeling Vars must make Expr ground. If several such options are
specified, they are interpreted from left to right, e.g.:

?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).

This generates solutions in descending order of X, and for each binding of X, solutions are
generated in ascending order of Y. To obtain the incomplete behaviour that other systems exhibit
with ”maximize(Expr)” and ”minimize(Expr)”, use once/1, e.g.:

once(labeling([max(Expr)], Vars))

Labeling is always complete, always terminates, and yields no redundant solutions. See core
relations and search (section A.9.9) for usage advice.

Global constraints

A global constraint expresses a relation that involves many variables at once. The most fre-
quently used global constraints of this library are the combinatorial constraints all distinct/1,
global cardinality/2 and cumulative/2.

all distinct(+Vars)
True iff Vars are pairwise distinct. For example, all distinct/1 can detect that not all
variables can assume distinct values given the following domains:

?- maplist(in, Vs,
[1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]),

all_distinct(Vs).
false.

all different(+Vars)
Like all distinct/1, but with weaker propagation. Consider using all distinct/1
instead, since all distinct/1 is typically acceptably efficient and propagates much more
strongly.

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 629

sum(+Vars, +Rel, ?Expr)
The sum of elements of the list Vars is in relation Rel to Expr. Rel is one of #=, #\=, #<, #>,
#=< or #>=. For example:

?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100).
A in 0..100,
A+B+C#=100,
B in 0..100,
C in 0..100.

scalar product(+Cs, +Vs, +Rel, ?Expr)
True iff the scalar product of Cs and Vs is in relation Rel to Expr. Cs is a list of integers, Vs is a
list of variables and integers. Rel is #=, #\=, #<, #>, #=< or #>=.

lex chain(+Lists)
Lists are lexicographically non-decreasing.

tuples in(+Tuples, +Relation)
True iff all Tuples are elements of Relation. Each element of the list Tuples is a list of integers
or finite domain variables. Relation is a list of lists of integers. Arbitrary finite relations, such
as compatibility tables, can be modeled in this way. For example, if 1 is compatible with 2 and
5, and 4 is compatible with 0 and 3:

?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4.
X = 4,
Y in 0\/3.

As another example, consider a train schedule represented as a list of quadruples, denoting
departure and arrival places and times for each train. In the following program, Ps is a feasible
journey of length 3 from A to D via trains that are part of the given schedule.

trains([[1,2,0,1],
[2,3,4,5],
[2,3,0,1],
[3,4,5,6],
[3,4,2,3],
[3,4,8,9]]).

threepath(A, D, Ps) :-
Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]],
T2 #> T1,
T4 #> T3,
trains(Ts),
tuples_in(Ps, Ts).

In this example, the unique solution is found without labeling:

SWI-Prolog 9.3 Reference Manual

630 APPENDIX A. THE SWI-PROLOG LIBRARY

?- threepath(1, 4, Ps).
Ps = [[1, 2, 0, 1], [2, 3, 4, 5], [3, 4, 8, 9]].

serialized(+Starts, +Durations)
Describes a set of non-overlapping tasks. Starts = [S 1,...,S n], is a list of variables or integers,
Durations = [D 1,...,D n] is a list of non-negative integers. Constrains Starts and Durations to
denote a set of non-overlapping tasks, i.e.: S i + D i =< S j or S j + D j =< S i for all 1 =< i <
j =< n. Example:

?- length(Vs, 3),
Vs ins 0..3,
serialized(Vs, [1,2,3]),
label(Vs).

Vs = [0, 1, 3] ;
Vs = [2, 0, 3] ;
false.

See also Dorndorf et al. 2000, ”Constraint Propagation Techniques for the Disjunctive Scheduling
Problem”

element(?N, +Vs, ?V)
The N-th element of the list of finite domain variables Vs is V. Analogous to nth1/3.

global cardinality(+Vs, +Pairs)
Global Cardinality constraint. Equivalent to global_cardinality(Vs, Pairs, []).
See global cardinality/3.

Example:

?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs).
Vs = [1, 1, 3] ;
Vs = [1, 3, 1] ;
Vs = [3, 1, 1].

global cardinality(+Vs, +Pairs, +Options)
Global Cardinality constraint. Vs is a list of finite domain variables, Pairs is a list of Key-Num
pairs, where Key is an integer and Num is a finite domain variable. The constraint holds iff each
V in Vs is equal to some key, and for each Key-Num pair in Pairs, the number of occurrences
of Key in Vs is Num. Options is a list of options. Supported options are:

consistency(value)
A weaker form of consistency is used.

cost(Cost, Matrix)
Matrix is a list of rows, one for each variable, in the order they occur in Vs. Each of these
rows is a list of integers, one for each key, in the order these keys occur in Pairs. When
variable v i is assigned the value of key k j, then the associated cost is Matrix {ij}. Cost
is the sum of all costs.

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 631

circuit(+Vs)
True iff the list Vs of finite domain variables induces a Hamiltonian circuit. The k-th element
of Vs denotes the successor of node k. Node indexing starts with 1. Examples:

?- length(Vs, _), circuit(Vs), label(Vs).
Vs = [] ;
Vs = [1] ;
Vs = [2, 1] ;
Vs = [2, 3, 1] ;
Vs = [3, 1, 2] ;
Vs = [2, 3, 4, 1] .

cumulative(+Tasks)
Equivalent to cumulative(Tasks, [limit(1)]). See cumulative/2.

cumulative(+Tasks, +Options)
Schedule with a limited resource. Tasks is a list of tasks, each of the form
task(S_i, D_i, E_i, C_i, T_i). S i denotes the start time, D i the positive
duration, E i the end time, C i the non-negative resource consumption, and T i the task
identifier. Each of these arguments must be a finite domain variable with bounded domain, or
an integer. The constraint holds iff at each time slot during the start and end of each task, the
total resource consumption of all tasks running at that time does not exceed the global resource
limit. Options is a list of options. Currently, the only supported option is:

limit(L)
The integer L is the global resource limit. Default is 1.

For example, given the following predicate that relates three tasks of durations 2 and 3 to a list
containing their starting times:

tasks_starts(Tasks, [S1,S2,S3]) :-
Tasks = [task(S1,3,_,1,_),

task(S2,2,_,1,_),
task(S3,2,_,1,_)].

We can use cumulative/2 as follows, and obtain a schedule:

?- tasks_starts(Tasks, Starts), Starts ins 0..10,
cumulative(Tasks, [limit(2)]), label(Starts).

Tasks = [task(0, 3, 3, 1, _G36), task(0, 2, 2, 1, _G45), ...],
Starts = [0, 0, 2] .

disjoint2(+Rectangles)
True iff Rectangles are not overlapping. Rectangles is a list of terms of the form F(X i, W i,
Y i, H i), where F is any functor, and the arguments are finite domain variables or integers that
denote, respectively, the X coordinate, width, Y coordinate and height of each rectangle.

SWI-Prolog 9.3 Reference Manual

632 APPENDIX A. THE SWI-PROLOG LIBRARY

automaton(+Vs, +Nodes, +Arcs)
Describes a list of finite domain variables with a finite automaton. Equivalent to
automaton(Vs, _, Vs, Nodes, Arcs, [], [], _), a common use case of
automaton/8. In the following example, a list of binary finite domain variables is
constrained to contain at least two consecutive ones:

two_consecutive_ones(Vs) :-
automaton(Vs, [source(a),sink(c)],

[arc(a,0,a), arc(a,1,b),
arc(b,0,a), arc(b,1,c),
arc(c,0,c), arc(c,1,c)]).

Example query:

?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs).
Vs = [0, 1, 1] ;
Vs = [1, 1, 0] ;
Vs = [1, 1, 1].

automaton(+Sequence, ?Template, +Signature, +Nodes, +Arcs, +Counters, +Initials, ?Finals)
Describes a list of finite domain variables with a finite automaton. True iff the finite automaton
induced by Nodes and Arcs (extended with Counters) accepts Signature. Sequence is a list
of terms, all of the same shape. Additional constraints must link Sequence to Signature, if
necessary. Nodes is a list of source(Node) and sink(Node) terms. Arcs is a list of
arc(Node,Integer,Node) and arc(Node,Integer,Node,Exprs) terms that
denote the automaton’s transitions. Each node is represented by an arbitrary term. Transitions
that are not mentioned go to an implicit failure node. Exprs is a list of arithmetic expressions, of
the same length as Counters. In each expression, variables occurring in Counters symbolically
refer to previous counter values, and variables occurring in Template refer to the current
element of Sequence. When a transition containing arithmetic expressions is taken, each
counter is updated according to the result of the corresponding expression. When a transition
without arithmetic expressions is taken, all counters remain unchanged. Counters is a list of
variables. Initials is a list of finite domain variables or integers denoting, in the same order,
the initial value of each counter. These values are related to Finals according to the arithmetic
expressions of the taken transitions.

The following example is taken from Beldiceanu, Carlsson, Debruyne and Petit: ”Reformu-
lation of Global Constraints Based on Constraints Checkers”, Constraints 10(4), pp 339-362
(2005). It relates a sequence of integers and finite domain variables to its number of inflexions,
which are switches between strictly ascending and strictly descending subsequences:

sequence_inflexions(Vs, N) :-
variables_signature(Vs, Sigs),
automaton(Sigs, _, Sigs,

[source(s),sink(i),sink(j),sink(s)],
[arc(s,0,s), arc(s,1,j), arc(s,2,i),
arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i),

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 633

arc(j,0,j), arc(j,1,j),
arc(j,2,i,[C+1])],
[C], [0], [N]).

variables_signature([], []).
variables_signature([V|Vs], Sigs) :-

variables_signature_(Vs, V, Sigs).

variables_signature_([], _, []).
variables_signature_([V|Vs], Prev, [S|Sigs]) :-

V #= Prev #<==> S #= 0,
Prev #< V #<==> S #= 1,
Prev #> V #<==> S #= 2,
variables_signature_(Vs, V, Sigs).

Example queries:

?- sequence_inflexions([1,2,3,3,2,1,3,0], N).
N = 3.

?- length(Ls, 5), Ls ins 0..1,
sequence_inflexions(Ls, 3), label(Ls).

Ls = [0, 1, 0, 1, 0] ;
Ls = [1, 0, 1, 0, 1].

chain(+Zs, +Relation)
Zs form a chain with respect to Relation. Zs is a list of finite domain variables that are a chain
with respect to the partial order Relation, in the order they appear in the list. Relation must be
#=, #=<, #>=, #< or #>. For example:

?- chain([X,Y,Z], #>=).
X#>=Y,
Y#>=Z.

Reification predicates

Many CLP(FD) constraints can be reified. This means that their truth value is itself turned into a
CLP(FD) variable, so that we can explicitly reason about whether a constraint holds or not. See
reification (section A.9.12).

#\ +Q
Q does not hold. See reification (section A.9.12).

For example, to obtain the complement of a domain:

?- #\ X in -3..0\/10..80.
X in inf.. -4\/1..9\/81..sup.

SWI-Prolog 9.3 Reference Manual

634 APPENDIX A. THE SWI-PROLOG LIBRARY

?P #<==> ?Q
P and Q are equivalent. See reification (section A.9.12).

For example:

?- X #= 4 #<==> B, X #\= 4.
B = 0,
X in inf..3\/5..sup.

The following example uses reified constraints to relate a list of finite domain variables to the
number of occurrences of a given value:

vs_n_num(Vs, N, Num) :-
maplist(eq_b(N), Vs, Bs),
sum(Bs, #=, Num).

eq_b(X, Y, B) :- X #= Y #<==> B.

Sample queries and their results:

?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num).
Vs = [X, Y, Z],
Num = 0,
X in 0..1,
Y in 0..1,
Z in 0..1.

?- vs_n_num([X,Y,Z], 2, 3).
X = 2,
Y = 2,
Z = 2.

?P #==> ?Q
P implies Q. See reification (section A.9.12).

?P #<== ?Q
Q implies P. See reification (section A.9.12).

?P #/\ ?Q
P and Q hold. See reification (section A.9.12).

?P #\/ ?Q
P or Q holds. See reification (section A.9.12).

For example, the sum of natural numbers below 1000 that are multiples of 3 or 5:

?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999,
indomain(N)),

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 635

Ns),
sum(Ns, #=, Sum).

Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...],
Sum = 233168.

?P #\ ?Q
Either P holds or Q holds, but not both. See reification (section A.9.12).

zcompare(?Order, ?A, ?B)
Analogous to compare/3, with finite domain variables A and B.

Think of zcompare/3 as reifying an arithmetic comparison of two integers. This means that
we can explicitly reason about the different cases within our programs. As in compare/3,
the atoms <, > and = denote the different cases of the trichotomy. In contrast to compare/3
though, zcompare/3 works correctly for all modes, also if only a subset of the arguments
is instantiated. This allows you to make several predicates over integers deterministic while
preserving their generality and completeness. For example:

n_factorial(N, F) :-
zcompare(C, N, 0),
n_factorial_(C, N, F).

n_factorial_(=, _, 1).
n_factorial_(>, N, F) :-

F #= F0*N,
N1 #= N - 1,
n_factorial(N1, F0).

This version of n factorial/2 is deterministic if the first argument is instantiated, because
argument indexing can distinguish the different clauses that reflect the possible and admissible
outcomes of a comparison of N against 0. Example:

?- n_factorial(30, F).
F = 265252859812191058636308480000000.

Since there is no clause for <, the predicate automatically fails if N is less than 0. The predicate
can still be used in all directions, including the most general query:

?- n_factorial(N, F).
N = 0,
F = 1 ;
N = F, F = 1 ;
N = F, F = 2 .

In this case, all clauses are tried on backtracking, and zcompare/3 ensures that the respective
ordering between N and 0 holds in each case.

SWI-Prolog 9.3 Reference Manual

636 APPENDIX A. THE SWI-PROLOG LIBRARY

The truth value of a comparison can also be reified with (#<==>)/2 in combination with
one of the arithmetic constraints (section A.9.2). See reification (section A.9.12). However,
zcompare/3 lets you more conveniently distinguish the cases.

Reflection predicates

Reflection predicates let us obtain, in a well-defined way, information that is normally internal to this
library. In addition to the predicates explained below, also take a look at call residue vars/2
and copy term/3 to reason about CLP(FD) constraints that arise in programs. This can be useful
in program analyzers and declarative debuggers.

fd var(+Var)
True iff Var is a CLP(FD) variable.

fd inf(+Var, -Inf)
Inf is the infimum of the current domain of Var.

fd sup(+Var, -Sup)
Sup is the supremum of the current domain of Var.

fd size(+Var, -Size)
Reflect the current size of a domain. Size is the number of elements of the current domain of
Var, or the atom sup if the domain is unbounded.

fd dom(+Var, -Dom)
Dom is the current domain (see in/2) of Var. This predicate is useful if you want to reason
about domains. It is not needed if you only want to display remaining domains; instead,
separate your model from the search part and let the toplevel display this information via
residual goals.

For example, to implement a custom labeling strategy, you may need to inspect the current
domain of a finite domain variable. With the following code, you can convert a finite domain to
a list of integers:

dom_integers(D, Is) :- phrase(dom_integers_(D), Is).

dom_integers_(I) --> { integer(I) }, [I].
dom_integers_(L..U) --> { numlist(L, U, Is) }, Is.
dom_integers_(D1\/D2) --> dom_integers_(D1), dom_integers_(D2).

Example:

?- X in 1..5, X #\= 4, fd_dom(X, D), dom_integers(D, Is).
D = 1..3\/5,
Is = [1,2,3,5],
X in 1..3\/5.

fd degree(+Var, -Degree) [det]

Degree is the number of constraints currently attached to Var.

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 637

FD set predicates

These predicates allow operating directly on the internal representation of CLP(FD) domains. In this
context, such an internal domain representation is called an FD set.

Note that the exact term representation of FD sets is unspecified and will vary across CLP(FD)
implementations or even different versions of the same implementation. FD set terms should be
manipulated only using the predicates in this section. The behavior of other operations on FD set terms
is undefined. In particular, you should not construct or deconstruct FD sets by unification, and you
cannot reliably compare FD sets using unification or generic term equality/comparison predicates.

?Var in set +Set
Var is an element of the FD set Set.

fd set(?Var, -Set) [det]

Set is the FD set representation of the current domain of Var.

is fdset(@Set) [semidet]

Set is currently bound to a valid FD set.

empty fdset(-Set) [det]

Set is the empty FD set.

fdset parts(?Set, ?Min, ?Max, ?Rest) [semidet]

Set is a non-empty FD set representing the domain Min..Max \/ Rest, where Min..Max is a
non-empty interval (see fdset interval/3) and Rest is another FD set (possibly empty).

If Max is sup, then Rest is the empty FD set. Otherwise, if Rest is non-empty, all elements of
Rest are greater than Max+1.

This predicate should only be called with either Set or all other arguments being ground.

empty interval(+Min, +Max) [semidet]

Min..Max is an empty interval. Min and Max are integers or one of the atoms inf or sup.

fdset interval(?Interval, ?Min, ?Max) [semidet]

Interval is a non-empty FD set consisting of the single interval Min..Max. Min is an integer or
the atom inf to denote negative infinity. Max is an integer or the atom sup to denote positive
infinity.

Either Interval or Min and Max must be ground.

fdset singleton(?Set, ?Elt) [semidet]

Set is the FD set containing the single integer Elt.

Either Set or Elt must be ground.

fdset min(+Set, -Min) [semidet]

Min is the lower bound (infimum) of the non-empty FD set Set. Min is an integer or the atom
inf if Set has no lower bound.

fdset max(+Set, -Max) [semidet]

Max is the upper bound (supremum) of the non-empty FD set Set. Max is an integer or the
atom sup if Set has no upper bound.

SWI-Prolog 9.3 Reference Manual

638 APPENDIX A. THE SWI-PROLOG LIBRARY

fdset size(+Set, -Size) [det]

Size is the number of elements of the FD set Set, or the atom sup if Set is infinite.

list to fdset(+List, -Set) [det]

Set is an FD set containing all elements of List, which must be a list of integers.

fdset to list(+Set, -List) [det]

List is a list containing all elements of the finite FD set Set, in ascending order.

range to fdset(+Domain, -Set) [det]

Set is an FD set equivalent to the domain Domain. Domain uses the same syntax as accepted
by (in)/2.

fdset to range(+Set, -Domain) [det]

Domain is a domain equivalent to the FD set Set. Domain is returned in the same format as by
fd dom/2.

fdset add element(+Set1, +Elt, -Set2) [det]

Set2 is the same FD set as Set1, but with the integer Elt added. If Elt is already in Set1, the set
is returned unchanged.

fdset del element(+Set1, +Elt, -Set2) [det]

Set2 is the same FD set as Set1, but with the integer Elt removed. If Elt is not in Set1, the set
returned unchanged.

fdset disjoint(+Set1, +Set2) [semidet]

The FD sets Set1 and Set2 have no elements in common.

fdset intersect(+Set1, +Set2) [semidet]

The FD sets Set1 and Set2 have at least one element in common.

fdset intersection(+Set1, +Set2, -Intersection) [det]

Intersection is an FD set (possibly empty) of all elements that the FD sets Set1 and Set2 have
in common.

fdset member(?Elt, +Set) [nondet]

The integer Elt is a member of the FD set Set. If Elt is unbound, Set must be finite and all
elements are enumerated on backtracking.

fdset eq(+Set1, +Set2) [semidet]

True if the FD sets Set1 and Set2 are equal, i. e. contain exactly the same elements. This is
not necessarily the same as unification or a term equality check, because some FD sets have
multiple possible term representations.

fdset subset(+Set1, +Set2) [semidet]

The FD set Set1 is a (non-strict) subset of Set2, i. e. every element of Set1 is also in Set2.

fdset subtract(+Set1, +Set2, -Difference) [det]

The FD set Difference is Set1 with all elements of Set2 removed, i. e. the set difference of Set1
and Set2.

SWI-Prolog 9.3 Reference Manual

A.9. LIBRARY(CLPFD): CLP(FD): CONSTRAINT LOGIC PROGRAMMING OVER
FINITE DOMAINS 639

fdset union(+Set1, +Set2, -Union) [det]

The FD set Union is the union of FD sets Set1 and Set2.

fdset union(+Sets, -Union) [det]

The FD set Union is the n-ary union of all FD sets in the list Sets. If Sets is empty, Union is the
empty FD set.

fdset complement(+Set, -Complement) [det]

The FD set Complement is the complement of the FD set Set. Equivalent to
fdset_subtract(inf..sup, Set, Complement).

FD miscellaneous predicates

The predicates in this section are not clp(fd) predicates. They ended up in this library for historical
reasons and may be moved to other libraries in the future.

transpose(+Matrix, ?Transpose)
Transpose a list of lists of the same length. Example:

?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).
Ts = [[1, 4, 7], [2, 5, 8], [3, 6, 9]].

This predicate is useful in many constraint programs. Consider for instance Sudoku:

sudoku(Rows) :-
length(Rows, 9), maplist(same_length(Rows), Rows),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns),
maplist(all_distinct, Columns),
Rows = [As,Bs,Cs,Ds,Es,Fs,Gs,Hs,Is],
blocks(As, Bs, Cs), blocks(Ds, Es, Fs), blocks(Gs, Hs, Is).

blocks([], [], []).
blocks([N1,N2,N3|Ns1], [N4,N5,N6|Ns2], [N7,N8,N9|Ns3]) :-

all_distinct([N1,N2,N3,N4,N5,N6,N7,N8,N9]),
blocks(Ns1, Ns2, Ns3).

problem(1, [[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]).

SWI-Prolog 9.3 Reference Manual

640 APPENDIX A. THE SWI-PROLOG LIBRARY

Sample query:

?- problem(1, Rows), sudoku(Rows), maplist(portray_clause, Rows).
[9, 8, 7, 6, 5, 4, 3, 2, 1].
[2, 4, 6, 1, 7, 3, 9, 8, 5].
[3, 5, 1, 9, 2, 8, 7, 4, 6].
[1, 2, 8, 5, 3, 7, 6, 9, 4].
[6, 3, 4, 8, 9, 2, 1, 5, 7].
[7, 9, 5, 4, 6, 1, 8, 3, 2].
[5, 1, 9, 2, 8, 6, 4, 7, 3].
[4, 7, 2, 3, 1, 9, 5, 6, 8].
[8, 6, 3, 7, 4, 5, 2, 1, 9].
Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].

A.9.18 Closing and opening words about CLP(FD)

CLP(FD) constraints are one of the main reasons why logic programming approaches are picked
over other paradigms for solving many tasks of high practical relevance. The usefulness of CLP(FD)
constraints for scheduling, allocation and combinatorial optimization tasks is well-known both in
academia and industry.

With this library, we take the applicability of CLP(FD) constraints one step further, following
the road that visionary systems like SICStus Prolog have already clearly outlined: This library is
designed to completely subsume and replace low-level predicates over integers, which were in the past
repeatedly found to be a major stumbling block when introducing logic programming to beginners.

Embrace the change and new opportunities that this paradigm allows! Use CLP(FD) constraints
in your programs. The use of CLP(FD) constraints instead of low-level arithmetic is also a good
indicator to judge the quality of any introductory Prolog text.

A.10 library(clpqr): Constraint Logic Programming over Rationals
and Reals

Author: Christian Holzbaur, ported to SWI-Prolog by Leslie De Koninck, K.U. Leuven

This CLP(Q,R) system is a port of the CLP(Q,R) system of Sicstus Prolog by Christian Holzbaur:
Holzbaur C.: OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute for Artificial Intelli-
gence, Vienna, TR-95-09, 1995.1 This manual is roughly based on the manual of the above mentioned
CLP(Q,R) implementation.

The CLP(Q,R) system consists of two components: the CLP(Q) library for handling constraints
over the rational numbers and the CLP(R) library for handling constraints over the real numbers (using
floating point numbers as representation). Both libraries offer the same predicates (with exception of
bb inf/4 in CLP(Q) and bb inf/5 in CLP(R)). It is allowed to use both libraries in one program,
but using both CLP(Q) and CLP(R) constraints on the same variable will result in an exception.

Please note that the clpqr library is not an autoload library and therefore this library must be
loaded explicitly before using it:

1http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09

SWI-Prolog 9.3 Reference Manual

A.10. LIBRARY(CLPQR): CONSTRAINT LOGIC PROGRAMMING OVER RATIONALS
AND REALS 641

:- use_module(library(clpq)).

or

:- use_module(library(clpr)).

A.10.1 Solver predicates

The following predicates are provided to work with constraints:

{}(+Constraints)
Adds the constraints given by Constraints to the constraint store.

entailed(+Constraint)
Succeeds if Constraint is necessarily true within the current constraint store. This means that
adding the negation of the constraint to the store results in failure.

inf(+Expression, -Inf)
Computes the infimum of Expression within the current state of the constraint store and returns
that infimum in Inf. This predicate does not change the constraint store.

sup(+Expression, -Sup)
Computes the supremum of Expression within the current state of the constraint store and
returns that supremum in Sup. This predicate does not change the constraint store.

minimize(+Expression)
Minimizes Expression within the current constraint store. This is the same as computing the
infimum and equating the expression to that infimum.

maximize(+Expression)
Maximizes Expression within the current constraint store. This is the same as computing the
supremum and equating the expression to that supremum.

bb inf(+Ints, +Expression, -Inf, -Vertex, +Eps)
This predicate is offered in CLP(R) only. It computes the infimum of Expression within the
current constraint store, with the additional constraint that in that infimum, all variables in Ints
have integral values. Vertex will contain the values of Ints in the infimum. Eps denotes how
much a value may differ from an integer to be considered an integer. E.g. when Eps = 0.001,
then X = 4.999 will be considered as an integer (5 in this case). Eps should be between 0 and
0.5.

bb inf(+Ints, +Expression, -Inf, -Vertex)
This predicate is offered in CLP(Q) only. It behaves the same as bb inf/5 but does not use
an error margin.

bb inf(+Ints, +Expression, -Inf)
The same as bb inf/5 or bb inf/4 but without returning the values of the integers. In
CLP(R), an error margin of 0.001 is used.

SWI-Prolog 9.3 Reference Manual

642 APPENDIX A. THE SWI-PROLOG LIBRARY

⟨Constraints⟩ ::= ⟨Constraint⟩ single constraint
| ⟨Constraint⟩ , ⟨Constraints⟩ conjunction
| ⟨Constraint⟩ ; ⟨Constraints⟩ disjunction

⟨Constraint⟩ ::= ⟨Expression⟩ < ⟨Expression⟩ less than
| ⟨Expression⟩ > ⟨Expression⟩ greater than
| ⟨Expression⟩ =< ⟨Expression⟩ less or equal
| <=(⟨Expression⟩, ⟨Expression⟩) less or equal
| ⟨Expression⟩ >= ⟨Expression⟩ greater or equal
| ⟨Expression⟩ =\= ⟨Expression⟩ not equal
| ⟨Expression⟩ =:= ⟨Expression⟩ equal
| ⟨Expression⟩ = ⟨Expression⟩ equal

⟨Expression⟩ ::= ⟨Variable⟩ Prolog variable
| ⟨Number⟩ Prolog number
| +⟨Expression⟩ unary plus
| -⟨Expression⟩ unary minus
| ⟨Expression⟩ + ⟨Expression⟩ addition
| ⟨Expression⟩ - ⟨Expression⟩ substraction
| ⟨Expression⟩ * ⟨Expression⟩ multiplication
| ⟨Expression⟩ / ⟨Expression⟩ division
| abs(⟨Expression⟩) absolute value
| sin(⟨Expression⟩) sine
| cos(⟨Expression⟩) cosine
| tan(⟨Expression⟩) tangent
| exp(⟨Expression⟩) exponent
| pow(⟨Expression⟩) exponent
| ⟨Expression⟩ ˆ ⟨Expression⟩ exponent
| min(⟨Expression⟩, ⟨Expression⟩) minimum
| max(⟨Expression⟩, ⟨Expression⟩) maximum

Table A.1: CLP(Q,R) constraint BNF

dump(+Target, +Newvars, -CodedAnswer)
Returns the constraints on Target in the list CodedAnswer where all variables of Target have
been replaced by NewVars. This operation does not change the constraint store. E.g. in

dump([X,Y,Z],[x,y,z],Cons)

Cons will contain the constraints on X, Y and Z, where these variables have been replaced by
atoms x, y and z.

A.10.2 Syntax of the predicate arguments

The arguments of the predicates defined in the subsection above are defined in table A.1. Failing to
meet the syntax rules will result in an exception.

SWI-Prolog 9.3 Reference Manual

A.10. LIBRARY(CLPQR): CONSTRAINT LOGIC PROGRAMMING OVER RATIONALS
AND REALS 643

A = B ∗ C B or C is ground A = 5 * C or A = B * 4
A and (B or C) are ground 20 = 5 * C or 20 = B * 4

A = B/C C is ground A = B / 3
A and B are ground 4 = 12 / C

X = min(Y,Z) Y and Z are ground X = min(4,3)
X = max(Y,Z) Y and Z are ground X = max(4,3)
X = abs(Y) Y is ground X = abs(-7)
X = pow(Y,Z) X and Y are ground 8 = 2 ˆ Z
X = exp(Y,Z) X and Z are ground 8 = Y ˆ 3
X = Y ˆ Z Y and Z are ground X = 2 ˆ 3
X = sin(Y) X is ground 1 = sin(Y)
X = cos(Y) Y is ground X = sin(1.5707)
X = tan(Y)

Table A.2: CLP(Q,R) isolating axioms

A.10.3 Use of unification

Instead of using the {}/1 predicate, you can also use the standard unification mechanism to store
constraints. The following code samples are equivalent:

• Unification with a variable{X =:= Y}
{X = Y}
X = Y

• Unification with a number{X =:= 5.0}
{X = 5.0}
X = 5.0

A.10.4 Non-linear constraints

The CLP(Q,R) system deals only passively with non-linear constraints. They remain in a passive
state until certain conditions are satisfied. These conditions, which are called the isolation axioms, are
given in table A.2.

A.10.5 Status and known problems

The clpq and clpr libraries are ‘orphaned’, i.e., they currently have no maintainer.

• Top-level output
The top-level output may contain variables not present in the original query:

?- {X+Y>=1}.
{Y=1-X+_G2160, _G2160>=0}.

SWI-Prolog 9.3 Reference Manual

644 APPENDIX A. THE SWI-PROLOG LIBRARY

?-

Nonetheless, for linear constraints this kind of answer means unconditional satisfiability.

• Dumping constraints
The first argument of dump/3 has to be a list of free variables at call-time:

?- {X=1},dump([X],[Y],L).
ERROR: Unhandled exception: Unknown message:

instantiation_error(dump([1],[_G11],_G6),1)
?-

A.11 library(csv): Process CSV (Comma-Separated Values) data
See also RFC 4180
To be done

- Implement immediate assert of the data to avoid possible stack overflows.
- Writing creates an intermediate code-list, possibly overflowing resources. This waits for pure output!

This library parses and generates CSV data. CSV data is represented in Prolog as a list of rows.
Each row is a compound term, where all rows have the same name and arity.

csv read file(+File, -Rows) [det]

csv read file(+File, -Rows, +Options) [det]

Read a CSV file into a list of rows. Each row is a Prolog term with the same arity. Options
is handed to csv//2. Remaining options are processed by phrase from file/3. The
default separator depends on the file name extension and is \t for .tsv files and , otherwise.

Suppose we want to create a predicate table/6 from a CSV file that we know contains 6
fields per record. This can be done using the code below. Without the option arity(6), this
would generate a predicate table/N, where N is the number of fields per record in the data.

?- csv_read_file(File, Rows, [functor(table), arity(6)]),
maplist(assert, Rows).

csv read stream(+Stream, -Rows, +Options) [det]

Read CSV data from Stream. See also csv read row/3.

csv(?Rows) // [det]

csv(?Rows, +Options) // [det]

Prolog DCG to ‘read/write’ CSV data. Options:

separator(+Code)
The comma-separator. Must be a character code. Default is (of course) the comma.
Character codes can be specified using the 0’ notation. E.g., using separator(0’;)
parses a semicolon separated file.

SWI-Prolog 9.3 Reference Manual

A.11. LIBRARY(CSV): PROCESS CSV (COMMA-SEPARATED VALUES) DATA 645

ignore quotes(+Boolean)
If true (default false), threat double quotes as a normal character.

strip(+Boolean)
If true (default false), strip leading and trailing blank space. RFC4180 says that
blank space is part of the data.

skip header(+CommentLead)
Skip leading lines that start with CommentLead. There is no standard for comments in
CSV files, but some CSV files have a header where each line starts with #. After skipping
comment lines this option causes csv//2 to skip empty lines. Note that an empty line
may not contain white space characters (space or tab) as these may provide valid data.

convert(+Boolean)
If true (default), use name/2 on the field data. This translates the field into a number if
possible.

case(+Action)
If down, downcase atomic values. If up, upcase them and if preserve (default), do
not change the case.

functor(+Atom)
Functor to use for creating row terms. Default is row.

arity(?Arity)
Number of fields in each row. This predicate raises a
domain_error(row_arity(Expected), Found) if a row is found with
different arity.

match arity(+Boolean)
If false (default true), do not reject CSV files where lines provide a varying number
of fields (columns). This can be a work-around to use some incorrect CSV files.

csv read file row(+File, -Row, +Options) [nondet]

True when Row is a row in File. First unifies Row with the first row in File. Backtracking
yields the second, ... row. This interface is an alternative to csv read file/3 that avoids
loading all rows in memory. Note that this interface does not guarantee that all rows in File
have the same arity.

In addition to the options of csv read file/3, this predicate processes the option:

line(-Line)
Line is unified with the 1-based line-number from which Row is read. Note that Line is
not the physical line, but rather the logical record number.

csv read row(+Stream, -Row, +CompiledOptions) [det]

Read the next CSV record from Stream and unify the result with Row. CompiledOptions
is created from options defined for csv//2 using csv options/2. Row is unified with
end_of_file upon reaching the end of the input.

csv options(-Compiled, +Options) [det]

Compiled is the compiled representation of the CSV processing options as they may be passed
into csv//2, etc. This predicate is used in combination with csv read row/3 to avoid
repeated processing of the options.

SWI-Prolog 9.3 Reference Manual

646 APPENDIX A. THE SWI-PROLOG LIBRARY

csv write file(+File, +Data) [det]

csv write file(+File, +Data, +Options) [det]

Write a list of Prolog terms to a CSV file. Options are given to csv//2. Remaining options
are given to open/4. The default separator depends on the file name extension and is \t for
.tsv files and , otherwise.

csv write stream(+Stream, +Data, +Options) [det]

Write the rows in Data to Stream. This is similar to csv write file/3, but can deal with
data that is produced incrementally. The example below saves all answers from the predicate
data/3 to File.

save_data(File) :-
setup_call_cleanup(

open(File, write, Out),
forall(data(C1,C2,C3),

csv_write_stream(Out, [row(C1,C2,C3)], [])),
close(Out)).

A.12 library(dcg/basics): Various general DCG utilities
To be done This is just a starting point. We need a comprehensive set of generally useful DCG primitives.

This library provides various commonly used DCG primitives acting on list of character codes.
Character classification is based on code type/2.

This module started its life as library(http/dcg_basics) to support the HTTP protocol.
Since then, it was increasingly used in code that has no relation to HTTP and therefore this library
was moved to the core library.

string without(+EndCodes, -Codes) // [det]

Take as many codes from the input until the next character code appears in the list EndCodes.
The terminating code itself is left on the input. Typical use is to read upto a defined delimiter
such as a newline or other reserved character. For example:

...,
string_without("\n", RestOfLine)

Arguments

EndCodes is a list of character codes.

See also string//1.

string(-Codes) // [nondet]

Take as few as possible tokens from the input, taking one more each time on backtracking.
This code is normally followed by a test for a delimiter. For example:

SWI-Prolog 9.3 Reference Manual

A.12. LIBRARY(DCG/BASICS): VARIOUS GENERAL DCG UTILITIES 647

upto_colon(Atom) -->
string(Codes), ":", !,
{ atom_codes(Atom, Codes) }.

See also string without//2.

blanks // [det]

Skip zero or more white-space characters.

blank // [semidet]

Take next space character from input. Space characters include newline.

See also white//0

nonblanks(-Codes) // [det]

Take all graph characters

nonblank(-Code) // [semidet]

Code is the next non-blank (graph) character.

blanks to nl // [semidet]

Take a sequence of blank//0 codes if blanks are followed by a newline or end of the input.

whites // [det]

Skip white space inside a line.

See also blanks//0 also skips newlines.

white // [semidet]

Take next white character from input. White characters do not include newline.

alpha to lower(?C) // [semidet]

Read a letter (class alpha) and return it as a lowercase letter. If C is instantiated and the DCG
list is already bound, C must be lower and matches both a lower and uppercase letter. If the
output list is unbound, its first element is bound to C. For example:

?- alpha_to_lower(0’a, ‘AB‘, R).
R = [66].
?- alpha_to_lower(C, ‘AB‘, R).
C = 97, R = [66].
?- alpha_to_lower(0’a, L, R).
L = [97|R].

digits(?Chars) // [det]

digit(?Char) // [det]

integer(?Integer) // [det]

Number processing. The predicate digits//1 matches a possibly empty set of digits,
digit//1 processes a single digit and integer processes an optional sign followed by a
non-empty sequence of digits into an integer.

SWI-Prolog 9.3 Reference Manual

648 APPENDIX A. THE SWI-PROLOG LIBRARY

float(?Float) // [det]

Process a floating point number. The actual conversion is controlled by number codes/2.

number(+Number) // [det]

number(-Number) // [semidet]

Generate extract a number. Handles both integers and floating point numbers.

xinteger(+Integer) // [det]

xinteger(-Integer) // [semidet]

Generate or extract an integer from a sequence of hexadecimal digits. Hexadecimal characters
include both uppercase (A-F) and lowercase (a-f) letters. The value may be preceded by a sign
(+/-)

xdigit(-Weight) // [semidet]

True if the next code is a hexdecimal digit with Weight. Weight is between 0 and 15. Hexadeci-
mal characters include both uppercase (A-F) and lowercase (a-f) letters.

xdigits(-WeightList) // [det]

List of weights of a sequence of hexadecimal codes. WeightList may be empty. Hexadecimal
characters include both uppercase (A-F) and lowercase (a-f) letters.

eol
Matches end-of-line. Matching \r\n, \n or end of input (eos//0).

eos
Matches end-of-input. The implementation behaves as the following portable implementation:

eos --> call(eos_).
eos_([], []).

To be done This is a difficult concept and violates the context free property of DCGs. Explain the
exact problems.

remainder(-List) //
Unify List with the remainder of the input.

prolog var name(-Name:atom) // [semidet]

Matches a Prolog variable name. Primarily intended to deal with quasi quotations that embed
Prolog variables.

csym(?Symbol:atom) // [semidet]

Recognise a C symbol according to the csymf and csym code type classification provided by
the C library.

atom(++Atom) // [det]

Generate codes of Atom. Current implementation uses write/1, dealing with any Prolog
term. Atom must be ground though.

SWI-Prolog 9.3 Reference Manual

A.13. LIBRARY(DCG/HIGH ORDER): HIGH ORDER GRAMMAR OPERATIONS 649

A.13 library(dcg/high order): High order grammar operations

This library provides facilities comparable maplist/3, ignore/1 and foreach/2 for DCGs.
STATUS: This library is experimental. The interface and implementation may change based on

feedback. Please send feedback to the mailinglist or the issue page of the swipl-devel.git
repository.

sequence(:Element, ?List) // [nondet]

Match or generate a sequence of Element. This predicate is deterministic if List is fully instan-
tiated and Element is deterministic. When parsing, this predicate is gready and does not prune
choice points. For example:

?- phrase(sequence(digit, Digits), ‘123a‘, L).
Digits = "123",
L = [97] ;
Digits = [49, 50],
L = [51, 97] ;
...

sequence(:Element, :Sep, ?List) // [nondet]

Match or generate a sequence of Element where each pair of elements is separated by Sep.
When parsing, a matched Sep commits. The final element is not committed. More formally, it
matches the following sequence:

(Element, (Sep,Element)*)?

See also sequence//5.

sequence(:Start, :Element, :Sep, :End, ?List) // [semidet]

Match or generate a sequence of Element enclosed by Start end End, where each pair of ele-
ments is separated by Sep. More formally, it matches the following sequence:

Start, (Element, (Sep,Element)*)?, End

The example below matches a Prolog list of integers:

?- phrase(sequence(("[",blanks),
number, (",",blanks),
(blanks,"]"), L),
‘[1, 2, 3] a‘, Tail).

L = [1, 2, 3],
Tail = [32, 97].

SWI-Prolog 9.3 Reference Manual

650 APPENDIX A. THE SWI-PROLOG LIBRARY

optional(:Match, :Default) // [det]

Perform an optional match, executing Default if Match is not matched. This is comparable
to ignore/1. Both Match and Default are DCG body terms. Default is typically used to
instantiate the output variables of Match, but may also be used to match a default representation.
Using [] for Default succeeds without any additional actions if Match fails. For example:

?- phrase(optional(number(X), {X=0}), ‘23‘, Tail).
X = 23,
Tail = [].
?- phrase(optional(number(X), {X=0}), ‘aap‘, Tail).
X = 0,
Tail = ‘aap‘.

foreach(:Generator, :Element) // [det]

foreach(:Generator, :Element, :Sep) // [det]

Generate a list from the solutions of Generator. This predicate collects all solutions of
Generator, applies Element for each solution and Sep between each pair of solutions. For
example:

?- phrase(foreach(between(1,5,X), number(X), ", "), L).
L = "1, 2, 3, 4, 5".

A.14 library(debug): Print debug messages and test assertions

This library is a replacement for format/3 for printing debug messages. Messages are assigned
a topic. By dynamically enabling or disabling topics the user can select desired messages. Calls to
debug/3 and assertion/1 are removed when the code is compiled for optimization unless the
Prolog flag optimise debug is set to true.

Using the predicate assertion/1 you can make assumptions about your program explicit,
trapping the debugger if the condition does not hold.

Output and actions by these predicates can be configured using hooks to fit your environment.
With XPCE, you can use the call below to start a graphical monitoring tool.

?- prolog_ide(debug_monitor).

debugging(+Topic) [semidet]

debugging(-Topic) [nondet]

debugging(?Topic, ?Bool) [nondet]

Examine debug topics. The form debugging(+Topic) may be used to perform more
complex debugging tasks. A typical usage skeleton is:

(debugging(mytopic)
-> <perform debugging actions>

SWI-Prolog 9.3 Reference Manual

A.14. LIBRARY(DEBUG): PRINT DEBUG MESSAGES AND TEST ASSERTIONS 651

; true
),
...

The other two calls are intended to examine existing and enabled debugging tokens and are
typically not used in user programs.

debug(+Topic) [det]

nodebug(+Topic) [det]

Add/remove a topic from being printed. nodebug(_) removes all topics. Gives a warning if
the topic is not defined unless it is used from a directive. The latter allows placing debug topics
at the start of a (load-)file without warnings.

For debug/1, Topic can be a term Topic > Out, where Out is either a stream or stream-
alias or a filename (an atom). This redirects debug information on this topic to the given
output. On Linux systems redirection can be used to make the message appear, even if the
user_error stream is redefined using

?- debug(Topic > ’/proc/self/fd/2’).

A platform independent way to get debug messages in the current console (for example, a
swipl-win window, or login using ssh to Prolog running an SSH server from the libssh
pack) is to use:

?- stream_property(S, alias(user_error)),
debug(Topic > S).

Do not forget to disable the debugging using nodebug/1 before quitting the console if Prolog
must remain running.

list debug topics [det]

list debug topics(+Options) [det]

List currently known topics for debug/3 and their setting. Options is either an atom or string,
which is a shorthand for [search(String)] or a normal option list. Defined options are:

search(String)
Only show topics that match String. Match is case insensitive on the printed representation
of the term.

active(+Boolean)
Only print topics that are active (true) or inactive (false).

output(+To)
Only print topics whose target location matches To. This option implicitly restricts the
output to active topics.

debug message context(+What) [det]

Specify additional context for debug messages.

SWI-Prolog 9.3 Reference Manual

652 APPENDIX A. THE SWI-PROLOG LIBRARY

deprecated New code should use the Prolog flag message context. This predicates adds or
deletes topics from this list.

debug(+Topic, +Format, :Args) [det]

Format a message if debug topic is enabled. Similar to format/3 to user_error, but only
prints if Topic is activated through debug/1. Args is a meta-argument to deal with goal for the
@-command. Output is first handed to the hook prolog:debug print hook/3.
If this fails, Format+Args is translated to text using the message-translation (see
print message/2) for the term debug(Format, Args) and then printed to ev-
ery matching destination (controlled by debug/1) using print message lines/3.

The message is preceded by ’% ’ and terminated with a newline.

See also format/3.

prolog:debug print hook(+Topic, +Format, +Args) [semidet,multifile]

Hook called by debug/3. This hook is used by the graphical frontend that can be activated
using prolog ide/1:

?- prolog_ide(debug_monitor).

assertion(:Goal) [det]

Acts similar to C assert() macro. It has no effect if Goal succeeds. If Goal fails or throws
an exception, the following steps are taken:

• call prolog:assertion failed/2. If prolog:assertion failed/2 fails,
then:

– If this is an interactive toplevel thread, print a message, the stack-trace, and finally
trap the debugger.

– Otherwise, throw error(assertion_error(Reason, G),_)where Reason
is one of fail or the exception raised.

prolog:assertion failed(+Reason, +Goal) [semidet,multifile]

This hook is called if the Goal of assertion/1 fails. Reason is unified with either fail
if Goal simply failed or an exception call otherwise. If this hook fails, the default behaviour
is activated. If the hooks throws an exception it will be propagated into the caller of
assertion/1.

A.15 library(dicts): Dict utilities

This library defines utilities that operate on lists of dicts, notably to make lists of dicts consistent by
adding missing keys, converting between lists of compounds and lists of dicts, joining and slicing lists
of dicts.

mapdict(:Goal, +Dict)
mapdict(:Goal, ?Dict, ?Dict2)

SWI-Prolog 9.3 Reference Manual

A.15. LIBRARY(DICTS): DICT UTILITIES 653

mapdict(:Goal, ?Dict, ?Dict2, ?Dict3)
True when all dicts have the same set of keys and call(Goal, Key, V1, ...) is true
for all keys in the dicts. At least one of the dicts must be instantiated.

Errors
- instantiation error if no dict is bound
- type_error(dict, Culprit) if one of the dict arguments is not a dict.
- domain_error(incompatible_dict, Culprit) if Culprit does not have the same
keys as one of the other dicts.

dicts same tag(+List, -Tag) [semidet]

True when List is a list of dicts that all have the tag Tag.

dict size(+Dict, -KeyCount) [det]

True when KeyCount is the number of keys in Dict.

dict keys(+Dict, -Keys) [det]

True when Keys is an ordered set of the keys appearing in Dict.

dicts same keys(+List, -Keys) [semidet]

True if List is a list of dicts that all have the same keys and Keys is an ordered set of these keys.

dicts to same keys(+DictsIn, :OnEmpty, -DictsOut)
DictsOut is a copy of DictsIn, where each dict contains all keys appearing in all dicts of DictsIn.
Values for keys that are added to a dict are produced by calling OnEmpty as below. The pred-
icate dict fill/4 provides an implementation that fills all new cells with a predefined
value.

call(:OnEmpty, +Key, +Dict, -Value)

dict fill(+ValueIn, +Key, +Dict, -Value) [det]

Implementation for the dicts to same keys/3 OnEmpty closure that fills new cells with
a copy of ValueIn. Note that copy term/2 does not really copy ground terms. Below are two
examples. Note that when filling empty cells with a variable, each empty cell is bound to a new
variable.

?- dicts_to_same_keys([r{x:1}, r{y:2}], dict_fill(null), L).
L = [r{x:1, y:null}, r{x:null, y:2}].
?- dicts_to_same_keys([r{x:1}, r{y:2}], dict_fill(_), L).
L = [r{x:1, y:_G2005}, r{x:_G2036, y:2}].

Use dict no fill/3 to raise an error if a dict is missing a key.

dicts join(+Key, +DictsIn, -Dicts) [semidet]

Join dicts in Dicts that have the same value for Key, provided they do not have conflicting
values on other keys. For example:

?- dicts_join(x, [r{x:1, y:2}, r{x:1, z:3}, r{x:2,y:4}], L).
L = [r{x:1, y:2, z:3}, r{x:2, y:4}].

SWI-Prolog 9.3 Reference Manual

654 APPENDIX A. THE SWI-PROLOG LIBRARY

Errors existence_error(key, Key, Dict) if a dict in Dicts1 or Dicts2 does not contain
Key.

dicts join(+Key, +Dicts1, +Dicts2, -Dicts) [semidet]

Join two lists of dicts (Dicts1 and Dicts2) on Key. Each pair D1-D2 from Dicts1 and Dicts2
that have the same (==) value for Key creates a new dict D with the union of the keys from D1
and D2, provided D1 and D2 to not have conflicting values for some key. For example:

?- DL1 = [r{x:1,y:1},r{x:2,y:4}],
DL2 = [r{x:1,z:2},r{x:3,z:4}],
dicts_join(x, DL1, DL2, DL).
DL = [r{x:1, y:1, z:2}, r{x:2, y:4}, r{x:3, z:4}].

Errors existence_error(key, Key, Dict) if a dict in Dicts1 or Dicts2 does not contain
Key.

dicts slice(+Keys, +DictsIn, -DictsOut) [det]

DictsOut is a list of Dicts only containing values for Keys.

dicts to compounds(?Dicts, +Keys, :OnEmpty, ?Compounds) [semidet]

True when Dicts and Compounds are lists of the same length and each element of Compounds
is a compound term whose arguments represent the values associated with the corresponding
keys in Keys. When converting from dict to row, OnEmpty is used to compute missing values.
The functor for the compound is the same as the tag of the pair. When converting from dict to
row and the dict has no tag, the functor row is used. For example:

?- Dicts = [_{x:1}, _{x:2, y:3}],
dicts_to_compounds(Dicts, [x], dict_fill(null), Compounds).

Compounds = [row(1), row(2)].
?- Dicts = [_{x:1}, _{x:2, y:3}],

dicts_to_compounds(Dicts, [x,y], dict_fill(null), Compounds).
Compounds = [row(1, null), row(2, 3)].
?- Compounds = [point(1,1), point(2,4)],

dicts_to_compounds(Dicts, [x,y], dict_fill(null), Compounds).
Dicts = [point{x:1, y:1}, point{x:2, y:4}].

When converting from Dicts to Compounds Keys may be computed by dicts same keys/2.

A.16 library(error): Error generating support
author

- Jan Wielemaker
- Richard O’Keefe
- Ulrich Neumerkel

See also
- library(debug) and library(prolog_stack).
- print message/2 is used to print (uncaught) error terms.

SWI-Prolog 9.3 Reference Manual

A.16. LIBRARY(ERROR): ERROR GENERATING SUPPORT 655

This module provides predicates to simplify error generation and checking. It’s implementation
is based on a discussion on the SWI-Prolog mailinglist on best practices in error handling. The utility
predicate must be/2 provides simple run-time type validation. The * error predicates are simple
wrappers around throw/1 to simplify throwing the most common ISO error terms.

type error(+ValidType, +Culprit)
Tell the user that Culprit is not of the expected ValidType. This error is closely related to
domain error/2 because the notion of types is not really set in stone in Prolog. We
introduce the difference using a simple example.

Suppose an argument must be a non-negative integer. If the actual argument is not an integer,
this is a type error. If it is a negative integer, it is a domain error.

Typical borderline cases are predicates accepting a compound term, e.g., point(X,Y). One
could argue that the basic type is a compound-term and any other compound term is a domain
error. Most Prolog programmers consider each compound as a type and would consider a
compound that is not point(_,_) a type error.

domain error(+ValidDomain, +Culprit)
The argument is of the proper type, but has a value that is outside the supported values. See
type error/2 for a more elaborate discussion of the distinction between type- and
domain-errors.

existence error(+ObjectType, +Culprit)
Culprit is of the correct type and correct domain, but there is no existing (external) resource of
type ObjectType that is represented by it.

existence error(+ObjectType, +Culprit, +Set)
Culprit is of the correct type and correct domain, but there is no existing (ex-
ternal) resource of type ObjectType that is represented by it in the provided
set. The thrown exception term carries a formal term structured as follows:
existence_error(ObjectType, Culprit, Set)

Compatibility This error is outside the ISO Standard.

permission error(+Operation, +PermissionType, +Culprit)
It is not allowed to perform Operation on (whatever is represented by) Culprit that is of the
given PermissionType (in fact, the ISO Standard is confusing and vague about these terms’
meaning).

instantiation error(+FormalSubTerm)
An argument is under-instantiated. I.e. it is not acceptable as it is, but if some variables are
bound to appropriate values it would be acceptable.

Arguments
FormalSubTerm is the term that needs (further) instantiation. Unfortunately, the

ISO error does not allow for passing this term along with the error,
but we pass it to this predicate for documentation purposes and to
allow for future enhancement.

SWI-Prolog 9.3 Reference Manual

656 APPENDIX A. THE SWI-PROLOG LIBRARY

uninstantiation error(+Culprit)
An argument is over-instantiated. This error is used for output arguments whose value cannot
be known upfront. For example, the goal open(File, read, input) cannot succeed
because the system will allocate a new unique stream handle that will never unify with input.

representation error(+Flag)
A representation error indicates a limitation of the implementation. SWI-Prolog has no such
limits that are not covered by other errors, but an example of a representation error in another
Prolog implementation could be an attempt to create a term with an arity higher than supported
by the system.

syntax error(+Culprit)
A text has invalid syntax. The error is described by Culprit. According to the ISO Standard,
Culprit should be an implementation-dependent atom.

To be done Deal with proper description of the location of the error. For short texts, we allow for
Type(Text), meaning Text is not a valid Type. E.g. syntax_error(number(’1a’)) means
that 1a is not a valid number.

resource error(+Resource)
A goal cannot be completed due to lack of resources. According to the ISO Standard, Resource
should be an implementation-dependent atom.

must be(+Type, @Term) [det]

True if Term satisfies the type constraints for Type. Defined types are atom, atomic,
between, boolean, callable, chars, codes, text, compound, constant,
float, integer, nonneg, positive_integer, negative_integer, nonvar,
number, oneof, list, list_or_partial_list, symbol, var, rational,
encoding, dict and string.

Most of these types are defined by an arity-1 built-in predicate of the same name. Below is a
brief definition of the other types.

SWI-Prolog 9.3 Reference Manual

A.16. LIBRARY(ERROR): ERROR GENERATING SUPPORT 657

acyclic Acyclic term (tree); see acyclic term/1
any any term
between(FloatL,FloatU) Number [FloatL..FloatU]
between(IntL,IntU) Integer [IntL..IntU]
boolean One of true or false
callable Atom or compound term
char Atom of length 1
chars Proper list of 1-character atoms
code Representation Unicode code point (0..0x10ffff)
codes Proper list of Unicode character codes
compound compound term
compound(Term) Compound with same name/arity as term; checks

arguments
constant Same as atomic
cyclic Cyclic term (rational tree); see cyclic term/1
dict A dictionary term; see is dict/1
encoding Valid name for a character encoding; see

current encoding/1
list A (non-open) list; see is list/1
list(Type) Proper list with elements of Type
list or partial list A list or an open list (ending in a variable); see

is list or partial list/1
negative integer Integer < 0
nonneg Integer >= 0
oneof(L) Ground term that is member of L
pair Key-Value pair. Same as compound(any-any)
positive integer Integer > 0
proper list Same as list
stream A stream name or valid stream handle; see

is stream/1
symbol Same as atom
text One of atom, string, chars or codes
type Term is a valid type specification

In addition, types may be composed using TypeA,TypeB, TypeA;TypeB and negated using
\Type.

Errors instantiation error if Term is insufficiently instantiated and type_error(Type, Term)
if Term is not of Type.

is of type(+Type, @Term) [semidet]

True if Term satisfies Type.

has type(+Type, @Term) [semidet,multifile]

True if Term satisfies Type.

current encoding(?Name) [nondet]

True if Name is the name of a supported encoding. See encoding option of e.g., open/4.

SWI-Prolog 9.3 Reference Manual

658 APPENDIX A. THE SWI-PROLOG LIBRARY

current type(?Type, @Var, -Body) [nondet]

True when Type is a currently defined type and Var satisfies Type of the body term Body suc-
ceeds.

A.17 library(exceptions): Exception classification

Prolog catch/3 selects errors based on unification. This is problematic for two reasons. First, one
typically wants the exception term to be more specific than the term passed to the 2nd (Ball) argument
of catch/3. Second, in many situations one wishes to select multiple errors that may be raised
by some operations, but let the others pass. Unification is often not suitable for this. For example,
open/3 can raise an existence error or a permission error (and a couple more), but existence error
are also raised on, for example, undefined procedures. This is very hard to specify, Below is an attempt
that still assumes nothing throws error(_,_).

catch(open(...), error(Formal,ImplDefined),
((Formal = existence_error(source_sink,_)

; Formal = permission_error(open, source_sink, _)
)

-> <handle>
; throw(Formal, ImplDefined)
)),

...

Besides being hard to specify, actual Prolog systems define a large number of additional error
terms because there is no reasonable ISO exception defined. For example, SWI-Prolog open/3
may raise resource_error(max_files) if the maximum number of file handles of the OS is
exceeded.

As a result, we see a lot of Prolog code in the wild that simply uses the construct below to simply
fail. But, this may fail for lack of stack space, a programmer error that causes a type error, etc. This
both makes it much harder to debug the code and provide meaningful feedback to the user of the
application.

catch(Goal, _, fail)

Many programing languages have their exceptions organised by a (class) hierarchy. Prolog has
no hierarchy of terms. We introduce exception/2 as exception(+Type, ?Term), which can both
be used as a type test for an exception term and as a constraint for the Ball of catch/3. Using
a predicate we can express abstractions over concrete exception terms with more flexibility than a
hierarchy. Using a multifile predicate, libraries can add their exceptions to defined types or introduce
new types.

The predicate catch/4 completes the interface.

catch(:Goal, +ExceptionType, ?Ball, :Recover)
As catch/3, only catching exceptions for which exception(ErrorType,Ball) is

SWI-Prolog 9.3 Reference Manual

A.18. LIBRARY(FASTRW): FAST READING AND WRITING OF TERMS 659

true. See error/2. For example, the code below properly informs the user some file could
not be processed due do some issue with File, while propagating on all other reasons while
process/1 could not be executed.

catch(process(File), file_error, Ball,
file_not_processed(File, Ball))

file_not_processed(File, Ball) :-
message_to_string(Ball, Msg),
format(user_error, ’Could not process ˜p: ˜s’, [File, Msg]).

exception(:Type, –Ball) [det]

exception(:Type, +Ball) [semidet]

If Ball is unbound, adds a delayed goal that tests the error belongs to Type when Ball is
instantiated (by catch/3). Else succeed is error is of the specified Type.

Note that the delayed goal is added using freeze/2 and therefore the stepwise instantiation of
Ball does not work, e.g. exception(file_error, error(Formal,_)) immediately
fails.

Error types may be defined or extended (e.g., by libraries) by adding clauses to the multifile
predicates error term/2 and exception term/2. Modules may (re-)define local error
types using the exception type/2 directive.

error term(?Type, ?Term) [nondet,multifile]

Describe the formal part of error(Formal,ImplDefined) exceptions.

exception term(?Type, ?Term) [nondet,multifile]

Describe exceptions that are not error(Formal, _) terms.

exception type(+Type, +Term)
Declare all exceptions subsumed by Term to be an exception of Type. This declaration is
module specific.

A.18 library(fastrw): Fast reading and writing of terms
Compatibility The format is not compatible to SICStus/Ciao (which are not compatible either). Future

versions of this library might implement a different encoding.
bug The current implementation of fast read/1 is not safe. It is guaranteed to safely read terms written

using fast write/1, but may crash on arbitrary input. The implementation does perform some
basic sanity checks, including validation of the magic start byte.

To be done Establish a portable binary format.

This library provides the SICStus and Ciao library(fastrw) interface. The idea behind this
library is to design a fast serialization for Prolog terms. Ideally, this should be portable between Prolog
implementation. Unfortunately there is no portably binary term format defined.

The current implementation is based on PL record external(), which provides a binary represen-
tation of terms that is processed efficiently and can handle subterm sharing, cycles and attributed
variables. In other words, this library can handle any Prolog term except blobs such as stream han-
dles, database references, etc. We try to keep the format compatible between versions, but this is not

SWI-Prolog 9.3 Reference Manual

660 APPENDIX A. THE SWI-PROLOG LIBRARY

guaranteed. Conversion is always possible by reading a database using the old version, dump it using
write canonical/1 and read it into the new version.

This library is built upon the following built in predicates:

• fast term serialized/2 translates between a term and its serialization as a byte string.

• fast read/2 and fast write/2 read/write binary serializations.

fast read(-Term)
The next term is read from current standard input and is unified with Term. The syntax of the
term must agree with fast read / fast write format. If the end of the input has been reached,
Term is unified with the term end_of_file.

fast write(+Term)
Output Term in a way that fast read/1 and fast read/2 will be able to read it back.

fast write to string(+Term, -String, ?Tail)
Perform a fast-write to the difference-slist String\Tail.

A.19 library(gensym): Generate unique symbols

Gensym (Generate Symbols) is an old library for generating unique symbols (atoms). Such symbols
are generated from a base atom which gets a sequence number appended. Of course there is no
guarantee that catch22 is not an already defined atom and therefore one must be aware these atoms
are only unique in an isolated context.

The SWI-Prolog gensym library is thread-safe. The sequence numbers are global over all threads
and therefore generated atoms are unique over all threads.

gensym(+Base, -Unique)
Generate <Base>1, <Base>2, etc atoms on each subsequent call. Note that there is nothing
that prevents other parts of the application to ‘invent’ the same identifier. The predicate
gensym/2 is thread-safe in the sense that two threads generating identifiers from the same
Base will never generate the same identifier.

See also uuid/1, term hash/2, variant sha1/2 may be used to generate various unique or
content-based identifiers safely.

reset gensym
Reset gensym for all registered keys. This predicate is available for compatibility only. New
code is strongly advised to avoid the use of reset gensym or at least to reset only the keys used
by your program to avoid unexpected side effects on other components.

reset gensym(+Base)
Restart generation of identifiers from Base at <Base>1. Used to make sure a program produces
the same results on subsequent runs. Use with care.

SWI-Prolog 9.3 Reference Manual

A.20. LIBRARY(HEAPS): HEAPS/PRIORITY QUEUES 661

A.20 library(heaps): heaps/priority queues
author Lars Buitinck

Heaps are data structures that return the entries inserted into them in an ordered fashion, based on
a priority. This makes them the data structure of choice for implementing priority queues, a central
element of algorithms such as best-first/A* search and Kruskal’s minimum-spanning-tree algorithm.

This module implements min-heaps, meaning that items are retrieved in ascending order of
key/priority. It was designed to be compatible with the SICStus Prolog library module of the
same name. merge heaps/3 and singleton heap/3 are SWI-specific extension. The
portray heap/1 predicate is not implemented.

Although the data items can be arbitrary Prolog data, keys/priorities must be ordered by @=</2.
Be careful when using variables as keys, since binding them in between heap operations may change
the ordering.

The current version implements pairing heaps. These support insertion and merging both in
constant time, deletion of the minimum in logarithmic amortized time (though delete-min, i.e.,
get from heap/3, takes linear time in the worst case).

add to heap(+Heap0, +Priority, ?Key, -Heap) [semidet]

Adds Key with priority Priority to Heap0, constructing a new heap in Heap.

delete from heap(+Heap0, -Priority, +Key, -Heap) [semidet]

Deletes Key from Heap0, leaving its priority in Priority and the resulting data structure in
Heap. Fails if Key is not found in Heap0.

bug This predicate is extremely inefficient and exists only for SICStus compatibility.

empty heap(?Heap) [semidet]

True if Heap is an empty heap. Complexity: constant.

singleton heap(?Heap, ?Priority, ?Key) [semidet]

True if Heap is a heap with the single element Priority-Key.

Complexity: constant.

get from heap(?Heap0, ?Priority, ?Key, -Heap) [semidet]

Retrieves the minimum-priority pair Priority-Key from Heap0. Heap is Heap0 with that pair
removed. Complexity: logarithmic (amortized), linear in the worst case.

heap size(+Heap, -Size:int) [det]

Determines the number of elements in Heap. Complexity: constant.

heap to list(+Heap, -List:list) [det]

Constructs a list List of Priority-Element terms, ordered by (ascending) priority. Complexity:
$O(n \log n)$.

is heap(+X) [semidet]

Returns true if X is a heap. Validates the consistency of the entire heap. Complexity: linear.

SWI-Prolog 9.3 Reference Manual

662 APPENDIX A. THE SWI-PROLOG LIBRARY

list to heap(+List:list, -Heap) [det]

If List is a list of Priority-Element terms, constructs a heap out of List. Complexity: linear.

min of heap(+Heap, ?Priority, ?Key) [semidet]

Unifies Key with the minimum-priority element of Heap and Priority with its priority value.
Complexity: constant.

min of heap(+Heap, ?Priority1, ?Key1, ?Priority2, ?Key2) [semidet]

Gets the two minimum-priority elements from Heap. Complexity: logarithmic (amortized).

Do not use this predicate; it exists for compatibility with earlier implementations of this library
and the SICStus counterpart. It performs a linear amount of work in the worst case that a
following get from heap has to re-do.

merge heaps(+Heap0, +Heap1, -Heap) [det]

Merge the two heaps Heap0 and Heap1 in Heap. Complexity: constant.

A.21 library(increval): Incremental dynamic predicate modification
Compatibility XSB

This module emulates the XSB module increval. This module serves two goals: (1) provide
alternatives for the dynamic clause manipulation predicates that propagate into the incremental tables
and (2) query the dynamically maintained Incremental Depency Graph (IDG).

The change propagation for incremental dynamic predicates. SWI-Prolog relies in
prolog listen/2 to forward any change to dynamic predicates to the table IDG and
incr assert/1 and friends thus simply call the corresponding database update.

is incremental subgoal(?SubGoal) [nondet]

This predicate non-deterministically unifies Subgoal with incrementally tabled subgoals that
are currently table entries.

incr directly depends(:Goal1, :Goal2) [nondet]

True if Goal1 depends on Goal2 in the IDG.

Compatibility : In XSB, at least one of Goal 1 or Goal 2 must be bound. This implementation may
be used with both arguments unbound.

incr trans depends(:Goal1, Goal2) [nondet]

True for each pair in the transitive closure of incr_directly_depends(G1, G2).

incr invalid subgoals(-List) [det]

List is a sorted list (set) of the incremental subgoals that are currently invalid.

incr is invalid(:Subgoal) [semidet]

True when Subgoal’s table is marked as invalid.

incr invalidate calls(:Goal) [det]

Invalidate all tables for subgoals of Goal as well as tables that are affected by these.

SWI-Prolog 9.3 Reference Manual

A.22. LIBRARY(INTERCEPT): INTERCEPT AND SIGNAL INTERFACE 663

incr invalidate call(:Goal) [det]

This is the XSB name, but the manual says incr invalidate calls/1 and the comment
with the code suggests this is misnamed.

deprecated Use incr invalidate calls/1.

incr table update
Updated all invalid tables

incr propagate calls(:Answer) [det]

Activate the monotonic answer propagation similarly to when a new fact is asserted for a
monotonic dynamic predicate. The Answer term must match a monotonic dynamic predicate.

A.22 library(intercept): Intercept and signal interface

This library allows for creating an execution context (goal) which defines how calls to
send signal/1 are handled. This library is typically used to fetch values from the context or
process results depending on the context.

For example, assume we parse a (large) file using a grammar (see phrase from file/3) that
has some sort of record structure. What should we do with the recognised records? We can return
them in a list, but if the input is large this is a huge overhead if the records are to be asserted or written
to a file. Using this interface we can use

document -->
record(Record),
!,
{ send_signal(record(Record)) },
document.

document -->
[].

Given the above, we can assert all records into the database using the following query:

...,
intercept(phrase_from_file(File, document),

record(Record),
assertz(Record)).

Or, we can collect all records in a list using intercept all/4:

...,
intercept_all(Record,

phrase_from_file(File, document), record(Record),
Records).

SWI-Prolog 9.3 Reference Manual

664 APPENDIX A. THE SWI-PROLOG LIBRARY

intercept(:Goal, ?Ball, :Handler)
Run Goal as call/1. If somewhere during the execution of Goal send signal/1 is called
with a Signal that unifies with Ball, run Handler and continue the execution.

This predicate is related to catch/3, but rather than aborting the execution of Goal and run-
ning Handler it continues the execution of Goal. This construct is also related to delimited
continuations (see reset/3 and shift/1). It only covers one (common) use case for delim-
ited continuations, but does so with a simpler interface, at lower overhead and without suffering
from poor interaction with the cut.

Note that Ball and Handler are copied before calling the (copy) of Handler to avoid instantiation
of Ball and/or Handler which can make a subsequent signal fail.

See also intercept/4, reset/3, catch/4, broadcast request/1.
Compatibility Ciao

intercept(:Goal, ?Ball, :Handler, +Arg)
Similar to intercept/3, but the copy of Handler is called as call(Copy,Arg), which
allows passing large context arguments or arguments subject to unification or destructive
assignment. For example:

?- intercept(send_signal(x), X, Y=X).
true.

?- intercept(send_signal(x), X, =(X), Y).
Y = x.

intercept all(+Template, :Goal, ?Ball, -List)
True when List contains all instances of Template that have been sent using send signal/1
where the argument unifies with Ball. Note that backtracking in Goal resets the List. For
example, given

enum(I, Max) :- I =< Max, !, send_signal(emit(I)),
I2 is I+1, enum(I2, Max).

enum(_, _).

Consider the following queries

?- intercept_all(I, enum(1,6), emit(I), List).
List = [1, 2, 3, 4, 5, 6].

?- intercept_all(I, (between(1,3,Max),enum(1,Max)),
emit(I), List).

Max = 1, List = [1] ;
Max = 2, List = [1, 2] ;
Max = 3, List = [1, 2, 3].

See also nb intercept all/4

SWI-Prolog 9.3 Reference Manual

A.23. LIBRARY(IOSTREAM): UTILITIES TO DEAL WITH STREAMS 665

nb intercept all(+Template, :Goal, ?Ball, -List)
As intercept all/4, but backtracing inside Goal does not reset List. Consider this pro-
gram and the subsequent queries

enum_b(F, T) :- forall(between(F, T, I), send_signal(emit(I))).

?- intercept_all(I, enum_b(1, 6), emit(I), List).
List = [].

?- nb_intercept_all(I, enum_b(1, 6), emit(I), List).
List = [1, 2, 3, 4, 5, 6].

send signal(+Signal)
If this predicate is called from a sub-goal of intercept/3, execute the associated Handler
of the intercept/3 environment.

Errors unintercepted_signal(Signal) if there is no matching intercept environment.

send silent signal(+Signal)
As send signal/1, but succeed silently if there is no matching intercept environment.

A.23 library(iostream): Utilities to deal with streams
See also library(archive), library(process), library(zlib), library(http/

http_stream)

This library contains utilities that deal with streams, notably originating from non-built-in sources
such as URLs, archives, windows, processes, etc.

The predicate open any/5 acts as a broker between applications that can process data from a
stream and libraries that can create streams from diverse sources. Without this predicate, processing
data inevitally follows the pattern below. As call some open variation can be anything, this blocks
us from writing predicates such as load_xml(From, DOM) that can operate on arbitrary input
sources.

setup_call_cleanup(
call_some_open_variation(Spec, In),
process(In),
close(In)).

Libraries that can open streams can install the hook iostream:open hook/6 to make their
functionality available through open any/5.

open any(+Specification, +Mode, -Stream, -Close, +Options)
Establish a stream from Specification that should be closed using Close, which can either be
called or passed to close any/1. Options processed:

SWI-Prolog 9.3 Reference Manual

666 APPENDIX A. THE SWI-PROLOG LIBRARY

encoding(Enc)
Set stream to encoding Enc.

Without loaded plugins, the open any/5 processes the following values for Specification. If
no rule matches, open any/5 processes Specification as file(Specification).

Stream
A plain stream handle. Possisible post-processing options such as encoding are applied.
Close does not close the stream, but resets other side-effects such as the encoding.

stream(Stream)
Same as a plain Stream.

FileURL
If Specification is of the form =file://...=, the pointed to file is opened using open/4.
Requires library(uri) to be installed.

file(Path)
Explicitly open the file Path. Path can be an Path(File) term as accepted by
absolute file name/3.

string(String)
Open a Prolog string, atom, list of characters or codes as an input stream.

The typical usage scenario is given in the code below, where <process> processes the input.

setup_call_cleanup(
open_any(Spec, read, In, Close, Options),
<process>(In),
Close).

Currently, the following libraries extend this predicate:

library(http/http open)
Adds support for URLs using the http and https schemes.

close any(+Goal)
Execute the Close closure returned by open any/5. The closure can also be called directly.
Using close any/1 can be considered better style and enhances tractability of the source
code.

open hook(+Spec, +Mode, -Stream, -Close, +Options0, -Options) [semidet,multifile]

Open Spec in Mode, producing Stream.

Arguments
Close is unified to a goal that must be called to undo the side-effects of

the action, e.g., typically the term close(Stream)
Options0 are the options passed to open any/5
Options are passed to the post processing filters that may be installed by

open any/5.

SWI-Prolog 9.3 Reference Manual

A.24. LIBRARY(LISTING): LIST PROGRAMS AND PRETTY PRINT CLAUSES 667

A.24 library(listing): List programs and pretty print clauses
To be done

- More settings, support Coding Guidelines for Prolog and make the suggestions there the default.
- Provide persistent user customization

This module implements listing code from the internal representation in a human readable format.

• listing/0 lists a module.

• listing/1 lists a predicate or matching clause

• listing/2 lists a predicate or matching clause with options

• portray clause/2 pretty-prints a clause-term

Layout can be customized using library(settings). The effective settings can be listed
using list settings/1 as illustrated below. Settings can be changed using set setting/2.

?- list_settings(listing).
==
Name Value (*=modified) Comment
==
listing:body_indentation 4 Indentation used goals in the body
listing:tab_distance 0 Distance between tab-stops.
...

listing
Lists all predicates defined in the calling module. Imported predicates are not listed. To list the
content of the module mymodule, use one of the calls below.

?- mymodule:listing.
?- listing(mymodule:_).

listing(:What) [det]

listing(:What, +Options) [det]

List matching clauses. What is either a plain specification or a list of specifications. Plain
specifications are:

• Predicate indicator (Name/Arity or Name//Arity) Lists the indicated predicate. This also
outputs relevant declarations, such as multifile/1 or dynamic/1.

• A Head term. In this case, only clauses whose head unify with Head are listed. This is
illustrated in the query below that only lists the first clause of append/3.

?- listing(append([], _, _)).
lists:append([], L, L).

SWI-Prolog 9.3 Reference Manual

668 APPENDIX A. THE SWI-PROLOG LIBRARY

• A clause reference as obtained for example from nth clause/3.

The following options are defined:

variable names(+How)
One of source (default) or generated. If source, for each clause that is associated
to a source location the system tries to restore the original variable names. This may fail
if macro expansion is not reversible or the term cannot be read due to different operator
declarations. In that case variable names are generated.

source(+Bool)
If true (default false), extract the lines from the source files that produced the clauses,
i.e., list the original source text rather than the decompiled clauses. Each set of contiguous
clauses is preceded by a comment that indicates the file and line of origin. Clauses
that cannot be related to source code are decompiled where the comment indicates the
decompiled state. This is notably practical for collecting the state of multifile predicates.
For example:

?- listing(file_search_path, [source(true)]).

portray clause(+Clause) [det]

portray clause(+Out:stream, +Clause) [det]

portray clause(+Out:stream, +Clause, +Options) [det]

Portray ‘Clause’ on the current output stream. Layout of the clause is to our best standards.
Deals with control structures and calls via meta-call predicates as determined using the
predicate property meta predicate. If Clause contains attributed variables, these are treated as
normal variables.

Variable names are by default generated using numbervars/4 using the option
singletons(true). This names the variables A, B, ... and the singletons . Variables
can be named explicitly by binding them to a term ’$VAR’(Name), where Name is an atom
denoting a valid variable name (see the option numbervars(true) from write term/2)
as well as by using the variable_names(Bindings) option from write term/2.

Options processed in addition to write term/2 options:

variable names(+Bindings)
See above and write term/2.

indent(+Columns)
Left margin used for the clause. Default 0.

module(+Module)
Module used to determine whether a goal resolves to a meta predicate. Default user.

A.25 library(lists): List Manipulation
Compatibility Virtually every Prolog system has library(lists), but the set of provided predicates

is diverse. There is a fair agreement on the semantics of most of these predicates, although error
handling may vary.

SWI-Prolog 9.3 Reference Manual

A.25. LIBRARY(LISTS): LIST MANIPULATION 669

This library provides commonly accepted basic predicates for list manipulation in the Prolog
community. Some additional list manipulations are built-in. See e.g., memberchk/2, length/2.

The implementation of this library is copied from many places. These include: ”The Craft of
Prolog”, the DEC-10 Prolog library (LISTRO.PL) and the YAP lists library. Some predicates are
reimplemented based on their specification by Quintus and SICStus.

member(?Elem, ?List)
True if Elem is a member of List. The SWI-Prolog definition differs from the classical one.
Our definition avoids unpacking each list element twice and provides determinism on the last
element. E.g. this is deterministic:

member(X, [One]).

author Gertjan van Noord

append(?List1, ?List2, ?List1AndList2)
List1AndList2 is the concatenation of List1 and List2

append(+ListOfLists, ?List)
Concatenate a list of lists. Is true if ListOfLists is a list of lists, and List is the concatenation of
these lists.

Arguments

ListOfLists must be a list of possibly partial lists

prefix(?Part, ?Whole)
True iff Part is a leading substring of Whole. This is the same as
append(Part, _, Whole).

select(?Elem, ?List1, ?List2)
Is true when List1, with Elem removed, results in List2. This implementation is determinsitic if
the last element of List1 has been selected.

selectchk(+Elem, +List, -Rest) [semidet]

Semi-deterministic removal of first element in List that unifies with Elem.

select(?X, ?XList, ?Y, ?YList) [nondet]

Select from two lists at the same position. True if XList is unifiable with YList apart a single
element at the same position that is unified with X in XList and with Y in YList. A typical
use for this predicate is to replace an element, as shown in the example below. All possible
substitutions are performed on backtracking.

?- select(b, [a,b,c,b], 2, X).
X = [a, 2, c, b] ;
X = [a, b, c, 2] ;
false.

See also selectchk/4 provides a semidet version.

SWI-Prolog 9.3 Reference Manual

670 APPENDIX A. THE SWI-PROLOG LIBRARY

selectchk(?X, ?XList, ?Y, ?YList) [semidet]

Semi-deterministic version of select/4.

nextto(?X, ?Y, ?List)
True if Y directly follows X in List.

delete(+List1, @Elem, -List2) [det]

Delete matching elements from a list. True when List2 is a list with all elements from List1
except for those that unify with Elem. Matching Elem with elements of List1 is uses
\+ Elem \= H, which implies that Elem is not changed.

See also select/3, subtract/3.
deprecated There are too many ways in which one might want to delete elements from a list to justify

the name. Think of matching (= vs. ==), delete first/all, be deterministic or not.

nth0(?Index, ?List, ?Elem)
True when Elem is the Index’th element of List. Counting starts at 0.

Errors type_error(integer, Index) if Index is not an integer or unbound.
See also nth1/3.

nth1(?Index, ?List, ?Elem)
Is true when Elem is the Index’th element of List. Counting starts at 1.

See also nth0/3.

nth0(?N, ?List, ?Elem, ?Rest) [det]

Select/insert element at index. True when Elem is the N’th (0-based) element of List and Rest
is the remainder (as in by select/3) of List. For example:

?- nth0(I, [a,b,c], E, R).
I = 0, E = a, R = [b, c] ;
I = 1, E = b, R = [a, c] ;
I = 2, E = c, R = [a, b] ;
false.

?- nth0(1, L, a1, [a,b]).
L = [a, a1, b].

nth1(?N, ?List, ?Elem, ?Rest) [det]

As nth0/4, but counting starts at 1.

last(?List, ?Last)
Succeeds when Last is the last element of List. This predicate is semidet if List is a list and
multi if List is a partial list.

Compatibility There is no de-facto standard for the argument order of last/2. Be careful when
porting code or use append(_, [Last], List) as a portable alternative.

SWI-Prolog 9.3 Reference Manual

A.25. LIBRARY(LISTS): LIST MANIPULATION 671

proper length(@List, -Length) [semidet]

True when Length is the number of elements in the proper list List. This is equivalent to

proper_length(List, Length) :-
is_list(List),
length(List, Length).

same length(?List1, ?List2)
Is true when List1 and List2 are lists with the same number of elements. The predicate is
deterministic if at least one of the arguments is a proper list. It is non-deterministic if both
arguments are partial lists.

See also length/2

reverse(?List1, ?List2)
Is true when the elements of List2 are in reverse order compared to List1. This predicate is
deterministic if either list is a proper list. If both lists are partial lists backtracking generates
increasingly long lists.

permutation(?Xs, ?Ys) [nondet]

True when Xs is a permutation of Ys. This can solve for Ys given Xs or Xs given Ys, or even
enumerate Xs and Ys together. The predicate permutation/2 is primarily intended to
generate permutations. Note that a list of length N has N! permutations, and unbounded
permutation generation becomes prohibitively expensive, even for rather short lists (10! =
3,628,800).

If both Xs and Ys are provided and both lists have equal length the order is |Xs|ˆ2. Simply
testing whether Xs is a permutation of Ys can be achieved in order log(|Xs|) using msort/2
as illustrated below with the semidet predicate is permutation/2:

is_permutation(Xs, Ys) :-
msort(Xs, Sorted),
msort(Ys, Sorted).

The example below illustrates that Xs and Ys being proper lists is not a sufficient condition to
use the above replacement.

?- permutation([1,2], [X,Y]).
X = 1, Y = 2 ;
X = 2, Y = 1 ;
false.

Errors type_error(list, Arg) if either argument is not a proper or partial list.

flatten(+NestedList, -FlatList) [det]

Is true if FlatList is a non-nested version of NestedList. Note that empty lists are removed. In
standard Prolog, this implies that the atom ’[]’ is removed too. In SWI7, [] is distinct from
’[]’.

SWI-Prolog 9.3 Reference Manual

672 APPENDIX A. THE SWI-PROLOG LIBRARY

Ending up needing flatten/2 often indicates, like append/3 for appending two lists, a bad
design. Efficient code that generates lists from generated small lists must use difference lists,
often possible through grammar rules for optimal readability.

See also append/2

clumped(+Items, -Pairs)
Pairs is a list of Item-Count pairs that represents the run length encoding of Items. For
example:

?- clumped([a,a,b,a,a,a,a,c,c,c], R).
R = [a-2, b-1, a-4, c-3].

Compatibility SICStus

subseq(+List, -SubList, -Complement) [nondet]

subseq(-List, +SubList, +Complement) [nondet]

Is true when SubList contains a subset of the elements of List in the same order and Complement
contains all elements of List not in SubList, also in the order they appear in List.

Compatibility SICStus. The SWI-Prolog version raises an error for less instantiated modes as these
do not terminate.

max member(-Max, +List) [semidet]

True when Max is the largest member in the standard order of terms. Fails if List is empty.

See also
- compare/3
- max list/2 for the maximum of a list of numbers.

min member(-Min, +List) [semidet]

True when Min is the smallest member in the standard order of terms. Fails if List is empty.

See also
- compare/3
- min list/2 for the minimum of a list of numbers.

max member(:Pred, -Max, +List) [semidet]

True when Max is the largest member according to Pred, which must be a 2-argument callable
that behaves like (@=<)/2. Fails if List is empty. The following call is equivalent to
max member/2:

?- max_member(@=<, X, [6,1,8,4]).
X = 8.

See also max list/2 for the maximum of a list of numbers.

min member(:Pred, -Min, +List) [semidet]

True when Min is the smallest member according to Pred, which must be a 2-argument callable
that behaves like (@=<)/2. Fails if List is empty. The following call is equivalent to
max member/2:

SWI-Prolog 9.3 Reference Manual

A.25. LIBRARY(LISTS): LIST MANIPULATION 673

?- min_member(@=<, X, [6,1,8,4]).
X = 1.

See also min list/2 for the minimum of a list of numbers.

sum list(+List, -Sum) [det]

Sum is the result of adding all numbers in List.

max list(+List:list(number), -Max:number) [semidet]

True if Max is the largest number in List. Fails if List is empty.

See also max member/2.

min list(+List:list(number), -Min:number) [semidet]

True if Min is the smallest number in List. Fails if List is empty.

See also min member/2.

numlist(+Low, +High, -List) [semidet]

List is a list [Low, Low+1, ... High]. Fails if High < Low.

Errors
- type_error(integer, Low)
- type_error(integer, High)

is set(@Set) [semidet]

True if Set is a proper list without duplicates. Equivalence is based on ==/2. The implemen-
tation uses sort/2, which implies that the complexity is N*log(N) and the predicate may
cause a resource-error. There are no other error conditions.

list to set(+List, ?Set) [det]

True when Set has the same elements as List in the same order. The left-most copy of duplicate
elements is retained. List may contain variables. Elements E1 and E2 are considered duplicates
iff E1 == E2 holds. The complexity of the implementation is N*log(N).

Errors List is type-checked.
See also sort/2 can be used to create an ordered set. Many set operations on ordered sets are order

N rather than order N**2. The list to set/2 predicate is more expensive than sort/2
because it involves, two sorts and a linear scan.

Compatibility Up to version 6.3.11, list to set/2 had complexity N**2 and equality was tested
using =/2.

intersection(+Set1, +Set2, -Set3) [det]

True if Set3 unifies with the intersection of Set1 and Set2. The complexity of this predicate
is |Set1|*|Set2|. A set is defined to be an unordered list without duplicates. Elements are
considered duplicates if they can be unified.

See also ord intersection/3.

SWI-Prolog 9.3 Reference Manual

674 APPENDIX A. THE SWI-PROLOG LIBRARY

union(+Set1, +Set2, -Set3) [det]

True if Set3 unifies with the union of the lists Set1 and Set2. The complexity of this predicate
is |Set1|*|Set2|. A set is defined to be an unordered list without duplicates. Elements are
considered duplicates if they can be unified.

See also ord union/3

subset(+SubSet, +Set) [semidet]

True if all elements of SubSet belong to Set as well. Membership test is based on
memberchk/2. The complexity is |SubSet|*|Set|. A set is defined to be an unordered list
without duplicates. Elements are considered duplicates if they can be unified.

See also ord subset/2.

subtract(+Set, +Delete, -Result) [det]

Delete all elements in Delete from Set. Deletion is based on unification using memberchk/2.
The complexity is |Delete|*|Set|. A set is defined to be an unordered list without duplicates.
Elements are considered duplicates if they can be unified.

See also ord subtract/3.

A.26 library(macros): Macro expansion

This library defines a macro expansion mechanism that operates on arbitrary terms. Unlike
term expansion/2 and goal expansion/2, a term is explicitly designed for expansion us-
ing the term #(Macro). Macros are first of all intended to deal with compile time constants. They
can also be used to construct terms at compile time.

A.26.1 Defining and using macros

Macros are defined for the current module using one of the three constructs below.

#define(Macro, Replacement).
#define(Macro, Replacement) :- Code.
#import(ModuleFile).

Macro is a callable term, not being define(_,_), or import(_). Replacement is an arbitrary
Prolog term. Code is a Prolog body term that must succeed and can be used to dynamically generate
(parts of) Replacement.

The #import(ModuleFile) definition makes all macros from the given module available for
expansion in the module it appears. Normally this shall be appear after local macro definitions.

A macro is called using the term #(Macro). # is defined as a low-priority (10) prefix operator
to allow for #Macro. Macros can appear at the following places:

• An entire sentence (clause)

• Any argument of a compound. This implies also the head and body of a clause.

• Anywhere in a list, including as the tail of a list

SWI-Prolog 9.3 Reference Manual

A.26. LIBRARY(MACROS): MACRO EXPANSION 675

• As a value for a dict key or as a dict key name.

Macros can not appear as name of a compound or tag of a dict. A term #Macro appearing in one
of the allowed places must have a matching macro defined, i.e., #Macro is always expanded. An
error is emitted if the expansion fails. Macro expansion is applied recursively and thus, macros may
be passed to macro arguments and macro expansion may use other macros.

Macros are matched to terms using Single Sided Unification (SSU), implemented using
Head => Body rules. This implies that the matching never instantiates variables in the term that is
being expanded.

Below are some examples. The first line defines the macro and the indented line after show
example usage of the macro.

#define(max_width, 100).
W < #max_width

#define(calc(Expr), Value) :- Value is Expr.
fact(#calc(#max_width*2)).

#define(pt(X,Y), point{x:X, y:Y}).
reply_json(json{type:polygon,

points:[#pt(0,0), #pt(0,5), #pt(5,0)]}).

Macro expansion expands terms #(Callable). If the argument to the #-term is not
a callable, the #-term is not modified. This notably allows for #(Var) as used by
library(clpfd) to indicate that a variable is constraint to be an (clp(fd)) integer.

A.26.2 Implementation details

A macro #define(Macro, Expanded) :- Body. is, after some basic sanity checks, trans-
lated into a rule

’$macro’(Macro, Var), Body => Var = Expanded.

The #import(File) is translated into :- use_module(File, []) and a link clause that
links the macro expansion from the module defined in File to the current module.

Macro expansion is realised by creating a clause for term expansion/2 in the current module.
This clause results from expanding the first #define or #import definition. Thus, if macros are
defined before any other local definition for term expansion/2 it is executed as the first step.
The macro expansion fails if no macros were encounted in the term, allowing other term expansion
rules local to the module to take effect. In other words, a term holding macros is not subject to any
other term expansion local to the module. It is subject to term expansion defined in module user and
system that is performed after the local expansion is completed.

A.26.3 Predicates

include macros(+M, +Macro, -Expanded) [semidet]

Include macros from another module. This predicate is a helper for #import(File). It

SWI-Prolog 9.3 Reference Manual

676 APPENDIX A. THE SWI-PROLOG LIBRARY

calls ’$macro’/2 in M, but fails silently in case Macro is not defined in M as it may be defined
in another imported macro file or further down in the current file.

expand macros(+Module, +TermIn, -TermOut, +PosIn, -PosOut) [semidet]

Perform macro expansion on TermIn with layout PosIn to produce TermOut with layout
PosOut. The transformation is performed if the current load context module is Module (see
prolog load context/2).

This predicate is not intended for direct usage.

macro position(-Position) [det]

True when Position is the position of the macro. Position is a term File:Line:LinePos. If
File is unknown it is unified with -. If Line and/or LinePos are unknown they are unified with
0. This predicate can be used in the body of a macro definition to provide the source location.
The example below defines #pp(Var) to print a variable together with the variable name and
source location.

#define(pp(Var), print_message(debug, dump_var(Pos, Name, Var))) :-
(var_property(Var, name(Name))
-> true
; Name = ’Var’
),
macro_position(Pos).

:- multifile prolog:message//1.
prolog:message(dump_var(Pos,Name,Var)) -->

[url(Pos), ’: ’,
ansi([fg(magenta),bold], ’˜w’, [Name]), ’ = ’,
ansi(code, ’˜p’, [Var])

].

A.27 library(main): Provide entry point for scripts
See also

- library(prolog_stack) to force backtraces in case of an uncaught exception.
- XPCE users should have a look at library(pce_main), which starts the GUI and processes
events until all windows have gone.

This library is intended for supporting PrologScript on Unix using the #! magic sequence for
scripts using commandline options. The entry point main/0 calls the user-supplied predicate
main/1 passing a list of commandline options. Below is a simle echo implementation in Prolog.

#!/usr/bin/env swipl

:- initialization(main, main).

main(Argv) :-
echo(Argv).

SWI-Prolog 9.3 Reference Manual

A.27. LIBRARY(MAIN): PROVIDE ENTRY POINT FOR SCRIPTS 677

echo([]) :- nl.
echo([Last]) :- !,

write(Last), nl.
echo([H|T]) :-

write(H), write(’ ’),
echo(T).

main
Call main/1 using the passed command-line arguments. Before calling main/1 this predi-
cate installs a signal handler for SIGINT (Control-C) that terminates the process with status
1.

When main/0 is called interactively it simply calls main/1 with the arguments. This allows
for debugging scripts as follows:

$ swipl -l script.pl -- arg ...
?- gspy(suspect/1). % setup debugging
?- main. % run program

argv options(:Argv, -Positional, -Options) [det]

Parse command line arguments. This predicate acts in one of two modes.

• If the calling module defines opt type/3, full featured parsing with long and short
options, type conversion and help is provided.

• If opt type/3 is not defined, only unguided transformation using long options is sup-
ported. See argv untyped options/3 for details.

When guided, three predicates are called in the calling module. opt type/3must be defined,
the others need not. Note that these three predicates may be defined as multifile to allow multiple
modules contributing to the provided commandline options. Defining them as discontiguous
allows for creating blocks that describe a group of related options.

opt type(Opt, Name, Type)
Defines Opt to add an option Name(Value), where Value statisfies Type. Opt does not
include the leading -. A single character implies a short option, multiple a long option.
Long options use _ as word separator, user options may use either _ or -. Type is one of:

A | B
Disjunctive type. Disjunction can be used create long options with optional values.
For example, using the type nonneg|boolean, for an option http handles
--http as http(true), --no-http as http(false) and --http=3000
as http(3000). Note that with an optional boolean a option is considered boolean
unless it has a value written as --longopt=value.

boolean(Default)

SWI-Prolog 9.3 Reference Manual

678 APPENDIX A. THE SWI-PROLOG LIBRARY

boolean
Boolean options are special. They do not take a value except for when using the long
--opt=value notation. This explicit value specification converts true, True,
TRUE, on, On, ON, 1 and the obvious false equivalents to Prolog true or false.
If the option is specified, Default is used. If --no-opt or --noopt is used, the
inverse of Default is used.

integer
Argument is converted to an integer

float
Argument is converted to a float. User may specify an integer

nonneg
As integer. Requires value >= 0.

natural
As integer. Requires value >= 1.

number
Any number (integer, float, rational).

between(Low, High)
If both one of Low and High is a float, convert as float, else convert as integer.
Then check the range.

atom
No conversion

oneof(List)
As atom, but requires the value to be a member of List (enum type).

string
Convert to a SWI-Prolog string

file
Convert to a file name in Prolog canonical notation using
prolog to os filename/2.

directory
Convert to a file name in Prolog canonical notation using
prolog to os filename/2. No checking is done and thus this type is
the same as file

file(Access)
As file, and check access using access file/2. A value - is not checked for
access, assuming the application handles this as standard input or output.

directory(Access)
As directory, and check access. Access is one of read write or create. In
the latter case the parent directory must exist and have write access.

term
Parse option value to a Prolog term.

term(+Options)
As term, but passes Options to term string/3. If the option
variable_names(Bindings) is given the option value is set to the pair
Term-Bindings.

SWI-Prolog 9.3 Reference Manual

A.27. LIBRARY(MAIN): PROVIDE ENTRY POINT FOR SCRIPTS 679

opt help(Name, HelpString)
Help string used by argv usage/1.

opt meta(Name, Meta)
If a typed argument is required this defines the placeholder in the help message. The
default is the uppercase version of the type functor name. This produces the FILE in e.g.
-f FILE.

By default, -h, -? and --help are bound to help. If
opt_type(Opt, help, boolean) is true for some Opt, the default help binding
and help message are disabled and the normal user rules apply. In particular, the user should
also provide a rule for opt_help(help, String).

argv options(:Argv, -Positional, -Options, +ParseOptions) [det]

As argv options/3 in guided mode, Currently this version allows parsing argument op-
tions throwing an exception rather than calling halt/1 by passing an empty list to
ParseOptions. ParseOptions:

on error(+Goal)
If Goal is halt(Code), exit with Code. Other goals are currently not supported.

options after arguments(+Boolean)
If false (default true), stop parsing after the first positional argument, returning op-
tions that follow this argument as positional arguments. E.g, -x file -y results in
positional arguments [file, ’-y’]

unknown option(+Mode)
One of error (default) or pass. Using pass, the option is passed in Positional. Multi-
flag short options may be processed partially. For example, if -v is defined and -iv is in
Argv, Positional receives ’-i’ and the option defined with -v is added to Options.

To be done When passing unknown options we may wish to process multi-flag options as a whole or
not at all rather than passing the unknown flags.

argv usage(:Level) [det]

Use print message/2 to print a usage message at Level. To print the message as plain text
indefault color, use debug. Other meaningful options are informational or warning.
The help page consists of four sections, two of which are optional:

1. The header is created from opt_help(help(header), String). It is optional.
2. The usage is added by default. The part behind Usage: <command> is by default

[options] and can be overruled using opt_help(help(usage), String).
3. The actual option descriptions. The options are presented in the order they are defined

in opt type/3. Subsequent options for the same destination (option name) are joined
with the first.

4. The footer is created from opt_help(help(footer), String). It is optional.

The help provided by help(header), help(usage) and help(footer) are either a
simple string or a list of elements as defined by print message lines/3. In the latter
case, the construct \Callable can be used to call a DCG rule in the module from which the
user calls argv options/3. For example, we can add a bold title using

SWI-Prolog 9.3 Reference Manual

680 APPENDIX A. THE SWI-PROLOG LIBRARY

opt_help(help(header), [ansi(bold, ’˜w’, [’My title’])]).

cli parse debug options(+OptionsIn, -Options) [det]

Parse certain commandline options for debugging and development purposes. Options pro-
cessed are below. Note that the option argument is an atom such that these options may be
activated as e.g., --debug=’http(_)’.

debug(Topic)
Call debug(Topic). See debug/1 and debug/3.

spy(Predicate)
Place a spy-point on Predicate.

gspy(Predicate)
As spy using the graphical debugger. See tspy/1.

interactive(true)
Start the Prolog toplevel after main/1 completes.

cli debug opt type(-Flag, -Option, -Type)
cli debug opt help(-Option, -Message)
cli debug opt meta(-Option, -Arg)

Implements opt type/3, opt help/2 and opt meta/2 for debug arguments. Appli-
cations that wish to use these features can call these predicates from their own hook. Fot
example:

opt_type(..., ..., ...). % application types
opt_type(Flag, Opt, Type) :-

cli_debug_opt_type(Flag, Opt, Type).
% similar for opt_help/2 and opt_meta/2

main(Argv) :-
argv_options(Argv, Positional, Options0),
cli_parse_debug_options(Options0, Options),
...

cli enable development system
Re-enable the development environment. Currently re-enables xpce if this was loaded, but not
initialised and causes the interactive toplevel to be re-enabled.

This predicate may be called from main/1 to enter the Prolog toplevel rather than terminating
the application after main/1 completes.

A.28 library(nb set): Non-backtrackable set

The library nb set defines non-backtrackable sets, implemented as binary trees. The sets are repre-
sented as compound terms and manipulated using nb setarg/3. Non-backtrackable manipulation
of data structures is not supported by a large number of Prolog implementations, but it has several

SWI-Prolog 9.3 Reference Manual

A.29. LIBRARY(WWW BROWSER): OPEN A URL IN THE USERS BROWSER 681

advantages over using the database. It produces less garbage, is thread-safe, reentrant and deals with
exceptions without leaking data.

Similar to the assoc library, keys can be any Prolog term, but it is not allowed to instantiate or
modify a term.

One of the ways to use this library is to generate unique values on backtracking without generating
all solutions first, for example to act as a filter between a generator producing many duplicates and an
expensive test routine, as outlined below:

generate_and_test(Solution) :-
empty_nb_set(Set),
generate(Solution),
add_nb_set(Solution, Set, true),
test(Solution).

empty nb set(?Set)
True if Set is a non-backtrackable empty set.

add nb set(+Key, !Set)
Add Key to Set. If Key is already a member of Set, add nb set/3 succeeds without modifying
Set.

add nb set(+Key, !Set, ?New)
If Key is not in Set and New is unified to true, Key is added to Set. If Key is in Set, New is
unified to false. It can be used for many purposes:

add nb set(+, +, false) Test membership
add nb set(+, +, true) Succeed only if new member
add nb set(+, +, Var) Succeed, binding Var

gen nb set(+Set, -Key)
Generate all members of Set on backtracking in the standard order of terms. To test member-
ship, use add nb set/3.

size nb set(+Set, -Size)
Unify Size with the number of elements in Set.

nb set to list(+Set, -List)
Unify List with a list of all elements in Set in the standard order of terms (i.e., an ordered list).

A.29 library(www browser): Open a URL in the users browser

This library deals with the highly platform specific task of opening a web page. In addition, is provides
a mechanism similar to absolute file name/3 that expands compound terms to concrete URLs.
For example, the SWI-Prolog home page can be opened using:

?- www_open_url(swipl(.)).

SWI-Prolog 9.3 Reference Manual

682 APPENDIX A. THE SWI-PROLOG LIBRARY

www open url(+Url)
Open URL in running version of the users’ browser or start a new browser. This predicate tries
the following steps:

1. If a prolog flag (see set prolog flag/2) browser is set and this is the name of a
known executable, use this. The flag may be set to Command-Mode, where mode is one
of fg or bg, requesting Command to run in foreground or background mode. Default is
bg.

2. On Windows, use win_shell(open, URL)

3. Find a generic ‘open’ comment. Candidates are xdg-open, open or gnome-open.

4. If a environment variable BROWSER is set and this is the name of a known executable, use
this.

5. Try to find a known browser. @tbd Figure out the right tool in step 3 as it is not uncommon
that multiple are installed.

known browser(+FileBaseName, -Compatible) [multifile]

True if browser FileBaseName has a remote protocol compatible to Compatible.

expand url path(+Spec, -URL)
Expand URL specifications similar to absolute file name/3. The predicate
url path/2 plays the role of file search path/2.

Errors existence_error(url_path, Spec) if the location is not defined.

A.30 library(occurs): Finding and counting sub-terms
See also library(terms) provides similar predicates and is probably more wide-spread than this li-

brary.

This is a SWI-Prolog implementation of the corresponding Quintus library, based on the gener-
alised arg/3 predicate of SWI-Prolog.

contains term(+Sub, +Term) [semidet]

Succeeds if Sub is contained in Term (=, deterministically)

contains var(+Sub, +Term) [semidet]

Succeeds if Sub is contained in Term (==, deterministically)

free of term(+Sub, +Term) [semidet]

Succeeds of Sub does not unify to any subterm of Term

free of var(+Sub, +Term) [semidet]

Succeeds of Sub is not equal (==) to any subterm of Term

occurrences of term(@SubTerm, @Term, ?Count) [det]

Count the number of SubTerms in Term that unify with SubTerm. As this predicate is imple-
mented using backtracking, SubTerm and Term are not further instantiated. Possible constraints
are enforced. For example, we can count the integers in Term using

SWI-Prolog 9.3 Reference Manual

A.31. LIBRARY(OPTION): OPTION LIST PROCESSING 683

?- freeze(S, integer(S)), occurrences_of_term(S, f(1,2,a), C).
C = 2,
freeze(S, integer(S)).

See also occurrences of var/3 for an equality (==/2) based variant.

occurrences of var(@SubTerm, @Term, ?Count) [det]

Count the number of SubTerms in Term that are equal to SubTerm. Equality is tested using
==/2. Can be used to count the occurrences of a particular variable in Term.

See also occurrences of term/3 for a unification (=/2) based variant.

sub term(-Sub, +Term)
Generates (on backtracking) all subterms of Term.

sub var(-Sub, +Term)
Generates (on backtracking) all subterms (==) of Term.

sub term shared variables(+Sub, +Term, -Vars) [det]

If Sub is a sub term of Term, Vars is bound to the list of variables in Sub that also appear outside
Sub in Term. Note that if Sub appears twice in Term, its variables are all considered shared.

An example use-case is refactoring a large clause body by introducing intermediate predicates.
This predicate can be used to find the arguments that must be passed to the new predicate.

A.31 library(option): Option list processing
See also

- library(record)
- Option processing capabilities may be declared using the directive predicate options/3.

The library(option) provides some utilities for processing option lists. Option lists are
commonly used as an alternative for many arguments. Examples of built-in predicates are open/4
and write term/3. Naming the arguments results in more readable code, and the list nature makes
it easy to extend the list of options accepted by a predicate. Option lists come in two styles, both of
which are handled by this library.

• Name(Value)
This is the preferred style.

• Name = Value
This is often used, but deprecated.

SWI-Prolog dicts provide a convenient and efficient alternative to option lists. For this reason,
both built-in predicates and predicates that use this library support dicts transparantly.

Processing option lists inside time-critical code (loops) can cause serious overhead. The above
mentioned dicts is the preferred mitigation. A more portable alternative is to define a record using
library(record) and initialise this using make <record>/2. In addition to providing good
performance, this also provides type-checking and central declaration of defaults.

Options typically have exactly one argument. The library does support options with 0 or more
than one argument with the following restrictions:

SWI-Prolog 9.3 Reference Manual

684 APPENDIX A. THE SWI-PROLOG LIBRARY

• The predicate option/3 and select option/4, involving default are meaningless. They
perform an arg(1, Option, Default), causing failure without arguments and filling
only the first option-argument otherwise.

• meta options/3 can only qualify options with exactly one argument.

option(?Option, +Options) [semidet]

Get an Option from Options. Fails silently if the option does not appear in Options. If Option
appears multiple times in Options, the first value is used.

Arguments
Option Term of the form Name(?Value).
Options is a list of Name(Value) or Name=Value or a dict.

option(?Option, +Options, +Default) [det]

Get an Option from Options. If Option does not appear in Options, unify the value with Default.
If Option appears multiple times in Options, the first value is used. For example

?- option(max_depth(D), [x(a), max_depth(20)], 10).
D = 20.
?- option(max_depth(D), [x(a)], 10).
D = 10.

Arguments
Option Term of the form Name(?Value).
Options is a list of Name(Value) or Name=Value or a dict.

select option(?Option, +Options, -RestOptions) [semidet]

Get and remove Option from Options. As option/2, removing the matching option from
Options and unifying the remaining options with RestOptions. If Option appears multiple
times in Options, the first value is used. Note that if Options contains multiple terms that are
compatible to Option, the first is used to set the value of Option and the duplicate appear in
RestOptions.

select option(?Option, +Options, -RestOptions, +Default) [det]

Get and remove Option with default value. As select option/3, but if Option is not in
Options, its value is unified with Default and RestOptions with Options.

merge options(+New, +Old, -Merged) [det]

Merge two option sets. If Old is a dict, Merged is a dict. Otherwise Merged is a sorted list of
options using the canonical format Name(Value) holding all options from New and Old, after
removing conflicting options from Old.

Multi-values options (e.g., proxy(Host, Port)) are allowed, where both option-name and
arity define the identity of the option.

meta options(+IsMeta, :Options0, -Options) [det]

Perform meta-expansion on options that are module-sensitive. Whether an option name is
module-sensitive is determined by calling call(IsMeta, Name). Here is an example:

SWI-Prolog 9.3 Reference Manual

A.32. LIBRARY(OPTPARSE): COMMAND LINE PARSING 685

meta_options(is_meta, OptionsIn, Options),
...

is_meta(callback).

Meta-options must have exactly one argument. This argument will be qualified.

To be done Should be integrated with declarations from predicate options/3.

dict options(?Dict, ?Options) [det]

Convert between an option list and a dictionary. One of the arguments must be instantiated.
If the option list is created, it is created in canonical form, i.e., using Option(Value) with the
Options sorted in the standard order of terms. Note that the conversion is not always possible
due to different constraints and conversion may thus lead to (type) errors.

• Dict keys can be integers. This is not allowed in canonical option lists.

• Options can hold multiple options with the same key. This is not allowed in dicts. This
predicate removes all but the first option on the same key.

• Options can have more than one value (name(V1,V2)). This is not allowed in dicts.

Also note that most system predicates and predicates using this library for processing the option
argument can both work with classical Prolog options and dicts objects.

A.32 library(optparse): command line parsing
author Marcus Uneson
version 0.20 (2011-04-27)
To be done : validation? e.g, numbers; file path existence; one-out-of-a-set-of-atoms

This module helps in building a command-line interface to an application. In particular, it provides
functions that take an option specification and a list of atoms, probably given to the program on the
command line, and return a parsed representation (a list of the customary Key(Val) by default; or
optionally, a list of Func(Key, Val) terms in the style of current prolog flag/2). It can also
synthesize a simple help text from the options specification.

The terminology in the following is partly borrowed from python, see http://docs.
python.org/library/optparse.html#terminology . Very briefly, arguments is what
you provide on the command line and for many prologs show up as a list of atoms Args in
current_prolog_flag(argv, Args). For a typical prolog incantation, they can be divided
into

• runtime arguments, which controls the prolog runtime; conventionally, they are ended by ’–’;

• options, which are key-value pairs (with a boolean value possibly implicit) intended to control
your program in one way or another; and

• positional arguments, which is what remains after all runtime arguments and options have been
removed (with implicit arguments – true/false for booleans – filled in).

SWI-Prolog 9.3 Reference Manual

http://docs.python.org/library/optparse.html#terminology
http://docs.python.org/library/optparse.html#terminology

686 APPENDIX A. THE SWI-PROLOG LIBRARY

Positional arguments are in particular used for mandatory arguments without which your program
won’t work and for which there are no sensible defaults (e.g,, input file names). Options, by contrast,
offer flexibility by letting you change a default setting. Options are optional not only by etymology:
this library has no notion of mandatory or required options (see the python docs for other rationales
than laziness).

The command-line arguments enter your program as a list of atoms, but the programs perhaps
expects booleans, integers, floats or even prolog terms. You tell the parser so by providing an options
specification. This is just a list of individual option specifications. One of those, in turn, is a list of
ground prolog terms in the customary Name(Value) format. The following terms are recognized (any
others raise error).

opt(Key)
Key is what the option later will be accessed by, just like for
current_prolog_flag(Key, Value). This term is mandatory (an error is thrown if
missing).

shortflags(ListOfFlags)
ListOfFlags denotes any single-dashed, single letter args specifying the current option
(-s , -K, etc). Uppercase letters must be quoted. Usually ListOfFlags will be a singleton
list, but sometimes aliased flags may be convenient.

longflags(ListOfFlags)
ListOfFlags denotes any double-dashed arguments specifying the current option
(--verbose, --no-debug, etc). They are basically a more readable alternative to
short flags, except

1. long flags can be specified as --flag value or --flag=value (but not as
--flagvalue); short flags as -f val or -fval (but not -f=val)

2. boolean long flags can be specified as --bool-flag or --bool-flag=true
or --bool-flag true; and they can be negated as --no-bool-flag or
--bool-flag=false or --bool-flag false.

Except that shortflags must be single characters, the distinction between long and short is in
calling convention, not in namespaces. Thus, if you have shortflags([v]), you can use it
as -v2 or -v 2 or --v=2 or --v 2 (but not -v=2 or --v2).

Shortflags and longflags both default to []. It can be useful to have flagless options – see
example below.

meta(Meta)
Meta is optional and only relevant for the synthesized usage message and is the name (an atom)
of the metasyntactic variable (possibly) appearing in it together with type and default value
(e.g, x:integer=3, interest:float=0.11). It may be useful to have named variables
(x, interest) in case you wish to mention them again in the help text. If not given the
Meta: part is suppressed – see example below.

type(Type)
Type is one of boolean, atom, integer, float, term. The corresponding argu-
ment will be parsed appropriately. This term is optional; if not given, defaults to term.

SWI-Prolog 9.3 Reference Manual

A.32. LIBRARY(OPTPARSE): COMMAND LINE PARSING 687

default(Default)
Default value. This term is optional; if not given, or if given the special value ’ ’, an uninstan-
tiated variable is created (and any type declaration is ignored).

help(Help)
Help is (usually) an atom of text describing the option in the help text. This term is optional
(but obviously strongly recommended for all options which have flags).

Long lines are subject to basic word wrapping – split on white space, reindent, rejoin. However,
you can get more control by supplying the line breaking yourself: rather than a single line of
text, you can provide a list of lines (as atoms). If you do, they will be joined with the appropriate
indent but otherwise left untouched (see the option mode in the example below).

Absence of mandatory option specs or the presence of more than one for a particular option throws
an error, as do unknown or incompatible types.

As a concrete example from a fictive application, suppose we want the following options to be
read from the command line (long flag(s), short flag(s), meta:type=default, help)

--mode -m atom=SCAN data gathering mode,
one of
SCAN: do this
READ: do that
MAKE: make numbers
WAIT: do nothing

--rebuild-cache -r boolean=true rebuild cache in
each iteration

--heisenberg-threshold -t,-h float=0.1 heisenberg threshold
--depths, --iters -i,-d K:integer=3 stop after K

iterations
--distances term=[1,2,3,5] initial prolog term
--output-file -o FILE:atom=_ write output to FILE
--label -l atom=REPORT report label
--verbosity -v V:integer=2 verbosity level,

1 <= V <= 3

We may also have some configuration parameters which we currently think not needs to be con-
trolled from the command line, say path(’/some/file/path’).

This interface is described by the following options specification (order between the specifications
of a particular option is irrelevant).

ExampleOptsSpec =
[[opt(mode), type(atom), default(’SCAN’),

shortflags([m]), longflags([’mode’]),
help([’data gathering mode, one of’

, ’ SCAN: do this’
, ’ READ: do that’
, ’ MAKE: fabricate some numbers’
, ’ WAIT: don’’t do anything’])]

SWI-Prolog 9.3 Reference Manual

688 APPENDIX A. THE SWI-PROLOG LIBRARY

, [opt(cache), type(boolean), default(true),
shortflags([r]), longflags([’rebuild-cache’]),
help(’rebuild cache in each iteration’)]

, [opt(threshold), type(float), default(0.1),
shortflags([t,h]), longflags([’heisenberg-threshold’]),
help(’heisenberg threshold’)]

, [opt(depth), meta(’K’), type(integer), default(3),
shortflags([i,d]),longflags([depths,iters]),
help(’stop after K iterations’)]

, [opt(distances), default([1,2,3,5]),
longflags([distances]),
help(’initial prolog term’)]

, [opt(outfile), meta(’FILE’), type(atom),
shortflags([o]), longflags([’output-file’]),
help(’write output to FILE’)]

, [opt(label), type(atom), default(’REPORT’),
shortflags([l]), longflags([label]),
help(’report label’)]

, [opt(verbose), meta(’V’), type(integer), default(2),
shortflags([v]), longflags([verbosity]),
help(’verbosity level, 1 <= V <= 3’)]

, [opt(path), default(’/some/file/path/’)]
].

The help text above was accessed by opt_help(ExamplesOptsSpec, HelpText). The
options appear in the same order as in the OptsSpec.

Given ExampleOptsSpec, a command line (somewhat syntactically inconsistent, in order to
demonstrate different calling conventions) may look as follows

ExampleArgs = [’-d5’
, ’--heisenberg-threshold’, ’0.14’
, ’--distances=[1,1,2,3,5,8]’
, ’--iters’, ’7’
, ’-ooutput.txt’
, ’--rebuild-cache’, ’true’
, ’input.txt’
, ’--verbosity=2’
].

SWI-Prolog 9.3 Reference Manual

A.32. LIBRARY(OPTPARSE): COMMAND LINE PARSING 689

opt_parse(ExampleOptsSpec, ExampleArgs, Opts, PositionalArgs)
would then succeed with

Opts = [mode(’SCAN’)
, label(’REPORT’)
, path(’/some/file/path’)
, threshold(0.14)
, distances([1,1,2,3,5,8])
, depth(7)
, outfile(’output.txt’)
, cache(true)
, verbose(2)
],

PositionalArgs = [’input.txt’].

Note that path(’/some/file/path’) showing up in Opts has a default value (of the im-
plicit type ’term’), but no corresponding flags in OptsSpec. Thus it can’t be set from the command
line. The rest of your program doesn’t need to know that, of course. This provides an alternative
to the common practice of asserting such hard-coded parameters under a single predicate (for in-
stance setting(path, ’/some/file/path’)), with the advantage that you may seamlessly
upgrade them to command-line options, should you one day find this a good idea. Just add an ap-
propriate flag or two and a line of help text. Similarly, suppressing an option in a cluttered interface
amounts to commenting out the flags.

opt parse/5 allows more control through an additional argument list as shown in the example
below.

?- opt_parse(ExampleOptsSpec, ExampleArgs, Opts, PositionalArgs,
[output_functor(appl_config)
]).

Opts = [appl_config(verbose, 2),
, appl_config(label, ’REPORT’)
...
]

This representation may be preferable with the empty-flag configuration parameter style above
(perhaps with asserting appl config/2).

A.32.1 Notes and tips

• In the example we were mostly explicit about the types. Since the default is term, which
subsumes integer, float, atom, it may be possible to get away cheaper (e.g., by only
giving booleans). However, it is recommended practice to always specify types: parsing be-
comes more reliable and error messages will be easier to interpret.

• Note that -sbar is taken to mean -s bar, not -s -b -a -r, that is, there is no clustering
of flags.

SWI-Prolog 9.3 Reference Manual

690 APPENDIX A. THE SWI-PROLOG LIBRARY

• -s=foo is disallowed. The rationale is that although some command-line parsers will silently
interpret this as -s =foo, this is very seldom what you want. To have an option argument start
with ’=’ (very un-recommended), say so explicitly.

• The example specifies the option depth twice: once as -d5 and once as --iters 7. The
default when encountering duplicated flags is to keeplast (this behaviour can be controlled,
by ParseOption duplicated flags).

• The order of the options returned by the parsing functions is the same as given on the command
line, with non-overridden defaults prepended and duplicates removed as in previous item. You
should not rely on this, however.

• Unknown flags (not appearing in OptsSpec) will throw errors. This is usually a Good Thing.
Sometimes, however, you may wish to pass along flags to an external program (say, one called
by shell/2), and it means duplicated effort and a maintenance headache to have to specify
all possible flags for the external program explicitly (if it even can be done). On the other
hand, simply taking all unknown flags as valid makes error checking much less efficient and
identification of positional arguments uncertain. A better solution is to collect all arguments
intended for passing along to an indirectly called program as a single argument, probably as an
atom (if you don’t need to inspect them first) or as a prolog term (if you do).

opt arguments(+OptsSpec, -Opts, -PositionalArgs) [det]

Extract commandline options according to a specification. Convenience predicate, assuming
that command-line arguments can be accessed by current prolog flag/2 (as in swi-
prolog). For other access mechanisms and/or more control, get the args and pass them as a list
of atoms to opt parse/4 or opt parse/5 instead.

Opts is a list of parsed options in the form Key(Value). Dashed args not in OptsSpec are not
permitted and will raise error (see tip on how to pass unknown flags in the module description).
PositionalArgs are the remaining non-dashed args after each flag has taken its argument (filling
in true or false for booleans). There are no restrictions on non-dashed arguments and they
may go anywhere (although it is good practice to put them last). Any leading arguments for the
runtime (up to and including ’–’) are discarded.

opt parse(+OptsSpec, +ApplArgs, -Opts, -PositionalArgs) [det]

Equivalent to opt_parse(OptsSpec, ApplArgs, Opts, PositionalArgs, []).

opt parse(+OptsSpec, +ApplArgs, -Opts, -PositionalArgs, +ParseOptions) [det]

Parse the arguments Args (as list of atoms) according to OptsSpec. Any runtime arguments
(typically terminated by ’–’) are assumed to be removed already.

Opts is a list of parsed options in the form Key(Value), or (with the option functor(Func)
given) in the form Func(Key, Value). Dashed args not in OptsSpec are not permitted and will
raise error (see tip on how to pass unknown flags in the module description). PositionalArgs are
the remaining non-dashed args after each flag has taken its argument (filling in true or false
for booleans). There are no restrictions on non-dashed arguments and they may go anywhere
(although it is good practice to put them last). ParseOptions are

SWI-Prolog 9.3 Reference Manual

A.33. LIBRARY(ORDSETS): ORDERED SET MANIPULATION 691

output functor(Func)
Set the functor Func of the returned options Func(Key,Value). Default is the special value
’OPTION’ (upper-case), which makes the returned options have form Key(Value).

duplicated flags(Keep)
Controls how to handle options given more than once on the commad line. Keep is
one of keepfirst, keeplast, keepall with the obvious meaning. Default is
keeplast.

allow empty flag spec(Bool)
If true (default), a flag specification is not required (it is allowed that both shortflags
and longflags be either [] or absent). Flagless options cannot be manipulated from the
command line and will not show up in the generated help. This is useful when you have
(also) general configuration parameters in your OptsSpec, especially if you think they
one day might need to be controlled externally. See example in the module overview.
allow_empty_flag_spec(false) gives the more customary behaviour of raising
error on empty flags.

opt help(+OptsSpec, -Help:atom) [det]

True when Help is a help string synthesized from OptsSpec.

parse type(+Type, +Codes:list(code), -Result) [semidet,multifile]

Hook to parse option text Codes to an object of type Type.

A.33 library(ordsets): Ordered set manipulation

Ordered sets are lists with unique elements sorted to the standard order of terms (see sort/2). Ex-
ploiting ordering, many of the set operations can be expressed in order N rather than Nˆ2 when
dealing with unordered sets that may contain duplicates. The library(ordsets) is available
in a number of Prolog implementations. Our predicates are designed to be compatible with com-
mon practice in the Prolog community. The implementation is incomplete and relies partly on
library(oset), an older ordered set library distributed with SWI-Prolog. New applications are
advised to use library(ordsets).

Some of these predicates match directly to corresponding list operations. It is advised to use
the versions from this library to make clear you are operating on ordered sets. An exception is
member/2. See ord memberchk/2.

The ordsets library is based on the standard order of terms. This implies it can handle all Prolog
terms, including variables. Note however, that the ordering is not stable if a term inside the set is
further instantiated. Also note that variable ordering changes if variables in the set are unified with
each other or a variable in the set is unified with a variable that is ‘older’ than the newest variable in
the set. In practice, this implies that it is allowed to use member(X, OrdSet) on an ordered set
that holds variables only if X is a fresh variable. In other cases one should cease using it as an ordset
because the order it relies on may have been changed.

is ordset(@Term) [semidet]

True if Term is an ordered set. All predicates in this library expect ordered sets as input argu-
ments. Failing to fullfil this assumption results in undefined behaviour. Typically, ordered sets
are created by predicates from this library, sort/2 or setof/3.

SWI-Prolog 9.3 Reference Manual

692 APPENDIX A. THE SWI-PROLOG LIBRARY

ord empty(?List) [semidet]

True when List is the empty ordered set. Simply unifies list with the empty list. Not part of
Quintus.

ord seteq(+Set1, +Set2) [semidet]

True if Set1 and Set2 have the same elements. As both are canonical sorted lists, this is the
same as ==/2.

Compatibility sicstus

list to ord set(+List, -OrdSet) [det]

Transform a list into an ordered set. This is the same as sorting the list.

ord intersect(+Set1, +Set2) [semidet]

True if both ordered sets have a non-empty intersection.

ord disjoint(+Set1, +Set2) [semidet]

True if Set1 and Set2 have no common elements. This is the negation of ord intersect/2.

ord intersect(+Set1, +Set2, -Intersection)
Intersection holds the common elements of Set1 and Set2.

deprecated Use ord intersection/3

ord intersection(+PowerSet, -Intersection) [semidet]

Intersection of a powerset. True when Intersection is an ordered set holding all elements
common to all sets in PowerSet. Fails if PowerSet is an empty list.

Compatibility sicstus

ord intersection(+Set1, +Set2, -Intersection) [det]

Intersection holds the common elements of Set1 and Set2. Uses ord disjoint/2 if Inter-
section is bound to [] on entry.

ord intersection(+Set1, +Set2, ?Intersection, ?Difference) [det]

Intersection and difference between two ordered sets. Intersection is
the intersection between Set1 and Set2, while Difference is defined by
ord_subtract(Set2, Set1, Difference).

See also ord intersection/3 and ord subtract/3.

ord add element(+Set1, +Element, ?Set2) [det]

Insert an element into the set. This is the same as
ord_union(Set1, [Element], Set2).

ord del element(+Set, +Element, -NewSet) [det]

Delete an element from an ordered set. This is the same as
ord_subtract(Set, [Element], NewSet).

SWI-Prolog 9.3 Reference Manual

A.33. LIBRARY(ORDSETS): ORDERED SET MANIPULATION 693

ord selectchk(+Item, ?Set1, ?Set2) [semidet]

Selectchk/3, specialised for ordered sets. Is true when select(Item, Set1, Set2)
and Set1, Set2 are both sorted lists without duplicates. This implementation is only
expected to work for Item ground and either Set1 or Set2 ground. The ”chk” suf-
fix is meant to remind you of memberchk/2, which also expects its first argument
to be ground. ord_selectchk(X, S, T) => ord_memberchk(X, S) & \+
ord_memberchk(X, T).

author Richard O’Keefe

ord memberchk(+Element, +OrdSet) [semidet]

True if Element is a member of OrdSet, compared using ==. Note that enumerating elements
of an ordered set can be done using member/2.

Some Prolog implementations also provide ord member/2, with the same semantics as
ord memberchk/2. We believe that having a semidet ord member/2 is unacceptably
inconsistent with the * chk convention. Portable code should use ord memberchk/2 or
member/2.

author Richard O’Keefe

ord subset(+Sub, +Super) [semidet]

Is true if all elements of Sub are in Super

ord subtract(+InOSet, +NotInOSet, -Diff) [det]

Diff is the set holding all elements of InOSet that are not in NotInOSet.

ord union(+SetOfSets, -Union) [det]

True if Union is the union of all elements in the superset SetOfSets. Each member of SetOfSets
must be an ordered set, the sets need not be ordered in any way.

author Copied from YAP, probably originally by Richard O’Keefe.

ord union(+Set1, +Set2, -Union) [det]

Union is the union of Set1 and Set2

ord union(+Set1, +Set2, -Union, -New) [det]

True iff ord_union(Set1, Set2, Union) and ord_subtract(Set2, Set1, New).

ord symdiff(+Set1, +Set2, ?Difference) [det]

Is true when Difference is the symmetric difference of Set1 and Set2. I.e., Difference contains
all elements that are not in the intersection of Set1 and Set2. The semantics is the same as the
sequence below (but the actual implementation requires only a single scan).

ord_union(Set1, Set2, Union),
ord_intersection(Set1, Set2, Intersection),
ord_subtract(Union, Intersection, Difference).

For example:

?- ord_symdiff([1,2], [2,3], X).
X = [1,3].

SWI-Prolog 9.3 Reference Manual

694 APPENDIX A. THE SWI-PROLOG LIBRARY

A.34 library(pairs): Operations on key-value lists
See also keysort/2, library(assoc)

This module implements common operations on Key-Value lists, also known as Pairs. Pairs have
great practical value, especially due to keysort/2 and the library(assoc).

This library is based on discussion in the SWI-Prolog mailinglist, including specifications from
Quintus and a library proposal by Richard O’Keefe.

pairs keys values(?Pairs, ?Keys, ?Values) [det]

True if Keys holds the keys of Pairs and Values the values.

Deterministic if any argument is instantiated to a finite list and the others are either free or finite
lists. All three lists are in the same order.

See also pairs values/2 and pairs keys/2.

pairs values(+Pairs, -Values) [det]

Remove the keys from a list of Key-Value pairs. Same as
pairs_keys_values(Pairs, _, Values)

pairs keys(+Pairs, -Keys) [det]

Remove the values from a list of Key-Value pairs. Same as
pairs_keys_values(Pairs, Keys, _)

group pairs by key(+Pairs, -Joined:list(Key-Values)) [det]

Group values with equivalent (==/2) consecutive keys. For example:

?- group_pairs_by_key([a-2, a-1, b-4, a-3], X).

X = [a-[2,1], b-[4], a-[3]]

Sorting the list of pairs before grouping can be used to group all values associated with a key.
For example, finding all values associated with the largest key:

?- sort(1, @>=, [a-1, b-2, c-3, a-4, a-5, c-6], Ps),
group_pairs_by_key(Ps, [K-Vs|_]).

K = c,
Vs = [3, 6].

In this example, sorting by key only (first argument of sort/4 is 1) ensures that the order of
the values in the original list of pairs is maintained.

Arguments
Pairs Key-Value list
Joined List of Key-Group, where Group is the list of Values associated

with equivalent consecutive Keys in the same order as they appear
in Pairs.

SWI-Prolog 9.3 Reference Manual

A.35. LIBRARY(PERSISTENCY): PROVIDE PERSISTENT DYNAMIC PREDICATES 695

transpose pairs(+Pairs, -Transposed) [det]

Swap Key-Value to Value-Key. The resulting list is sorted using keysort/2 on the new key.

map list to pairs(:Function, +List, -Keyed) [det]

Create a Key-Value list by mapping each element of List. For example, if we have a list of lists
we can create a list of Length-List using

map_list_to_pairs(length, ListOfLists, Pairs),

A.35 library(persistency): Provide persistent dynamic predicates
To be done

- Provide type safety while loading
- Thread safety must now be provided at the user-level. Can we provide generic thread safety? Ba-
sically, this means that we must wrap all exported predicates. That might better be done outside this
library.
- Transaction management?
- Should assert <name> only assert if the database does not contain a variant?
- Since we have prolog listen/2, we could use direct assert/1 and retract/1 and use the
system hooks to deal with the updates.

This module provides simple persistent storage for one or more dynamic predicates. A database
is always associated with a module. A module that wishes to maintain a database must declare the
terms that can be placed in the database using the directive persistent/1.

The persistent/1 expands each declaration into four predicates:

• name(Arg, ...)

• assert_name(Arg, ...)

• retract_name(Arg, ...)

• retractall_name(Arg, ...)

As mentioned, a database can only be accessed from within a single module. This limitation is on
purpose, forcing the user to provide a proper API for accessing the shared persistent data.

This module requires the same thread-synchronization as the normal Prolog database. This implies
that if each individual assert or retract takes the database from one consistent state to the next, no
additional locking is required. If more than one elementary database operation is required to get
from one consistent state to the next, both updating and querying the database must be locked using
with mutex/2.

Below is a simple example, where adding a user does not need locking as it is a single assert,
while modifying a user requires both a retract and assert and thus needs to be locked.

:- module(user_db,
[attach_user_db/1, % +File

current_user_role/2, % ?User, ?Role
add_user/2, % +User, +Role
set_user_role/2 % +User, +Role

]).

SWI-Prolog 9.3 Reference Manual

696 APPENDIX A. THE SWI-PROLOG LIBRARY

:- use_module(library(persistency)).

:- persistent
user_role(name:atom, role:oneof([user,administrator])).

attach_user_db(File) :-
db_attach(File, []).

%% current_user_role(+Name, -Role) is semidet.

current_user_role(Name, Role) :-
with_mutex(user_db, user_role(Name, Role)).

add_user(Name, Role) :-
assert_user_role(Name, Role).

set_user_role(Name, Role) :-
user_role(Name, Role), !.

set_user_role(Name, Role) :-
with_mutex(user_db,

(retractall_user_role(Name, _),
assert_user_role(Name, Role))).

persistent +Spec
Declare dynamic database terms. Declarations appear in a directive and have the following
format:

:- persistent
<callable>,
<callable>,
...

Each specification is a callable term, following the conventions of library(record), where
each argument is of the form

name:type

Types are defined by library(error).

current persistent predicate(:PI) [nondet]

True if PI is a predicate that provides access to the persistent database DB.

db attach(:File, +Options)
Use File as persistent database for the calling module. The calling module must defined
persistent/1 to declare the database terms. Defined options:

SWI-Prolog 9.3 Reference Manual

A.35. LIBRARY(PERSISTENCY): PROVIDE PERSISTENT DYNAMIC PREDICATES 697

sync(+Sync)
One of close (close journal after write), flush (default, flush journal after write) or
none (handle as fully buffered stream).

If File is already attached this operation may change the sync behaviour.

db attached(:File) [semidet]

True if the context module attached to the persistent database File.

db assert(:Term) [det]

Assert Term into the database and record it for persistency. Note that if the on-disk file has
been modified it is first reloaded.

db detach [det]

Detach persistency from the calling module and delete all persistent clauses from the Prolog
database. Note that the file is not affected. After this operation another file may be attached,
providing it satisfies the same persistency declaration.

db retractall(:Term) [det]

Retract all matching facts and do the same in the database. If Term is unbound,
persistent/1 from the calling module is used as generator.

db retract(:Term) [nondet]

Retract terms from the database one-by-one.

db sync(:What)
Synchronise database with the associated file. What is one of:

reload
Database is reloaded from file if the file was modified since loaded.

update
As reload, but use incremental loading if possible. This allows for two processes to
examine the same database file, where one writes the database and the other periodycally
calls db_sync(update) to follow the modified data.

gc
Database was re-written, deleting all retractall statements. This is the same as gc(50).

gc(Percentage)
GC DB if the number of deleted terms is greater than the given percentage of the total
number of terms.

gc(always)
GC DB without checking the percentage.

close
Database stream was closed

detach
Remove all registered persistency for the calling module

nop
No-operation performed

SWI-Prolog 9.3 Reference Manual

698 APPENDIX A. THE SWI-PROLOG LIBRARY

With unbound What, db sync/1 reloads the database if it was modified on disk, gc it if it is
dirty and close it if it is opened.

db sync all(+What)
Sync all registered databases.

A.36 library(pio): Pure I/O

This library provides pure list-based I/O processing for Prolog, where the communication to the actual
I/O device is performed transparently through coroutining. This module itself is just an interface to
the actual implementation modules.

A.36.1 library(pure input): Pure Input from files and streams
To be done Provide support for alternative input readers, e.g. reading terms, tokens, etc.

This module is part of pio.pl, dealing with pure input: processing input streams from the
outside world using pure predicates, notably grammar rules (DCG). Using pure predicates makes
non-deterministic processing of input much simpler.

Pure input uses attributed variables to read input from the external source into a list on de-
mand. The overhead of lazy reading is more than compensated for by using block reads based on
read pending codes/3.

Ulrich Neumerkel came up with the idea to use coroutining for creating a lazy list. His implemen-
tation repositioned the file to deal with re-reading that can be necessary on backtracking. The current
implementation uses destructive assignment together with more low-level attribute handling to realise
pure input on any (buffered) stream.

phrase from file(:Grammar, +File) [nondet]

Process the content of File using the DCG rule Grammar. The space usage of this mechanism
depends on the length of the not committed part of Grammar. Committed parts of the
temporary list are reclaimed by the garbage collector, while the list is extended on demand
due to unification of the attributed tail variable. Below is an example that counts the number
of times a string appears in a file. The library dcg/basics provides string//1 matching
an arbitrary string and remainder//1 which matches the remainder of the input without
parsing.

:- use_module(library(dcg/basics)).

file_contains(File, Pattern) :-
phrase_from_file(match(Pattern), File).

match(Pattern) -->
string(_),
string(Pattern),
remainder(_).

SWI-Prolog 9.3 Reference Manual

A.36. LIBRARY(PIO): PURE I/O 699

match_count(File, Pattern, Count) :-
aggregate_all(count, file_contains(File, Pattern), Count).

This can be called as (note that the pattern must be a string (code list)):

?- match_count(’pure_input.pl’, ‘file‘, Count).

phrase from file(:Grammar, +File, +Options) [nondet]

As phrase from file/2, providing additional Options. Options are passed to open/4.

phrase from stream(:Grammar, +Stream)
Run Grammer against the character codes on Stream. Stream must be buffered.

syntax error(+Error) //
Throw the syntax error Error at the current location of the input. This predicate is designed to
be called from the handler of phrase from file/3.

throws error(syntax_error(Error), Location)

lazy list location(-Location) // [det]

Determine current (error) location in a lazy list. True when Location is an (error) location term
that represents the current location in the DCG list.

Arguments
Location is a term file(Name, Line, LinePos, CharNo) or

stream(Stream, Line, LinePos, CharNo) if no file
is associated to the stream RestLazyList. Finally, if the Lazy
list is fully materialized (ends in []), Location is unified with
end_of_file-CharCount.

See also lazy list character count//1 only provides the character count.

lazy list character count(-CharCount) //
True when CharCount is the current character count in the Lazy list. The character count is
computed by finding the distance to the next frozen tail of the lazy list. CharCount is one of:

• An integer
• A term end of file-Count

See also lazy list location//1 provides full details of the location for error reporting.

stream to lazy list(+Stream, -List) [det]

Create a lazy list representing the character codes in Stream. List is a partial list ending in an
attributed variable. Unifying this variable reads the next block of data. The block is stored with
the attribute value such that there is no need to re-read it.

Compatibility Unlike the previous version of this predicate this version does not require a reposition-
able stream. It does require a buffer size of at least the maximum number of bytes of a multi-byte
sequence (6).

SWI-Prolog 9.3 Reference Manual

700 APPENDIX A. THE SWI-PROLOG LIBRARY

A.37 library(portray text): Portray text

SWI-Prolog has the special string data type. However, in Prolog, text may be represented more
traditionally as a list of character-codes, i.e. (small) integers (in SWI-Prolog specifically, those are
Unicode code points). This results in output like the following (here using the backquote notation
which maps text to a list of codes):

?- writeln(‘hello‘).
[104, 101, 108, 108, 111]

?- atom_codes("hello",X).
X = [104,101,108,108,111].

Unless you know the Unicode tables by heart, this is pretty unpleasant for debugging. Loading
library(portray_text) makes the toplevel and debugger consider certain lists of integers as
text and print them as text. This is called ”portraying”. Of course, interpretation is imperfect as there
is no way to tell in general whether [65,66] should written as ‘AB‘ or as [65,66]. Therefore it
is important that the user be aware of the fact that this conversion is enabled. This is why this library
must be loaded explicitly.

To be able to copy the printed representation and paste it back, printed text is enclosed in back
quotes if current prolog flag/2 for the flag back_quotes is codes (the default), and en-
closed in double quotes otherwise. Certain control characters are printed out in backslash-escaped
form.

The default heuristic only considers list of codes as text if the codes are all from the set of 7-bit
ASCII without most of the control characters. A code is classified as text by text code/1, which in
turn calls is text code/1. Define portray text:is text code/1 to succeed on additional
codes for more flexibility (by default, that predicate succeeds nowhere). For example:

?- maplist([C,R]>>(portray_text:text_code(C)->R=y;R=n),
‘G\u00e9n\u00e9rateur‘,Results).

Results = [y,n,y,n,y,y,y,y,y,y].

Now make is text code/1 accept anything:

?- [user].
|: portray_text:is_text_code(_).
|: ˆD
% user://3 compiled 0.00 sec, 1 clauses
true.

Then:

?- maplist([C,R]>>(portray_text:text_code(C)->R=y;R=n),
‘G\u00e9n\u00e9rateur‘,Results).

Results = [y,y,y,y,y,y,y,y,y,y].

SWI-Prolog 9.3 Reference Manual

A.38. LIBRARY(PREDICATE OPTIONS): DECLARE OPTION-PROCESSING OF
PREDICATES 701

portray text(+OnOff:boolean) [det]

Switch portraying on or off. If true, consider lists of integers as list of Unicode code points
and print them as corresponding text inside quotes: ‘text‘ or "text". Quoting depends on
the value of current prolog flag/2 back_quotes. Same as

?- set_portray_text(enabled, true).

set portray text(+Key, +Value) [det]

set portray text(+Key, ?Old, +New) [det]

Set options for portraying. Defined Keys are:

enabled
Enable/disable portray text

min length
Only consider for conversion lists of integers that have a length of at least Value. Default
is 3.

ellipsis
When converting a list that is longer than Value, display the output as start...end.

is text code(+Code:nonneg) [semidet,multifile]

Multifile hook that can be used to extend the set of character codes that is recognised as likely
text. By default, is text code/1 fails everywhere and internally, only non-control ASCII
characters (32-126) and the the control codes (9,10,13) are accepted.

To be done we might be able to use the current locale to include the appropriate code page. (Does
that really make sense?)

A.38 library(predicate options): Declare option-processing of predi-
cates

Discussions with Jeff Schultz helped shaping this library

A.38.1 The strength and weakness of predicate options

Many ISO predicates accept options, e.g., open/4, write term/3. Options offer an attractive
alternative to proliferation into many predicates and using high-arity predicates. Properly defined and
used, they also form a mechanism for extending the API of both system and application predicates
without breaking portability. I.e., previously fixed behaviour can be replaced by dynamic behaviour
controlled by an option where the default is the previously defined fixed behaviour. The alternative to
using options is to add an additional argument and maintain the previous definition. While a series of
predicates with increasing arity is adequate for a small number of additional parameters, the untyped
positional argument handling of Prolog quickly makes this unmanageable.

The ISO standard uses the extensibility offered by options by allowing implementations to extend
the set of accepted options. While options form a perfect solution to maintain backward portability in
a linear development model, it is not well equipped to deal with concurrent branches because

1. There is no API to find which options are supported in a particular implementation.

SWI-Prolog 9.3 Reference Manual

702 APPENDIX A. THE SWI-PROLOG LIBRARY

2. While the portability problem caused by a missing predicate in Prolog A can easily be solved
by implementing this predicate, it is much harder to add processing of an additional option to
an already existing predicate.

Different Prolog implementations can be seen as concurrent development branches of the Prolog
language. Different sets of supported options pose a serious portability issue. Using an option O that
establishes the desired behaviour on system A leads (on most systems) to an error or system B. Porting
may require several actions:

• Drop O (if the option is not vital, such as the layout options to write term/3)

• Replace O by O2 (i.e., a differently named option doing the same)

• Something else (cannot be ported; requires a totally different approach, etc.)

Predicates that process options are particularly a problem when writing a compatibility layer to
run programs developed for System A on System B because complete emulation is often hard, may
cause a serious slowdown and is often not needed because the application-to-be-ported only uses
options that are shared by all target Prolog implementations. Unfortunately, the consequences of a
partial emulation cannot be assessed by tools.

A.38.2 Options as arguments or environment?

We distinguish two views on options. One is to see them as additional parameters that require strict
existence, type and domain-checking and the other is to consider them ‘locally scoped environment
variables’. Most systems adopt the first option. SWI-Prolog adopts the second: it silently ignores
options that are not supported but does type and domain checking of option-values. The ‘environment’
view is commonly used in applications to create predicates supporting more options using the skeleton
below. This way of programming requires that pred1 and pred2 do not interpret the same option
differently. In cases where this is not true, the options must be distributed by some pred. We have
been using this programming style for many years and in practice it turns out that the need for active
distribution of options is rare. I.e., options either have distinct names or multiple predicates implement
the same option but this has the desired effect. An example of the latter is the encoding option,
which typically needs to be applied consistently.

some_pred(..., Options) :-
pred1(..., Options),
pred2(..., Options).

As stated before, options provide a readable alternative to high-arity predicates and offer a robust
mechanism to evolve the API, but at the cost of some runtime overhead and weaker consistency
checking, both at compiletime and runtime. From our experience, the ‘environment’ approach is
productive, but the consequence is that mistyped options are silently ignored. The option infrastructure
described in this section tries to remedy these problems.

SWI-Prolog 9.3 Reference Manual

A.38. LIBRARY(PREDICATE OPTIONS): DECLARE OPTION-PROCESSING OF
PREDICATES 703

A.38.3 Improving on the current situation

Whether we see options as arguments or locally scoped environment variables, the most obvious
way to improve on the current situation is to provide reflective support for options: discover that an
argument is an option-list and find what options are supported. Reflective access to options can be
used by the compiler and development environment as well as by the runtime system to warn or throw
errors.

Options as types

An obvious approach to deal with options is to define the different possible option values as a type and
type the argument that processes the option as list(<option type>), as illustrated below. Considering
options as types fully covers the case where we consider options as additional parameters.

:- type open_option ---> type(stream_type) |
alias(atom) |

:- pred open(source_sink, open_mode, stream, list(open_option)).

There are three reasons for considering a different approach:

• There is no consensus about types in the Prolog world, neither about what types should look
like, nor whether or not they are desirable. It is not likely that this debate will be resolved
shortly.

• Considering options as types does not support the ‘environment’ view, which we consider the
most productive.

• Even when using types, we need reflective access to what options are provided in order to be
able to write compile or runtime conditional code.

Reflective access to options

From the above, we conclude that we require reflective access to find out whether an option is sup-
ported and valid for a particular predicate. Possible option values must be described by types. Due
to lack of a type system, we use library(error) to describe allowed option values. Predicate
options are declared using predicate options/3:

predicate options(:PI, +Arg, +Options) [det]

Declare that the predicate PI processes options on Arg. Options is a list of options processed.
Each element is one of:

• Option(ModeAndType) PI processes Option. The option-value must comply to Mode-
AndType. Mode is one of + or - and Type is a type as accepted by must be/2.

• pass to(:PI,Arg) The option-list is passed to the indicated predicate.

Below is an example that processes the option header(boolean) and passes all options to
open/4:

SWI-Prolog 9.3 Reference Manual

704 APPENDIX A. THE SWI-PROLOG LIBRARY

:- predicate_options(write_xml_file/3, 3,
[header(boolean),

pass_to(open/4, 4)
]).

write_xml_file(File, XMLTerm, Options) :-
open(File, write, Out, Options),
(option(header(true), Options, true)
-> write_xml_header(Out)
; true
),
...

This predicate may only be used as a directive and is processed by expand term/2. Option
processing can be specified at runtime using assert predicate options/3, which is
intended to support program analysis.

assert predicate options(:PI, +Arg, +Options, ?New) [semidet]

As predicate options(:PI, +Arg, +Options). New is a boolean indicating whether the declara-
tions have changed. If New is provided and false, the predicate becomes semidet and fails
without modifications if modifications are required.

The predicates below realise the support for compile and runtime checking for supported options.

current predicate option(:PI, ?Arg, ?Option) [nondet]

True when Arg of PI processes Option. For example, the following is true:

?- current_predicate_option(open/4, 4, type(text)).
true.

This predicate is intended to support conditional compilation using if/1 ... endif/0. The
predicate current predicate options/3 can be used to access the full capabilities of a
predicate.

check predicate option(:PI, +Arg, +Option) [det]

Verify predicate options at runtime. Similar to current predicate option/3, but in-
tended to support runtime checking.

Errors
- existence_error(option, OptionName) if the option is not supported by PI.
- type_error(Type, Value) if the option is supported but the value does not match the
option type. See must be/2.

The predicates below can be used in a development environment to inform the user about sup-
ported options. PceEmacs uses this for colouring option names and values.

current option arg(:PI, ?Arg) [nondet]

True when Arg of PI processes predicate options. Which options are processed can be accessed
using current predicate option/3.

SWI-Prolog 9.3 Reference Manual

A.39. LIBRARY(PROLOG COVERAGE): COVERAGE ANALYSIS TOOL 705

current predicate options(:PI, ?Arg, ?Options) [nondet]

True when Options is the current active option declaration for PI on Arg. See
predicate options/3 for the argument descriptions. If PI is ground and refers to
an undefined predicate, the autoloader is used to obtain a definition of the predicate.

The library can execute a complete check of your program using
check predicate options/0:

check predicate options [det]

Analyse loaded program for erroneous options. This predicate decompiles the current program
and searches for calls to predicates that process options. For each option list, it validates
whether the provided options are supported and validates the argument type. This predicate
performs partial dataflow analysis to track option-lists inside a clause.

See also derive predicate options/0 can be used to derive declarations for
predicates that pass options. This predicate should normally be called before
check predicate options/0.

The library offers predicates that may be used to create declarations for your application. These
predicates are designed to cooperate with the module system.

derive predicate options [det]

Derive new predicate option declarations. This predicate analyses the loaded program to find
clauses that process options using one of the predicates from library(option) or passes
options to other predicates that are known to process options. The process is repeated until no
new declarations are retrieved.

See also autoload/0 may be used to complete the loaded program.

retractall predicate options [det]

Remove all dynamically (derived) predicate options.

derived predicate options(:PI, ?Arg, ?Options) [nondet]

Derive option arguments using static analysis. True when Options is the current derived active
option declaration for PI on Arg.

derived predicate options(+Module) [det]

Derive predicate option declarations for a module. The derived options are printed to the
current_output stream.

A.39 library(prolog coverage): Coverage analysis tool

The purpose of this module is to find which part of the program has been used by a certain goal. Usage
is defined in terms of clauses for which the head unification succeeded. For each clause we count how
often it succeeded and how often it failed. In addition we track all call sites, creating goal-by-goal
annotated clauses.

The result is represented as a list of clause-references. As the references to clauses of dynamic
predicates cannot be guaranteed, these are omitted from the result.

SWI-Prolog 9.3 Reference Manual

706 APPENDIX A. THE SWI-PROLOG LIBRARY

Using coverage/2 with the option annotate(true), implied by ext(Ext) or
dir(Dir), the analysis creates a line-by-line copy of the source files that is annotated with how
many times this line was executed and with what logical results. These annotations rely on relat-
ing executable code to source locations which is shared by the source level debugger. Source level
rewrites due to term or goal expansion may harm the results.

The typical usage is to load the program and run the query below to get a report by file with
percentages and a directory cov holding annotated files that provide line-by-line annotations. See
show coverage/1 for details.

?- coverage(Goal, [dir(cov)]).

A.39.1 Coverage collection and threads

The coverage collect data structure is shared by threads created from the thread that is collecting
coverage data. Currently, this thread should be joined before we can operate on the coverage data.

A.39.2 Combining coverage data from multiple runs

The coverage tools allow both combining data from running multiple queries as combining data from
multiple Prolog processes.

For multiple queries in the same process, coverage data may be collected using coverage/1
which, unlike coverage/2, does not change the non-deterministic semantics of the Goal and adds
to the already collected data. If no current collection is in progress, the currently collected data can be
displayed using show coverage/1.

Coverage data may be saved to a file using cov save data/2. Saved data can be reloaded
using cov load data/2. Data from multiple Prolog runs can be combined in the same file us-
ing cov save data/2 with the append(true) option. When possible, file locking is used
to ensure that concurrect processes can safely use the same data file. The result can be shown by
loading the code that was relevant to all runs, use cov load data/2 and show the result using
show coverage/1.

Note that saving an loading the coverage data saves and restores references to the clauses as the
Nth clause of a predicate defined in a specific file. This implies that the program must be loaded
in exactly the same way, including optimization level, term/goal expansion and order of multifile
predicates.

A.39.3 Predicate reference

coverage(:Goal)
As call(Goal), collecting coverage information while Goal is running. If Goal succeeds
with a choice point, coverage collection is suspended and resumed if we backtrack into Goal.
Calls to coverage/1 may be nested.

coverage(:Goal, +Options) [semidet]

Collect and optionally report coverage by Goal. Goal is executed as in once/1. Options
processed:

show(+Boolean)
When true (default), call show coverage/1 passing Options to show the collected

SWI-Prolog 9.3 Reference Manual

A.39. LIBRARY(PROLOG COVERAGE): COVERAGE ANALYSIS TOOL 707

coverage data and reset the data. When false, collect the data but do not reset it. If
there is already existing data the new data is added.

show coverage(+Options) [det]

Show collected coverage data. By default it reports the percentage of called and failed clauses
related to covered files. Using dir(Dir), detailed line-by-line annotated files are created in
the directory Dir. Other options control the level of detail.

all(+Boolean)
When true, report on any file in which some predicate was called.

modules(+Modules)
Only report on files that implement one of the given Modules.

roots(+Directories)
Only report on files below one of the given roots. Each directory in Directories can be a
specification for absolute file name/3.

annotate(+Bool)
Create an annotated file for the detailed results. This is implied if the ext or dir option
are specified.

ext(+Ext)
Extension to use for the annotated file. Default is ‘.cov‘.

dir(+Dir)
Dump the annotations in the given directory. If not given, the annotated files are created
in the same directory as the source file. Each clause that is related to a physical line in the
file is annotated with one of:

Clause was never executed.
++N Clause was entered N times and always succeeded
–N Clause was entered N times and never succeeded
+N-M Clause has succeeded N times and failed M times
+N*M Clause was entered N times and succeeded M times

All call sites are annotated using the same conventions, except that --- is used to annotate
subgoals that were never called.

line numbers(Boolean)
If true (default), add line numbers to the annotated file.

color(Boolean)
Controls using ANSI escape sequences to color the output in the annotated source. Default
is true.

width(+Columns)
Presumed width of the output window. A value of 40 is considered the minimum. Smaller
values are handled as 40.

For example, run a goal and create annotated files in a directory cov using:

?- show_coverage([dir(cov)]).

SWI-Prolog 9.3 Reference Manual

708 APPENDIX A. THE SWI-PROLOG LIBRARY

bug Color annotations are created using ANSI escape sequences. On most systems these are displayed
if the file is printed on the terminal. On most systems less may be used with the -r flag.
Alternatively, programs such as ansi2html (Linux) may be used to convert the files to HTML.
It would probably be better to integrate the output generation with library(pldoc/doc_
htmlsrc).

report hook(+Succeeded, +Failed) [semidet,multifile]

This hook is called after the data collection. It is passed a list of objects that have succeeded as
well as a list of objects that have failed. The objects are one of

ClauseRef
The specified clause

call site(ClauseRef, PC)
A call was make in ClauseRef at the given program counter.

cov save data(+File, +Options) [det]

Save the coverage information to File. Options:

append(true)
Append to File rather than truncating the data if the file exists.

The File is opened using lock(exclusive), which implies that, provided the OS and file
system implements file locking, multiple processes may save coverage data to the same file.

The saved data is highly specific to the setup in which it has been created. It can typically only
be reloaded using cov load data/2 in the same Prolog executable using the same options
and with all relevant source file unmodified at the same location.

Reproducibility can be improved by using ‘.qlf‘ files or saved states.

cov load data(+File, +Options) [det]

Reload coverage data from File. Options:

load(true)
If specified and the file in which a clauses is expected to exist, load the file using
load files/2 with the same options as used to initially load the file.

silent(+Boolean)
When true, do not emit messages on not loaded source files.

Data is assumed to be reliable if the Nth-clause of a predicate is loaded from the same file at the
same line number and has the same size. Unreliable data is ignored, silently if silent(true)
is used.

cov reset [det]

Discard all collected coverage data. This predicate raises a permission error if coverage collec-
tion is in progress.

cov property(?Property)
True when coverage analysis satisfies Property. Currently defined properties are:

active(?Nesting)
True when coverage data is being collected. Nesting expresses the nesting of
coverage/1 calls and is normally 1 (one).

SWI-Prolog 9.3 Reference Manual

A.40. LIBRARY(PROLOG DEBUG): USER LEVEL DEBUGGING TOOLS 709

A.40 library(prolog debug): User level debugging tools

This library provides tools to control the Prolog debuggers. Traditionally this code was built-in.
Because these tools are only required in (interactive) debugging sessions they have been moved into
the library.

prolog:debug control hook(+Action) [multifile]

Allow user-hooks in the Prolog debugger interaction. See the calls below for the provided
hooks. We use a single predicate with action argument to avoid an uncontrolled poliferation of
hooks.

spy(:Spec) [det]

nospy(:Spec) [det]

nospyall [det]

Set/clear spy-points. A successfully set or cleared spy-point is reported using
print message/2, level informational, with one of the following terms, where
Spec is of the form M:Head.

• spy(Spec)

• nospy(Spec)

See also spy/1 and nospy/1 call the hook prolog:debug control hook/1 to allow for al-
ternative specifications of the thing to debug.

debugging [det]

Report current status of the debugger.

debugging hook(+DebugMode) [multifile]

Multifile hook that is called as forall(debugging_hook(DebugMode), true) and
that may be used to extend the information printed from other debugging libraries.

trap(+Formal) [det]

notrap(+Formal) [det]

Install a trap on error(Formal, Context) exceptions that unify. The tracer is started
when a matching exception is raised. This predicate enables debug mode using debug/0 to
get more context about the exception. Even with debug mode disabled exceptions are still
trapped and thus one may call nodebug/0 to run in normal mode after installing a trap.
Exceptions are trapped in any thread. Debug mode is only enabled in the calling thread. To
enable debug mode in all threads use tdebug/0.

Calling debugging/0 lists the enabled traps. The predicate notrap/1 removes matching
(unifying) traps.

In many cases debugging an exception that is caught is as simple as below (assuming run/0
starts your program).

?- trap(_).
?- run.

SWI-Prolog 9.3 Reference Manual

710 APPENDIX A. THE SWI-PROLOG LIBRARY

The multifile hook trap alias/2 allow for defining short hands for commonly used traps.
Currently this defines

det
Trap determinism exceptions raised as a result of the det/1 directive.

=>
Trap rule existence error exceptions.

See also
- gtrap/1 to trap using the graphical debugger.
- Edit exceptions menu in PceEmacs and the graphical debugger that provide a graphical frontend
to trap exceptions.

trap alias(+Alias, -Error) [multifile]

Define short hands for commonly used exceptions.

exception hook(+ExIn, -ExOut, +Frame, +Catcher, +DebugMode) [failure]

Trap exceptions and consider whether or not to start the tracer.

A.41 library(prolog jiti): Just In Time Indexing (JITI) utilities
To be done Use print message/2 and dynamically figure out the column width.

This module provides utilities to examine just-in-time indexes created by the system and can help
diagnosing space and performance issues.

jiti list [det]

jiti list(:Spec) [det]

List the JITI (Just In Time Indexes) of selected predicates. The predicate jiti list/0 list
all just-in-time indexed predicates. The predicate jiti list/1 takes one of the patterns
below. All parts except for Name can be variables. The last pattern takes an arbitrary number
of arguments.

• Module:Head
• Module:Name/Arity
• Module:Name

The columns use the following notation:

• The Indexed column describes the argument(s) indexed:

– A plain integer refers to a 1-based argument number
– A+B is a multi-argument index on the arguments A and B.
– P:L is a deep-index L on sub-argument P. For example, 1/2:2+3 is an index of the

2nd and 3rd argument of the 2nd argument of a compound on the first argument of
the predicate. This implies x and y in the head p(f(_,g(_,x,y)))

• The Buckets specifies the number of buckets of the hash table

SWI-Prolog 9.3 Reference Manual

A.42. LIBRARY(PROLOG TRACE): PRINT ACCESS TO PREDICATES 711

• The Speedup specifies the selectivity of the index

• The Flags describes additional properties, currently:

– L denotes that the index contains multiple compound terms with the same name/arity
that may be used to create deep indexes. The deep indexes themselves are created as
just-in-time indexes.

– V denotes the index is virtual, i.e., it has not yet been materialized.

jiti suggest modes [det]

jiti suggest modes(:Spec) [det]

Propose modes for the predicates referenced by Spec. This utility may be executed after a
clean load of your program and after running the program. It searches for static predicates that
have been called and (thus) have been examined for candidate indexes. If candidate indexes
have not been materialized this implies that the predicate was never called with a nonvar value
for the corresponding argument. Adding a mode/1 declaration may be used to inform the
system thereof. The system will never examine arguments for indexing that have been declared
as mode -.

Note: This predicate merely detects that some predicate is never called with instantiated spe-
cific arguments during this run. The user should verify whether the suggested - arguments
are correct and typically complete the mode by changing ? into + (or -) where applicable.
Currently, in SWI-Prolog, mode/1 declarations have no effect on the semantics of the code.
In particular, a predicate that declares some argument as - may be called with this argument
instantiated. This may change in the future.

Arguments

Spec uses the same conventions as jiti list/1.

A.42 library(prolog trace): Print access to predicates
See also library(debug) for adding conditional print statements to a program.

This library prints accesses to specified predicates by wrapping the predicate.

trace(:Pred) [det]

trace(:Pred, +PortSpec) [det]

Print passes through ports of specified predicates. Pred is a, possible partial, specification
of a predicate as it is also used be spy/1 and similar predicates. Where a full predicate
specification is of the shape Module:Name/Arity (or ‘//Arity for non-terminals), both
the module and arity may be omitted in which case Pred refers to all matching predicates.
PortSpec is either a single port (call, exit, fail or redo), preceded with + or - or a
list of these. The predicate modifies the current trace specification and then installs a suitable
wrapper for the predicate using wrap predicate/4. For example:

?- trace(append).
% lists:append/2: [all]
% lists:append/3: [all]

SWI-Prolog 9.3 Reference Manual

712 APPENDIX A. THE SWI-PROLOG LIBRARY

% append/1: [all]
true.

?- append([a,b], [c], L).
T [10] Call: lists:append([a, b], [c], _18032)
T [19] Call: lists:append([b], [c], _19410)
T [28] Call: lists:append([], [c], _20400)
T [28 +0.1ms] Exit: lists:append([], [c], [c])
T [19 +0.2ms] Exit: lists:append([b], [c], [b, c])
T [10 +0.5ms] Exit: lists:append([a, b], [c], [a, b, c])
L = [a, b, c].

?- trace(append, -all).
% lists:append/2: Not tracing
% lists:append/3: Not tracing
% append/1: Not tracing

The text between [] indicates the call depth (first number) and for all ports except the call
port the wall time since the start (call port) in milliseconds. Note that the instrumentation and
print time is included in the time. In the example above the actual time is about 0.00001ms on
todays hardware.

In addition, conditions may be specified. In this case the the specification takes the shape
trace(:Head, Port(Condition)). For example:

?- trace(current_prolog_flag(Flag, Value), call(var(Flag))).
?- list_tracing.
% Trace points (see trace/1,2) on:
% system:current_prolog_flag(A,_): [call(var(A))]

This specification will only print the goal if the registered condition succeeds. Note that we
can use the condition for its side effect and then fail to avoid printing the event. Clearing the
trace event on all relevant ports removes the condition. There is currently no way to modify the
condition without clearing the trace point first.

tracing(:Spec, -Ports)
True if Spec is traced using Ports. Spec is a fully qualified head term.

list tracing
List predicates we are currently tracing

notraceall [det]

Remove all trace points

A.43 library(prolog versions): Demand specific (Prolog) versions
To be done

- Not only provide a minimal version but a more version ranges, exclude certain versions, etc.
- More features and better messages to help the user resolving problems.

SWI-Prolog 9.3 Reference Manual

A.43. LIBRARY(PROLOG VERSIONS): DEMAND SPECIFIC (PROLOG) VERSIONS 713

This library is provided to make it easier to reason about software versions, in particular require
that that hosting Prolog system is of the right version and provides the features required by the library
or application.

require prolog version(+Required, +Features:list) [det]

Claim that the running Prolog version is at least version Required and provides the requested
Features. Required is an expression of versions. At the lowest level, a version is an atom or
string that provides the version as

Major.Minor[[.Patch][[-GitRev],-GitHash]]]

Example strings are ’8.5’, ’8.5.0’, ’8.5.0-50’, ’8.5.0-69-gad38e8ad8‘. The last two require
fetching the sources from git or using the Windows daily builds.

Versions may be embedded in a comparison operator (<, =<, =, >= or >), e.g., =<(’9.1’).
Versions are considered to compare equal only on the components of the Required version. I.e.,
’9.1’ compares equal to ’9.1.2’.

Version expressions can be constructed from the Prolog operators ’,’/2, ’;’/2 and ’\+’/1. An
example of a complicated expression is below, which demands major version 9, but considers
9.1.2 not suitable.

(>=(’9’), \+(=(’9.1.2’)))

Features is a list of required or preferred features. Individual features are:

warning(Feature)
Only print a warning instead of throwing an error.

library(Lib)
Demand library(Lib) to be present. Thde library not being there may indicate an
incomplete installation. For example library(pce) to demand xpce graphics support.

Flag
Demand current_prolog_flag(Flag, true) to be true.

FlagValue
If FlagValue is Flag(Value), demand current_prolog_flag(Flag, Value) to
be true.

Errors
- version_error(’SWI-Prolog’, PrologVersion, Cmp, Required)
- existence_error(prolog_feature, Feature)

require version(+Component, +Available, +CmpRequired) [det]

Require Component to have version CmpRequired, while Component is know to have version
Available.

Errors version_error(Component, Required, Cmp, Available)

SWI-Prolog 9.3 Reference Manual

714 APPENDIX A. THE SWI-PROLOG LIBRARY

cmp versions(?Cmp, +V1, +V2) [semidet]

Compare to versions. Cmp is one of <, =<, =, >= or >. If Cmp is unbound we check whether <
or > hold or else bind Cmp to =.

When comparing for equality (=), the versions are considered equal if they compare equal up
to the detail level of the least specified. E.g, ’9.1.2’ is considered equal to ’9.1’.

A.44 library(prolog xref): Prolog cross-referencer data collection
See also Where this library analyses source text, library(prolog_codewalk) may be used to anal-

yse loaded code. The library(check) exploits library(prolog_codewalk) to report on
e.g., undefined predicates.

bug meta predicate/1 declarations take the module into consideration. Predicates that are both avail-
able as meta-predicate and normal (in different modules) are handled as meta-predicate in all places.

This library collects information on defined and used objects in Prolog source files. Typically
these are predicates, but we expect the library to deal with other types of objects in the future. The
library is a building block for tools doing dependency tracking in applications. Dependency tracking
is useful to reveal the structure of an unknown program or detect missing components at compile time,
but also for program transformation or minimising a program saved state by only saving the reachable
objects.

The library is exploited by two graphical tools in the SWI-Prolog environment: the XPCE front-
end started by gxref/0, and library(prolog_colour), which exploits this library for its
syntax highlighting.

For all predicates described below, Source is the source that is processed. This is normally a file-
name in any notation acceptable to the file loading predicates (see load files/2). Input handling
is done by the library(prolog_source), which may be hooked to process any source that
can be translated into a Prolog stream holding Prolog source text. Callable is a callable term (see
callable/1). Callables do not carry a module qualifier unless the referred predicate is not in the
module defined by Source.

prolog:called by(+Goal, +Module, +Context, -Called) [semidet,multifile]

True when Called is a list of callable terms called from Goal, handled by the predicate Mod-
ule:Goal and executed in the context of the module Context. Elements of Called may be
qualified. If not, they are called in the context of the module Context.

prolog:called by(+Goal, -ListOfCalled) [multifile]

If this succeeds, the cross-referencer assumes Goal may call any of the goals in ListOfCalled.
If this call fails, default meta-goal analysis is used to determine additional called goals.

deprecated New code should use prolog:called by/4

prolog:meta goal(+Goal, -Pattern) [multifile]

Define meta-predicates. See the examples in this file for details.

prolog:hook(Goal) [multifile]

True if Goal is a hook that is called spontaneously (e.g., from foreign code).

SWI-Prolog 9.3 Reference Manual

A.44. LIBRARY(PROLOG XREF): PROLOG CROSS-REFERENCER DATA
COLLECTION 715

xref source(+Source) [det]

xref source(+Source, +Options) [det]

Generate the cross-reference data for Source if not already done and the source is not modified.
Checking for modifications is only done for files. Options processed:

silent(+Boolean)
If true (default false), emit warning messages.

module(+Module)
Define the initial context module to work in.

register called(+Which)
Determines which calls are registerd. Which is one of all, non_iso or
non_built_in (default).

comments(+CommentHandling)
How to handle comments. If store, comments are stored into the database as if the
file was compiled. If collect, comments are entered to the xref database and made
available through xref mode/2 and xref comment/4. If ignore, comments are
simply ignored. Default is to collect comments.

process include(+Boolean)
Process the content of included files (default is true).

stream(+Stream)
Process the input from Stream rather than opening Source.

Arguments

Source File specification or XPCE buffer

xref clean(+Source) [det]

Reset the database for the given source.

xref current source(?Source)
Check what sources have been analysed.

xref done(+Source, -Time) [det]

Cross-reference executed at Time

xref called(?Source, ?Called, ?By) [nondet]

xref called(?Source, ?Called, ?By, ?Cond) [nondet]

xref called(?Source, ?Called, ?By, ?Cond, ?Line) [nondet]

True when By is called from Called in Source. Note that xref called/3 and
xref called/4 use distinct/2 to return only distinct Called-By pairs. The
xref called/5 version may return duplicate Called-By if Called is called from multiple
clauses in By, but at most one call per clause.

Arguments

SWI-Prolog 9.3 Reference Manual

716 APPENDIX A. THE SWI-PROLOG LIBRARY

By is a head term or one of the reserved terms
’<directive>’(Line) or ’<public>’(Line), indi-
cating the call is from an (often initialization/1) directive
or there is a public/1 directive that claims the predicate is
called from in some untractable way.

Cond is the (accumulated) condition as defined by :- if(Cond) un-
der which the calling code is compiled.

Line is the start line of the calling clause.

xref defined(?Source, +Goal, ?How) [nondet]

Test if Goal is accessible in Source. If this is the case, How specifies the reason why the
predicate is accessible. Note that this predicate does not deal with built-in or global predicates,
just locally defined and imported ones. How is one of of the terms below. Location is
one of Line (an integer) or File:Line if the definition comes from an included (using :-
include(File)) directive.

• dynamic(Location)

• thread_local(Location)

• multifile(Location)

• public(Location)

• local(Location)

• foreign(Location)

• constraint(Location)

• imported(From)

• dcg

xref definition line(+How, -Line)
If the 3th argument of xref defined contains line info, return this in Line.

xref exported(?Source, ?Head) [nondet]

True when Source exports Head.

xref module(?Source, ?Module) [nondet]

True if Module is defined in Source.

xref uses file(?Source, ?Spec, ?Path) [nondet]

True when Source tries to load a file using Spec.

Arguments
Spec is a specification for absolute file name/3
Path is either an absolute file name of the target file or the atom

<not_found>.

xref op(?Source, Op) [nondet]

Give the operators active inside the module. This is intended to setup the environment for
incremental parsing of a term from the source-file.

Arguments

Op Term of the form op(Priority, Type, Name)

SWI-Prolog 9.3 Reference Manual

A.44. LIBRARY(PROLOG XREF): PROLOG CROSS-REFERENCER DATA
COLLECTION 717

xref prolog flag(?Source, ?Flag, ?Value, ?Line) [nondet]

True when Flag is set to Value at Line in Source. This is intended to support incremental
parsing of a term from the source-file.

xref comment(?Source, ?Title, ?Comment) [nondet]

Is true when Source has a section comment with Title and Comment

xref comment(?Source, ?Head, ?Summary, ?Comment) [nondet]

Is true when Head in Source has the given PlDoc comment.

xref mode(?Source, ?Mode, ?Det) [nondet]

Is true when Source provides a predicate with Mode and determinism.

xref option(?Source, ?Option) [nondet]

True when Source was processed using Option. Options are defined with xref source/2.

xref meta(+Source, +Head, -Called) [semidet]

True when Head calls Called in Source.

Arguments
Called is a list of called terms, terms of the form Term+Extra or terms of

the form //(Term).

xref meta(+Head, -Called) [semidet]

xref meta src(+Head, -Called, +Src) [semidet]

True when Called is a list of terms called from Head. Each element in Called can be of the
form Term+Int, which means that Term must be extended with Int additional arguments. The
variant xref meta/3 first queries the local context.

deprecated New code should use xref meta/3.
To be done

- Split predifined in several categories. E.g., the ISO predicates cannot be redefined.
- Rely on the meta predicate property for many predicates.

xref hook(?Callable)
Definition of known hooks. Hooks that can be called in any module are unqualified. Other
hooks are qualified with the module where they are called.

xref public list(+Spec, +Source, +Options) [semidet]

Find meta-information about File. If Spec resolves to a Prolog source file, this predicate reads
all terms upto the first term that is not a directive. If Spec resolves to a SWI-Prolog ‘.qlf‘ file,
it extracts part of the information from the QLF file. It uses the module and meta predicate
directives to assemble the information in Options. Options processed:

path(-Path)
Path is the full path name of the referenced file. If Spec resolves to a .qlf file, Path is the
name of the embedded Prolog file.

module(-Module)
Module is the module defines in Spec.

SWI-Prolog 9.3 Reference Manual

718 APPENDIX A. THE SWI-PROLOG LIBRARY

exports(-Exports)
Exports is a list of predicate indicators and operators collected from the module/2 term
and reexport declarations.

public - Public
Public declarations of the file. Currently always [] for .qlf files.

meta(-Meta)
Meta is a list of heads as they appear in meta predicate/1 declarations. Currently
always [] for .qlf files.

silent(+Boolean)
Do not print any messages or raise exceptions on errors.

The information collected by this predicate is cached. The cached data is considered valid as
long as the modification time of the file does not change.

Arguments

Source is the file from which Spec is referenced.

xref public list(+File, -Path, -Export, +Src) [semidet]

xref public list(+File, -Path, -Module, -Export, -Meta, +Src) [semidet]

xref public list(+File, -Path, -Module, -Export, -Public, -Meta, +Src) [semidet]

Find meta-information about File. This predicate reads all terms upto the first term that is
not a directive. It uses the module and meta predicate directives to assemble the information
described below.

These predicates fail if File is not a module-file.

Arguments
Path is the canonical path to File
Module is the module defined in Path
Export is a list of predicate indicators.
Meta is a list of heads as they appear in meta predicate/1 declara-

tions.
Src is the place from which File is referenced.

deprecated New code should use xref public list/3, which unifies all variations using an
option list.

xref source file(+Spec, -File, +Src) [semidet]

xref source file(+Spec, -File, +Src, +Options) [semidet]

Find named source file from Spec, relative to Src.

A.45 library(quasi quotations): Define Quasi Quotation syntax

author Jan Wielemaker. Introduction of Quasi Quotation was suggested by Michael Hendricks.

See also
- Why it’s nice to be quoted: quasiquoting for haskell
- Why it’s nice to be quoted: quasiquoting for Prolog

SWI-Prolog 9.3 Reference Manual

http://www.cs.tufts.edu/comp/150FP/archive/geoff-mainland/quasiquoting.pdf
https://www.swi-prolog.org/download/publications/quasiquoting.pdf

A.45. LIBRARY(QUASI QUOTATIONS): DEFINE QUASI QUOTATION SYNTAX 719

Inspired by Haskell, SWI-Prolog support quasi quotation. Quasi quotation allows for embedding
(long) strings using the syntax of an external language (e.g., HTML, SQL) in Prolog text and syntax-
aware embedding of Prolog variables in this syntax. At the same time, quasi quotation provides an
alternative to represent long strings and atoms in Prolog.

The basic form of a quasi quotation is defined below. Here, Syntax is an arbitrary Prolog term
that must parse into a callable (atom or compound) term and Quotation is an arbitrary sequence of
characters, not including the sequence |}. If this sequence needs to be embedded, it must be escaped
according to the rules of the target language or the ‘quoter’ must provide an escaping mechanism.

{|Syntax||Quotation|}

While reading a Prolog term, and if the Prolog flag quasi_quotations is set to true (which
is the case if this library is loaded), the parser collects quasi quotations. After reading the final full
stop, the parser makes the call below. Here, SyntaxName is the functor name of Syntax above and
SyntaxArgs is a list holding the arguments, i.e., Syntax =.. [SyntaxName|SyntaxArgs].
Splitting the syntax into its name and arguments is done to make the quasi quotation parser a predicate
with a consistent arity 4, regardless of the number of additional arguments.

call(+SyntaxName, +Content, +SyntaxArgs, +VariableNames, -Result)

The arguments are defined as

• SyntaxName is the principal functor of the quasi quotation syntax. This must be declared using
quasi quotation syntax/1 and there must be a predicate SyntaxName/4.

• Content is an opaque term that carries the content of the quasi quoted material and position
information about the source code. It is passed to with quasi quote input/3.

• SyntaxArgs carries the additional arguments of the Syntax. These are commonly used to make
the parameter passing between the clause and the quasi quotation explicit. For example:

...,
{|html(Name, Address)||
<tr><td>Name<td>Address</tr>
|}

• VariableNames is the complete variable dictionary of the clause as it is made available throug
read term/3 with the option variable_names. It is a list of terms Name = Var.

• Result is a variable that must be unified to resulting term. Typically, this term is structured
Prolog tree that carries a (partial) representation of the abstract syntax tree with embedded
variables that pass the Prolog parameters. This term is normally either passed to a predicate that
serializes the abstract syntax tree, or a predicate that processes the result in Prolog. For example,
HTML is commonly embedded for writing HTML documents (see library(http/html_
write)). Examples of languages that may be embedded for processing in Prolog are SPARQL,
RuleML or regular expressions.

SWI-Prolog 9.3 Reference Manual

http://www.haskell.org/haskellwiki/Quasiquotation

720 APPENDIX A. THE SWI-PROLOG LIBRARY

The file library(http/html_quasiquotations) provides the, suprisingly simple,
quasi quotation parser for HTML.

with quasi quotation input(+Content, -Stream, :Goal) [det]

Process the quasi-quoted Content using Stream parsed by Goal. Stream is a temporary stream
with the following properties:

• Its initial position represents the position of the start of the quoted material.

• It is a text stream, using utf8 encoding.

• It allows for repositioning

• It will be closed after Goal completes.

Arguments
Goal is executed as once(Goal). Goal must succeed. Failure or ex-

ceptions from Goal are interpreted as syntax errors.

See also phrase from quasi quotation/2 can be used to process a quotation using a gram-
mar.

phrase from quasi quotation(:Grammar, +Content) [det]

Process the quasi quotation using the DCG Grammar. Failure of the grammar is interpreted as
a syntax error.

See also with quasi quotation input/3 for processing quotations from stream.

quasi quotation syntax(:SyntaxName) [det]

Declare the predicate SyntaxName/4 to implement the the quasi quote syntax SyntaxName.
Normally used as a directive.

quasi quotation syntax error(+Error)
Report syntax_error(Error) using the current location in the quasi quoted input parser.

throws error(syntax_error(Error), Position)

A.46 library(random): Random numbers
author R.A. O’Keefe, V.S. Costa, L. Damas, Jan Wielemaker
See also Built-in function random/1: A is random(10)

This library is derived from the DEC10 library random. Later, the core random generator was
moved to C. The current version uses the SWI-Prolog arithmetic functions to realise this library.
These functions are based on the GMP library.

random(-R:float) [det]

Binds R to a new random float in the open interval (0.0,1.0).

SWI-Prolog 9.3 Reference Manual

A.46. LIBRARY(RANDOM): RANDOM NUMBERS 721

See also
- setrand/1, getrand/1 may be used to fetch/set the state.
- In SWI-Prolog, random/1 is implemented by the function random float/0.

random between(+L:int, +U:int, -R:int) [semidet]

Binds R to a random integer in [L,U] (i.e., including both L and U). Fails silently if U<L.

random(+L:int, +U:int, -R:int) [det]

random(+L:float, +U:float, -R:float) [det]

Generate a random integer or float in a range. If L and U are both integers, R is a random
integer in the half open interval [L,U). If L and U are both floats, R is a float in the open interval
(L,U).

deprecated Please use random/1 for generating a random float and random between/3 for gen-
erating a random integer. Note that random between/3 includes the upper bound, while this
predicate excludes it.

setrand(+State) [det]

getrand(-State) [det]

Query/set the state of the random generator. This is intended for restarting the generator
at a known state only. The predicate setrand/1 accepts an opaque term returned by
getrand/1. This term may be asserted, written and read. The application may not make
other assumptions about this term.

For compatibility reasons with older versions of this library, setrand/1 also accepts a term
rand(A,B,C), where A, B and C are integers in the range 1..30,000. This argument is used
to seed the random generator. Deprecated.

Errors existence_error(random_state, _) is raised if the underlying infrastructure can-
not fetch the random state. This is currently the case if SWI-Prolog is not compiled with the
GMP library.

See also set random/1 and random property/1 provide the SWI-Prolog native implementa-
tion.

maybe [semidet]

Succeed/fail with equal probability (variant of maybe/1).

maybe(+P) [semidet]

Succeed with probability P, fail with probability 1-P

maybe(+K, +N) [semidet]

Succeed with probability K/N (variant of maybe/1)

random perm2(?A, ?B, ?X, ?Y) [semidet]

Does X=A,Y=B or X=B,Y=A with equal probability.

random member(-X, +List:list) [semidet]

X is a random member of List. Equivalent to random between(1, |List|), followed by nth1/3.
Fails of List is the empty list.

Compatibility Quintus and SICStus libraries.

SWI-Prolog 9.3 Reference Manual

722 APPENDIX A. THE SWI-PROLOG LIBRARY

random select(-X, +List, -Rest) [semidet]

random select(+X, -List, +Rest) [det]

Randomly select or insert an element. Either List or Rest must be a list. Fails if List is the
empty list.

Compatibility Quintus and SICStus libraries.

random subseq(+List, -Subseq, -Complement) [det]

random subseq(-List, +Subseq, +Complement) [semidet]

Selects a random subsequence Subseq of List, with Complement containing all elements of List
that were not selected. Each element of List is included with equal probability in either Subseq
or Complement.

random subseq/3 may also be called with Subseq and Complement bound and List un-
bound, which will recreate List by randomly interleaving Subseq and Complement. This mode
may fail randomly, matching SICStus behavior. The failure probability corresponds to the
probability of the ”forward” mode selecting a Subseq/Complement combination with different
lengths.

Compatibility SICStus 4

randset(+K:int, +N:int, -S:list(int)) [det]

S is a sorted list of K unique random integers in the range 1..N. The implementation uses
different techniques depending on the ratio K/N. For small K/N it generates a set of K random
numbers, removes the duplicates and adds more numbers until |S| is K. For a large K/N it
enumerates 1..N and decides randomly to include the number or not. For example:

?- randset(5, 5, S).
S = [1, 2, 3, 4, 5]. (always)
?- randset(5, 20, S).
S = [2, 7, 10, 19, 20].

See also randseq/3.

randseq(+K:int, +N:int, -List:list(int)) [det]

S is a list of K unique random integers in the range 1..N. The order is random. Defined as

randseq(K, N, List) :-
randset(K, N, Set),
random_permutation(Set, List).

See also randset/3.

random permutation(+List, -Permutation) [det]

random permutation(-List, +Permutation) [det]

Permutation is a random permutation of List. This is intended to process the elements of List
in random order. The predicate is symmetric.

Errors instantiation error, type_error(list, _).

SWI-Prolog 9.3 Reference Manual

A.47. LIBRARY(RBTREES): RED BLACK TREES 723

random numlist(+P, +L, +U, -List) [det]

Unify List with an ascending list of integers between L and U (inclusive). Each integer in the
range L..U is included with probability P.

Compatibility SICStus 4

A.47 library(rbtrees): Red black trees
author Vitor Santos Costa, Jan Wielemaker, Samer Abdallah, Peter Ludemann.
See also

- library(pairs), library(assoc)
- ”Introduction to Algorithms”, Second Edition Cormen, Leiserson, Rivest, and Stein, MIT Press

Red-Black trees are balanced search binary trees. They are named because nodes can be classified
as either red or black. The code we include is based on ”Introduction to Algorithms”, second edition,
by Cormen, Leiserson, Rivest and Stein. The library includes routines to insert, lookup and delete
elements in the tree.

A Red black tree is represented as a term t(Nil, Tree), where Nil is the
Nil-node, a node shared for each nil-node in the tree. Any node has the form
colour(Left, Key, Value, Right), where colour is one of red or black.

Warning: instantiation of keys
Red-Black trees depend on the Prolog standard order of terms to organize the keys as a (balanced)

binary tree. This implies that any term may be used as a key. The tree may produce wrong results,
such as not being able to find a key, if the ordering of keys changes after the key has been inserted
into the tree. The user is responsible to ensure that variables used as keys or appearing in a term used
as key that may affect ordering are not unified, with the exception of unification against new fresh
variables. For this reason, ground terms are safe keys. When using non-ground terms, either make
sure the variables appear in places that do not affect the standard order relative to other keys in the
tree or make sure to not unify against these variables as long as the tree is being used.

rb new(-Tree) [det]

Create a new Red-Black tree Tree.

deprecated Use rb empty/1.

rb empty(?Tree) [semidet]

Succeeds if Tree is an empty Red-Black tree.

rb lookup(+Key, -Value, +Tree) [semidet]

True when Value is associated with Key in the Red-Black tree Tree. The given Key may include
variables, in which case the RB tree is searched for a key with equivalent variables (using
(==)/2). Time complexity is O(log N) in the number of elements in the tree.

See also rb in/3 for backtracking over keys.

rb min(+Tree, -Key, -Value) [semidet]

Key is the minimum key in Tree, and is associated with Val.

SWI-Prolog 9.3 Reference Manual

724 APPENDIX A. THE SWI-PROLOG LIBRARY

rb max(+Tree, -Key, -Value) [semidet]

Key is the maximal key in Tree, and is associated with Val.

rb next(+Tree, +Key, -Next, -Value) [semidet]

Next is the next element after Key in Tree, and is associated with Val. Fails if Key isn’t in Tree
or if Key is the maximum key.

rb previous(+Tree, +Key, -Previous, -Value) [semidet]

Previous is the previous element after Key in Tree, and is associated with Val. Fails if Key isn’t
in Tree or if Key is the minimum key.

rb update(+Tree, +Key, ?NewVal, -NewTree) [semidet]

Tree NewTree is tree Tree, but with value for Key associated with NewVal. Fails if Key is not in
Tree (using (==)/2). This predicate may fail or give unexpected results if Key is not sufficiently
instantiated.

See also rb in/3 for backtracking over keys.

rb update(+Tree, +Key, -OldVal, ?NewVal, -NewTree) [semidet]

Same as rb_update(Tree, Key, NewVal, NewTree) but also unifies OldVal with
the value associated with Key in Tree.

rb apply(+Tree, +Key, :G, -NewTree) [semidet]

If the value associated with key Key is Val0 in Tree, and if call(G,Val0,ValF) holds,
then NewTree differs from Tree only in that Key is associated with value ValF in tree NewTree.
Fails if it cannot find Key in Tree, or if call(G,Val0,ValF) is not satisfiable.

rb in(?Key, ?Value, +Tree) [nondet]

True when Key-Value is a key-value pair in red-black tree Tree. Same as below, but does not
materialize the pairs.

rb_visit(Tree, Pairs), member(Key-Value, Pairs)

Leaves a choicepoint even if Key is instantiated; to avoid a choicepoint, use rb lookup/3.

rb insert(+Tree, +Key, ?Value, -NewTree) [det]

Add an element with key Key and Value to the tree Tree creating a new red-black tree NewTree.
If Key is a key in Tree, the associated value is replaced by Value. See also rb insert new/4.
Does not validate that Key is sufficiently instantiated to ensure the tree remains valid if a key is
further instantiated.

rb insert new(+Tree, +Key, ?Value, -NewTree) [semidet]

Add a new element with key Key and Value to the tree Tree creating a new red-black tree
NewTree. Fails if Key is a key in Tree. Does not validate that Key is sufficiently instantiated to
ensure the tree remains valid if a key is further instantiated.

rb delete(+Tree, +Key, -NewTree)
Delete element with key Key from the tree Tree, returning the value Val associated with the key
and a new tree NewTree. Fails if Key is not in Tree (using (==)/2).

SWI-Prolog 9.3 Reference Manual

A.47. LIBRARY(RBTREES): RED BLACK TREES 725

See also rb in/3 for backtracking over keys.

rb delete(+Tree, +Key, -Val, -NewTree)
Same as rb_delete(Tree, Key, NewTree), but also unifies Val with the value associ-
ated with Key in Tree.

rb del min(+Tree, -Key, -Val, -NewTree)
Delete the least element from the tree Tree, returning the key Key, the value Val associated with
the key and a new tree NewTree. Fails if Tree is empty.

rb del max(+Tree, -Key, -Val, -NewTree)
Delete the largest element from the tree Tree, returning the key Key, the value Val associated
with the key and a new tree NewTree. Fails if Tree is empty.

rb visit(+Tree, -Pairs) [det]

Pairs is an infix visit of tree Tree, where each element of Pairs is of the form Key-Value.

rb map(+Tree, :G, -NewTree) [semidet]

For all nodes Key in the tree Tree, if the value associated with key Key is Val0 in tree Tree, and
if call(G,Val0,ValF) holds, then the value associated with Key in NewTree is ValF. Fails
if call(G,Val0,ValF) is not satisfiable for all Val0. If G is non-deterministic, rb map/3
will backtrack over all possible values from call(G,Val0,ValF). You should not depend
on the order of tree traversal (currently: key order).

rb map(+T, :Goal) [semidet]

True if call(Goal, Value) is true for all nodes in T.

rb fold(:Goal, +Tree, +State0, -State)
Fold the given predicate over all the key-value pairs in Tree, starting with initial state State0
and returning the final state State. Pred is called as

call(Pred, Key-Value, State1, State2)

Determinism depends on Goal.

rb clone(+TreeIn, -TreeOut, -Pairs) [det]

‘Clone’ the red-back tree TreeIn into a new tree TreeOut with the same keys as the original but
with all values set to unbound values. Pairs is a list containing all new nodes as pairs K-V.

rb partial map(+Tree, +Keys, :G, -NewTree)
For all nodes Key in Keys, if the value associated with key Key is Val0 in tree Tree, and if
call(G,Val0,ValF) holds, then the value associated with Key in NewTree is ValF,
otherwise it is the value associated with the key in Tree. Fails if Key isn’t in Tree or if
call(G,Val0,ValF) is not satisfiable for all Val0 in Keys. Assumes keys are sorted and
not repeated (fails if this is not true).

rb keys(+Tree, -Keys) [det]

Keys is unified with an ordered list of all keys in the Red-Black tree Tree.

SWI-Prolog 9.3 Reference Manual

726 APPENDIX A. THE SWI-PROLOG LIBRARY

list to rbtree(+List, -Tree) [det]

Tree is the red-black tree corresponding to the mapping in List, which should be a list of
Key-Value pairs. List should not contain more than one entry for each distinct key, but this is
not validated by list to rbtree/2.

ord list to rbtree(+List, -Tree) [det]

Tree is the red-black tree corresponding to the mapping in list List, which should be a list of
Key-Value pairs. List should not contain more than one entry for each distinct key, but this
is not validated by ord list to rbtree/2. List is assumed to be sorted according to the
standard order of terms.

rb size(+Tree, -Size) [det]

Size is the number of elements in Tree.

is rbtree(@Term) [semidet]

True if Term is a valid Red-Black tree. Processes the entire tree, checking the coloring of
the nodes, the balance and the ordering of keys. Does not validate that keys are sufficiently
instantiated to ensure the tree remains valid if a key is further instantiated.

A.48 library(readutil): Read utilities
See also

- library(pure_input) allows for processing files with DCGs.
- library(lazy_lists) for creating lazy lists from input.

This library provides some commonly used reading predicates. As these predicates have proven
to be time-critical in some applications we moved them to C. For compatibility as well as to reduce
system dependency, we link the foreign code at runtime and fallback to the Prolog implementation if
the shared object cannot be found.

read line to codes(+Stream, -Line:codes) [det]

Read the next line of input from Stream. Unify content of the lines as a list of character codes
with Line after the line has been read. A line is ended by a newline character or end-of-file.
Unlike read line to codes/3, this predicate removes a trailing newline character.

read line to codes(+Stream, -Line, ?Tail) [det]

Difference-list version to read an input line to a list of character codes. Reading stops at the
newline or end-of-file character, but unlike read line to codes/2, the newline is retained
in the output. This predicate is especially useful for reading a block of lines up to some
delimiter. The following example reads an HTTP header ended by a blank line:

read_header_data(Stream, Header) :-
read_line_to_codes(Stream, Header, Tail),
read_header_data(Header, Stream, Tail).

read_header_data("\r\n", _, _) :- !.
read_header_data("\n", _, _) :- !.

SWI-Prolog 9.3 Reference Manual

A.49. LIBRARY(RECORD): ACCESS NAMED FIELDS IN A TERM 727

read_header_data("", _, _) :- !.
read_header_data(_, Stream, Tail) :-

read_line_to_codes(Stream, Tail, NewTail),
read_header_data(Tail, Stream, NewTail).

read line to string(+Stream, -String) [det]

Read the next line from Stream into String. String does not contain the line terminator. String
is unified with the atom end_of_file if the end of the file is reached.

See also read string/5 can be used to read lines with separated records without creating inter-
mediate strings.

read stream to codes(+Stream, -Codes) [det]

read stream to codes(+Stream, -Codes, ?Tail) [det]

Read input from Stream to a list of character codes. The version read stream to codes/3
creates a difference-list.

read file to codes(+Spec, -Codes, +Options) [det]

Read the file Spec into a list of Codes. Options is split into options for
absolute file name/3 and open/4. In addition, the following option is provided:

tail(?Tail)
Read the data into a difference list Codes\Tail.

See also phrase from file/3 and read file to string/3.

read file to string(+Spec, -String, +Options) [det]

Read the file Spec into a the string String. Options is split into options for
absolute file name/3 and open/4.

See also phrase from file/3 and read file to codes/3.

read file to terms(+Spec, -Terms, +Options) [det]

Read the file Spec into a list of terms. Options is split over absolute file name/3,
open/4 and read term/3. In addition, the following option is processed:

tail(?Tail)
If present, Terms\Tail forms a difference list.

Note that the output options of read term/3, such as variable_names or
subterm_positions will cause read file to terms/3 to fail if Spec contains multi-
ple terms because the values for the different terms will not unify.

A.49 library(record): Access named fields in a term

The library record provides named access to fields in a record represented as a compound term such
as point(X, Y). The Prolog world knows various approaches to solve this problem, unfortunately
with no consensus. The approach taken by this library is proposed by Richard O’Keefe on the SWI-
Prolog mailinglist.

SWI-Prolog 9.3 Reference Manual

728 APPENDIX A. THE SWI-PROLOG LIBRARY

The approach automates a technique commonly described in Prolog text-books, where access and
modification predicates are defined for the record type. Such predicates are subject to normal im-
port/export as well as analysis by cross-referencers. Given the simple nature of the access predicates,
an optimizing compiler can easily inline them for optimal performance.

A record is defined using the directive record/1. We introduce the library with a short example:

:- record point(x:integer=0, y:integer=0).

...,
default_point(Point),
point_x(Point, X),
set_x_of_point(10, Point, Point1),

make_point([y(20)], YPoint),

The principal functor and arity of the term used defines the name and arity of the compound used as
records. Each argument is described using a term of the format below.

⟨name⟩[:⟨type⟩][=⟨default⟩]

In this definition, ⟨name⟩ is an atom defining the name of the argument, ⟨type⟩ is an optional type
specification as defined by must be/2 from library error, and ⟨default⟩ is the default initial value.
The ⟨type⟩ defaults to any. If no default value is specified the default is an unbound variable.

A record declaration creates a set of predicates through term-expansion. We describe these predi-
cates below. In this description, ⟨constructor⟩ refers to the name of the record (‘point’ in the example
above) and ⟨name⟩ to the name of an argument (field).

• default ⟨constructor⟩(-Record)
Create a new record where all fields have their default values. This is the same as
make ⟨constructor⟩([], Record).

• make ⟨constructor⟩(+Fields, -Record)
Create a new record where specified fields have the specified values and remaining fields have
their default value. Each field is specified as a term ⟨name⟩(⟨value⟩). See example in the
introduction.

• make ⟨constructor⟩(+Fields, -Record, -RestFields)
Same as make ⟨constructor⟩/2, but named fields that do not appear in Record are returned in
RestFields. This predicate is motivated by option-list processing. See library option.

• ⟨constructor⟩ ⟨name⟩(Record, Value)
Unify Value with argument in Record named ⟨name⟩.2

• ⟨constructor⟩ data(?Name, +Record, ?Value)
True when Value is the value for the field named Name in Record. This predicate does not
perform type-checking.

2Note this is not called ‘get ’ as it performs unification and can perfectly well instantiate the argument.

SWI-Prolog 9.3 Reference Manual

A.50. LIBRARY(REGISTRY): MANIPULATING THE WINDOWS REGISTRY 729

• set ⟨name⟩ of ⟨constructor⟩(+Value, +OldRecord, -NewRecord)
Replace the value for ⟨name⟩ in OldRecord by Value and unify the result with NewRecord.

• set ⟨name⟩ of ⟨constructor⟩(+Value, !Record)
Destructively replace the argument ⟨name⟩ in Record by Value based on setarg/3. Use with
care.

• nb set ⟨name⟩ of ⟨constructor⟩(+Value, !Record)
As above, but using non-backtrackable assignment based on nb setarg/3. Use with extreme
care.

• set ⟨constructor⟩ fields(+Fields, +Record0, -Record)
Set multiple fields using the same syntax as make ⟨constructor⟩/2, but starting with Record0
rather than the default record.

• set ⟨constructor⟩ fields(+Fields, +Record0, -Record, -RestFields)
Similar to set ⟨constructor⟩ fields/4, but fields not defined by ⟨constructor⟩ are returned in
RestFields.

• set ⟨constructor⟩ field(+Field, +Record0, -Record)
Set a single field specified as a term ⟨name⟩(⟨value⟩).

record(+Spec)
The construct :- record Spec, ... is used to define access to named fields in a com-
pound. It is subject to term-expansion (see expand term/2) and cannot be called as a
predicate. See section A.49 for details.

A.50 library(registry): Manipulating the Windows registry

The registry is only available on the MS-Windows version of SWI-Prolog. It loads the foreign
extension plregtry.dll, providing the predicates described below. This library only makes the
most common operations on the registry available through the Prolog user. The underlying DLL
provides a more complete coverage of the Windows registry API. Please consult the sources in pl/
src/win32/foreign/plregtry.c for further details.

In all these predicates, Path refers to a ‘/’ separated path into the registry. This is not an atom
containing ‘/’-characters as used for filenames, but a term using the functor //2. Windows defines the
following roots for the registry: classes root, current user, local machine and users.

registry get key(+Path, -Value)
Get the principal (default) value associated to this key. Fails silently if the key does not exist.

registry get key(+Path, +Name, -Value)
Get a named value associated to this key.

registry set key(+Path, +Value)
Set the principal (default) value of this key. Creates (a path to) the key if it does not already
exist.

registry set key(+Path, +Name, +Value)
Associate a named value to this key. Creates (a path to) the key if it does not already exist.

SWI-Prolog 9.3 Reference Manual

730 APPENDIX A. THE SWI-PROLOG LIBRARY

registry delete key(+Path)
Delete the indicated key.

shell register file type(+Ext, +Type, +Name, +OpenAction)
Register a file-type. Ext is the extension to associate. Type is the type name, often something
like prolog.type. Name is the name visible in the Windows file-type browser. Finally,
OpenAction defines the action to execute when a file with this extension is opened in the
Windows explorer.

shell register dde(+Type, +Action, +Service, +Topic, +Command, +IfNotRunning)
Associate DDE actions to a type. Type is the same type as used for the 2nd argument of
shell register file type/4, Action is the action to perform, Service and Topic
specify the DDE topic to address, and Command is the command to execute on this topic.
Finally, IfNotRunning defines the command to execute if the required DDE server is not
present.

shell register prolog(+Ext)
Default registration of SWI-Prolog, which is invoked as part of the initialisation process on
Windows systems. As the source also includes the above predicates, it is given as an example:

shell_register_prolog(Ext) :-
current_prolog_flag(argv, [Me|_]),
atomic_list_concat([’"’, Me, ’" "%1"’], OpenCommand),
shell_register_file_type(

Ext, ’prolog.type’, ’Prolog Source’, OpenCommand),
shell_register_dde(

’prolog.type’, consult,
prolog, control, ’consult(’’%1’’)’, Me),

shell_register_dde(
’prolog.type’, edit,
prolog, control, ’edit(’’%1’’)’, Me).

A.51 library(rwlocks): Read/write locks

This library implements read/write locks on top of with mutex/2. Read/write locks are synchro-
nization objects that allow for multiple readers or a single writer to be active.

with rwlock(+LockId, :Goal, +ModeSpec)
with rwlock(+LockId, :Goal, +ModeSpec, +Options)

Run Goal, synchronized with LockId in ModeSpec. ModeSpec is one of read, write,
read(Priority) or write(Priority). The default read priority is 100 and the
default write priority is 200. These values prioritize writers over readers. Goal may start if

• If there is no goal waiting with higher priority and

– It is a read goal and no write goal is running or

SWI-Prolog 9.3 Reference Manual

A.52. LIBRARY(SETTINGS): SETTING MANAGEMENT 731

– It is a write goal and no other goal is running.

If Goal may not start immediately the thread waits using thread wait/2. The Options
timeout and deadline are passed to thread wait/2. If the time limit is exceeded an
exception is raised.

Read/write locks are widely critized for their poor behaviour on several workloads. They per-
form well in scenarios where read operations take long, and write operations are relatively fast
and occur only occasionally. Transactions, as implemented by transaction/1,2 are often
a better alternative.

This predicate uses a normal mutex and a flag with the same name. See with mutex/2 and
flag/3. Neither the mutex nor the flag should be used directly.

throws time_limit_exceeded(rwlock) if a timeout or deadline is specified and this is ex-
ceeded.

bug The current implementation is written in Prolog and comes with significant overhead. It is in-
tended to synchronize slow operations.

A.52 library(settings): Setting management
author Jan Wielemaker
See also library(config) distributed with XPCE provides an alternative aimed at graphical applica-

tions.

This library allows management of configuration settings for Prolog applications. Applications
define settings in one or multiple files using the directive setting/4 as illustrated below:

:- use_module(library(settings)).

:- setting(version, atom, ’1.0’, ’Current version’).
:- setting(timeout, number, 20, ’Timeout in seconds’).

The directive is subject to term expansion/2, which guarantees proper synchronisation of
the database if source-files are reloaded. This implies it is not possible to call setting/4 as a
predicate.

Settings are local to a module. This implies they are defined in a two-level namespace. Manag-
ing settings per module greatly simplifies assembling large applications from multiple modules that
configuration through settings. This settings management library ensures proper access, loading and
saving of settings.

setting(:Name, +Type, +Default, +Comment) [det]

Define a setting. Name denotes the name of the setting, Type its type. Default is the value
before it is modified. Default can refer to environment variables and can use arithmetic
expressions as defined by eval default/4.

If a second declaration for a setting is encountered, it is ignored if Type and Default are the
same. Otherwise a permission error is raised.

SWI-Prolog 9.3 Reference Manual

732 APPENDIX A. THE SWI-PROLOG LIBRARY

Arguments
Name Name of the setting (an atom)
Type Type for setting. One of any or a type defined by must be/2.
Default Default value for the setting.
Comment Atom containing a (short) descriptive note.

setting(:Name, ?Value) [nondet]

True when Name is a currently defined setting with Value. Note that
setting(Name, Value) only enumerates the settings of the current module. All
settings can be enumerated using setting(Module:Name, Value). This predicate is
det if Name is ground.

Errors existence_error(setting, Name)

env(+Name:atom, -Value:number) [det]

env(+Name:atom, +Default:number, -Value:number) [det]

Evaluate environment variables on behalf of arithmetic expressions.

set setting(:Name, +Value) [det]

Change a setting. Performs existence and type-checking for the setting. If the effective value
of the setting is changed it broadcasts the event below.

settings(changed(Module:Name, Old, New))

Note that modified settings are not automatically persistent. The application should call
save settings/0 to persist the changes.

Errors
- existence_error(setting, Name)
- type_error(Type, Value)

restore setting(:Name) [det]

Restore the value of setting Name to its default. Broadcast a change like set setting/2 if
the current value is not the default.

set setting default(:Name, +Default) [det]

Change the default for a setting. The effect is the same as set setting/2, but the new
value is considered the default when saving and restoring a setting. It is intended to change
application defaults in a particular context.

load settings(File) [det]

load settings(File, +Options) [det]

Load local settings from File. Succeeds if File does not exist, setting the default save-file to
File. Options are:

undefined(+Action)
Define how to handle settings that are not defined. When error, an error is printed and
the setting is ignored. when load, the setting is loaded anyway, waiting for a definition.

SWI-Prolog 9.3 Reference Manual

A.53. LIBRARY(STATISTICS): GET INFORMATION ABOUT RESOURCE USAGE 733

If possibly changed settings need to be persistent, the application must
call save settings/0 as part of its shutdown. In simple cases calling
at_halt(save_settings) is sufficient.

save settings [semidet]

save settings(+File) [semidet]

Save modified settings to File. Fails silently if the settings file cannot be written. The
save settings/0 only attempts to save the settings file if some setting was modified using
set setting/2.

Errors context_error(settings, no_default_file) for save settings/0 if no
default location is known.

current setting(?Setting) [nondet]

True if Setting is a currently defined setting

setting property(+Setting, +Property) [det]

setting property(?Setting, ?Property) [nondet]

Query currently defined settings. Property is one of

comment(-Atom)

type(-Type)
Type of the setting.

default(-Default)
Default value. If this is an expression, it is evaluated.

source(-File:-Line)
Location where the setting is defined.

list settings [det]

list settings(+Module) [det]

List settings to current_output. The second form only lists settings on the matching
module.

To be done Compute the required column widths

convert setting text(+Type, +Text, -Value)
Converts from textual form to Prolog Value. Used to convert values obtained from the environ-
ment. Public to provide support in user-interfaces to this library.

Errors type_error(Type, Value)

A.53 library(statistics): Get information about resource usage

This library provides predicates to obtain information about resource usage by your program. The
predicates of this library are for human use at the toplevel: information is printed. All predicates
obtain their information using public low-level primitives. These primitives can be use to obtain
selective statistics during execution.

SWI-Prolog 9.3 Reference Manual

734 APPENDIX A. THE SWI-PROLOG LIBRARY

statistics [det]

Print information about resource usage using print message/2.

See also All statistics printed are obtained through statistics/2.

statistics(-Stats:dict) [det]

Stats is a dict representing the same information as statistics/0. This convience function
is primarily intended to pass statistical information to e.g., a web client. Time critical code that
wishes to collect statistics typically only need a small subset and should use statistics/2
to obtain exactly the data they need.

thread statistics(?Thread, -Stats:dict) [nondet]

Obtain statistical information about a single thread. Fails silently of the Thread is no longer
alive.

Arguments
Stats is a dict containing status, time and stack-size information about

Thread.

time(:Goal) [nondet]

Execute Goal, reporting statistics to the user. If Goal succeeds non-deterministically, retrying
reports the statistics for providing the next answer.

Note that is no portable way to get thread-specific CPU time. SWI-Prolog has implementations
for Linux, Windows and MacOS. The automatic detection may work on some other operating
systems.

See also
- statistics/2 for obtaining statistics in your program and understanding the reported val-
ues.
- call time/2, call time/3 to obtain the timing in a dict.

bug Inference statistics are often a few off.

call time(:Goal, -Time:dict)
call time(:Goal, -Time:dict, -Result)

Call Goal as call/1, unifying Time with a dict that provides information on the resource
usage. If Goal succeeds with a choice point, backtracking reports the time used to find the next
answer, failure or exception. If Goal succeeds deterministically no choice point is left open.
Currently Time contains the keys below. Future versions may provide additional keys.

• wall:Seconds
• cpu:Seconds
• inferences:Count

call time/2 is defined as below. Note that for call time/2 the time is only available if
Goal succeeds.

call_time(Goal, Time) :-
call_time(Goal, Time, Result),
call(Result).

SWI-Prolog 9.3 Reference Manual

A.54. LIBRARY(STRINGS): STRING UTILITIES 735

Arguments
Result is one of true, false or throw(E), depending on whether or

not the goal succeeded or raised an exception. Note that Result
may be called using call/1 to propagate the failure or exception.

A.54 library(strings): String utilities
See also

- format/3 can format to a string as well. The library(lynx/format) provides primitive to
wrap long strings.
- The core system provides many additional string processing predicates.

To be done There are probably many other high level string predicates that belong in this library. For
example, predicates similar to the functions in https://docs.python.org/3/library/
textwrap.html

This module provides string handling utilities, currently notably for dealing with multi-line strings
and interpolation. The library provides a couple of primitives as well definitions for the string quasi
quotation syntax. The latter allows for constructing both single line and multi-line long strings based
on template interpolation. Below is a simple example using the quasi quotation syntax.

test(To) :-
write({|string(To)||

| Dear {To},
|
| I’m happy to announce a string interpolation quasi quoter.
|}.

Warning
The general purpose string interpolation implemented by this library should not be used to create

strings for a formal language such as HTML, JavaScript, SQL, etc. because the result will be subject to
injection attacks, providing a serious security risc. The core idea of quasi quotation is to know about
the target language and interpolate Prolog data into the template while respecting the syntax of the
target language, notable to escape certain characters where needed. See also library(http/
html_write) and library(http/js_write) which define quasi quotation rules for HTML
and JavaScript.

string(+Content, +Args, +Binding, -DOM)
Implements the quasi quotation syntax string. If the first character of the content is a newline
(i.e., there is a newline immediately after the || token) this first uses dedent lines/3
to the remove common white space prefix from the lines. This is called with the option
chars("\s\t|"), i.e., also removing | characters and tab(8).

If the quasi quotation syntax carries arguments (e.g., string(To)), the string is compiled
into a function that produces the result of interpolating the arguments into the template. See
user functions on dict objects. If there are no arguments, the result is simply the final string.

See also
- interpolate string/4 for the interpolation syntax.
- Section for examples and discussion.

SWI-Prolog 9.3 Reference Manual

https://docs.python.org/3/library/textwrap.html
https://docs.python.org/3/library/textwrap.html

736 APPENDIX A. THE SWI-PROLOG LIBRARY

To be done Specify tab width and allow for {@Goal} templates.

interpolate string(:In, -Out, +Map, +Options)
Establish a string from a template by replacing patterns. Supported patterns are:

{Name}
If Map contains Name=Value, insert Value using write/1. If Name does not appear
in Map, raise an existence error. Name must satisfy the rules for a Prolog variable.

{Name,Default}
As above, but if Name does not appear in Map, use Value

{@(Goal)}
Insert the output (to current_output) of Goal here. For safety reasons only accepted
if Options contains goals(true)

string lines(?String, ?Lines) [det]

True when String represents Lines. This follows the normal text convention that a line is
defined as a possible empty string followed by a newline character (”\n”). E.g.

?- string_lines("a\nb\n", L).
L = ["a", "b"].
?- string_lines(S, ["a", "b"]).
S = "a\nb\n".

This predicate is a true relation if both arguments are in canonical form, i.e. all text is rep-
resented as strings and the first argument ends with a newline. The implementation tolerates
non-canonical input: other types than strings are accepted and String does not need to end with
a newline.

See also split string/4. Using split_string(String, "\n", "", Lines) on a
string that ends in a newline adds an additional empty string compared to string lines/2.

dedent lines(+In, -Out, +Options)
Remove shared indentation for all lines in a string. Lines are separated by ”\n” – conversion
to and from external forms (such as ”\r\n”) are typically done by the I/O predicates. A final
”\n” is preserved.

Options:

tab(N)
Assume tabs at columns of with N. When omitted, tabs are taken literally and only exact
matches are removed.

chars(CodesOrString)
Characters to remove. This can notably be used to remove additional characters such as *
or ‘|‘. Default is " \t".

indent lines(+Prefix, +In, -Out) [det]

Add Prefix to the beginning of lines in In. Lines are separated by ”\n” – conversion to and
from external forms (such as ”\r\n”) are typically done by the I/O predicates. Lines that
consist entirely of whitespace are left as-is.

SWI-Prolog 9.3 Reference Manual

A.55. LIBRARY(SIMPLEX): SOLVE LINEAR PROGRAMMING PROBLEMS 737

indent lines(:Filter, +Prefix, +In, -Out) [det]

Similar to indent lines/3, but only adds Prefix to lines for which
call(Filter, Line) succeeds.

A.55 library(simplex): Solve linear programming problems
author Markus Triska

A.55.1 Introduction

A linear programming problem or simply linear program (LP) consists of:

• a set of linear constraints

• a set of variables

• a linear objective function.

The goal is to assign values to the variables so as to maximize (or minimize) the value of the
objective function while satisfying all constraints.

Many optimization problems can be modeled in this way. As one basic example, consider a
knapsack with fixed capacity C, and a number of items with sizes s(i) and values v(i). The goal
is to put as many items as possible in the knapsack (not exceeding its capacity) while maximizing the
sum of their values.

As another example, suppose you are given a set of coins with certain values, and you are to find
the minimum number of coins such that their values sum up to a fixed amount. Instances of these
problems are solved below.

Solving an LP or integer linear program (ILP) with this library typically comprises 4 stages:

1. an initial state is generated with gen state/1

2. all relevant constraints are added with constraint/3

3. maximize/3 or minimize/3 are used to obtain a solved state that represents an optimum
solution

4. variable value/3 and objective/2 are used on the solved state to obtain variable
values and the objective function at the optimum.

The most frequently used predicates are thus:

gen state(-State)
Generates an initial state corresponding to an empty linear program.

constraint(+Constraint, +S0, -S)
Adds a linear or integrality constraint to the linear program corresponding to state S0. A linear
constraint is of the form Left Op C, where Left is a list of Coefficient*Variable
terms (variables in the context of linear programs can be atoms or compound terms) and
C is a non-negative numeric constant. The list represents the sum of its elements. Op can
be =, =< or >=. The coefficient 1 can be omitted. An integrality constraint is of the form
integral(Variable) and constrains Variable to an integral value.

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at

738 APPENDIX A. THE SWI-PROLOG LIBRARY

maximize(+Objective, +S0, -S)
Maximizes the objective function, stated as a list of Coefficient*Variable terms that
represents the sum of its elements, with respect to the linear program corresponding to state S0.
\arg{S} is unified with an internal representation of the solved instance.

minimize(+Objective, +S0, -S)
Analogous to maximize/3.

variable value(+State, +Variable, -Value)
Value is unified with the value obtained for Variable. State must correspond to a solved instance.

objective(+State, -Objective)
Unifies Objective with the result of the objective function at the obtained extremum. State must
correspond to a solved instance.

All numeric quantities are converted to rationals via rationalize/1, and rational arithmetic
is used throughout solving linear programs. In the current implementation, all variables are implicitly
constrained to be non-negative. This may change in future versions, and non-negativity constraints
should therefore be stated explicitly.

A.55.2 Delayed column generation

Delayed column generation means that more constraint columns are added to an existing LP. The
following predicates are frequently used when this method is applied:

constraint(+Name, +Constraint, +S0, -S)
Like constraint/3, and attaches the name Name (an atom or compound term) to the new
constraint.

shadow price(+State, +Name, -Value)
Unifies Value with the shadow price corresponding to the linear constraint whose name is
Name. State must correspond to a solved instance.

constraint add(+Name, +Left, +S0, -S)
Left is a list of Coefficient*Variable terms. The terms are added to the left-hand side
of the constraint named Name. S is unified with the resulting state.

An example application of delayed column generation to solve a bin packing task is available
from: metalevel.at/various/colgen/

A.55.3 Solving LPs with special structure

The following predicates allow you to solve specific kinds of LPs more efficiently:

transportation(+Supplies, +Demands, +Costs, -Transport)
Solves a transportation problem. Supplies and Demands must be lists of non-negative integers.
Their respective sums must be equal. Costs is a list of lists representing the cost matrix, where
an entry (i,j) denotes the integer cost of transporting one unit from i to j. A transportation plan
having minimum cost is computed and unified with Transport in the form of a list of lists that
represents the transportation matrix, where element (i,j) denotes how many units to ship from i
to j.

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at/various/colgen/

A.55. LIBRARY(SIMPLEX): SOLVE LINEAR PROGRAMMING PROBLEMS 739

assignment(+Cost, -Assignment)
Solves a linear assignment problem. Cost is a list of lists representing the quadratic cost matrix,
where element (i,j) denotes the integer cost of assigning entity i to entity j. An assignment
with minimal cost is computed and unified with Assignment as a list of lists, representing an
adjacency matrix.

A.55.4 Examples

We include a few examples for solving LPs with this library.

Example 1

This is the ”radiation therapy” example, taken from Introduction to Operations Research by Hillier
and Lieberman.

Prolog DCG notation is used to implicitly thread the state through posting the constraints:

:- use_module(library(simplex)).

radiation(S) :-
gen_state(S0),
post_constraints(S0, S1),
minimize([0.4*x1, 0.5*x2], S1, S).

post_constraints -->
constraint([0.3*x1, 0.1*x2] =< 2.7),
constraint([0.5*x1, 0.5*x2] = 6),
constraint([0.6*x1, 0.4*x2] >= 6),
constraint([x1] >= 0),
constraint([x2] >= 0).

An example query:

?- radiation(S), variable_value(S, x1, Val1),
variable_value(S, x2, Val2).

Val1 = 15 rdiv 2,
Val2 = 9 rdiv 2.

Example 2

Here is an instance of the knapsack problem described above, where C = 8, and we have two types
of items: One item with value 7 and size 6, and 2 items each having size 4 and value 4. We introduce
two variables, x(1) and x(2) that denote how many items to take of each type.

:- use_module(library(simplex)).

knapsack(S) :-
knapsack_constraints(S0),

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at/prolog/dcg

740 APPENDIX A. THE SWI-PROLOG LIBRARY

maximize([7*x(1), 4*x(2)], S0, S).

knapsack_constraints(S) :-
gen_state(S0),
constraint([6*x(1), 4*x(2)] =< 8, S0, S1),
constraint([x(1)] =< 1, S1, S2),
constraint([x(2)] =< 2, S2, S).

An example query yields:

?- knapsack(S), variable_value(S, x(1), X1),
variable_value(S, x(2), X2).

X1 = 1
X2 = 1 rdiv 2.

That is, we are to take the one item of the first type, and half of one of the items of the other type
to maximize the total value of items in the knapsack.

If items can not be split, integrality constraints have to be imposed:

knapsack_integral(S) :-
knapsack_constraints(S0),
constraint(integral(x(1)), S0, S1),
constraint(integral(x(2)), S1, S2),
maximize([7*x(1), 4*x(2)], S2, S).

Now the result is different:

?- knapsack_integral(S), variable_value(S, x(1), X1),
variable_value(S, x(2), X2).

X1 = 0
X2 = 2

That is, we are to take only the two items of the second type. Notice in particular that always
choosing the remaining item with best performance (ratio of value to size) that still fits in the knapsack
does not necessarily yield an optimal solution in the presence of integrality constraints.

Example 3

We are given:

• 3 coins each worth 1 unit

• 20 coins each worth 5 units and

• 10 coins each worth 20 units.

SWI-Prolog 9.3 Reference Manual

A.56. LIBRARY(SOLUTION SEQUENCES): MODIFY SOLUTION SEQUENCES 741

The task is to find a minimal number of these coins that amount to 111 units in total. We introduce
variables c(1), c(5) and c(20) denoting how many coins to take of the respective type:

:- use_module(library(simplex)).

coins(S) :-
gen_state(S0),
coins(S0, S).

coins -->
constraint([c(1), 5*c(5), 20*c(20)] = 111),
constraint([c(1)] =< 3),
constraint([c(5)] =< 20),
constraint([c(20)] =< 10),
constraint([c(1)] >= 0),
constraint([c(5)] >= 0),
constraint([c(20)] >= 0),
constraint(integral(c(1))),
constraint(integral(c(5))),
constraint(integral(c(20))),
minimize([c(1), c(5), c(20)]).

An example query:

?- coins(S), variable_value(S, c(1), C1),
variable_value(S, c(5), C5),
variable_value(S, c(20), C20).

C1 = 1,
C5 = 2,
C20 = 5.

A.56 library(solution sequences): Modify solution sequences
See also

- all solution predicates findall/3, bagof/3 and setof/3.
- library(aggregate)

The meta predicates of this library modify the sequence of solutions of a goal. The modifications
and the predicate names are based on the classical database operations DISTINCT, LIMIT, OFFSET,
ORDER BY and GROUP BY.

These predicates were introduced in the context of the SWISH Prolog browser-based shell, which
can represent the solutions to a predicate as a table. Notably wrapping a goal in distinct/1 avoids
duplicates in the result table and using order by/2 produces a nicely ordered table.

However, the predicates from this library can also be used to stay longer within the clean paradigm
where non-deterministic predicates are composed from simpler non-deterministic predicates by means

SWI-Prolog 9.3 Reference Manual

http://swish.swi-prolog.org

742 APPENDIX A. THE SWI-PROLOG LIBRARY

of conjunction and disjunction. While evaluating a conjunction, we might want to eliminate duplicates
of the first part of the conjunction. Below we give both the classical solution for solving variations of
(a(X), b(X)) and the ones using this library side-by-side.

• Avoid duplicates of earlier steps

setof(X, a(X), Xs), distinct(a(X)),
member(X, Xs), b(X)
b(X).

Note that the distinct/1 based solution returns the first result of distinct(a(X)) im-
mediately after a/1 produces a result, while the setof/3 based solution will first compute
all results of a/1.

• Only try b(X) only for the top-10 a(X)

setof(X, a(X), Xs), limit(10, order_by([desc(X)], a(X))),
reverse(Xs, Desc), b(X)
first_max_n(10, Desc, Limit),
member(X, Limit),
b(X)

Here we see power of composing primitives from this library and staying within the paradigm
of pure non-deterministic relational predicates.

distinct(:Goal)
distinct(?Witness, :Goal)

True if Goal is true and no previous solution of Goal bound Witness to the same value. As
previous answers need to be copied, equivalence testing is based on term variance (=@=/2).
The variant distinct/1 is equivalent to distinct(Goal,Goal).

If the answers are ground terms, the predicate behaves as the code below, but answers are
returned as soon as they become available rather than first computing the complete answer set.

distinct(Goal) :-
findall(Goal, Goal, List),
list_to_set(List, Set),
member(Goal, Set).

reduced(:Goal)
reduced(?Witness, :Goal, +Options)

Similar to distinct/1, but does not guarantee unique results in return for using a limited
amount of memory. Both distinct/1 and reduced/1 create a table that block duplicate
results. For distinct/1, this table may get arbitrary large. In contrast, reduced/1
discards the table and starts a new one of the table size exceeds a specified limit. This filter

SWI-Prolog 9.3 Reference Manual

A.57. LIBRARY(TABLES): XSB INTERFACE TO TABLES 743

is useful for reducing the number of answers when processing large or infinite long tail
distributions. Options:

size limit(+Integer)
Max number of elements kept in the table. Default is 10,000.

limit(+Count, :Goal)
Limit the number of solutions. True if Goal is true, returning at most Count solutions. Solutions
are returned as soon as they become available.

Arguments
Count is either infinite, making this predicate equivalent to call/1

or an integer. If Count < 1 this predicate fails immediately.

offset(+Count, :Goal)
Ignore the first Count solutions. True if Goal is true and produces more than Count solutions.
This predicate computes and ignores the first Count solutions.

call nth(:Goal, ?Nth)
True when Goal succeeded for the Nth time. If Nth is bound on entry, the predicate succeeds
deterministically if there are at least Nth solutions for Goal.

order by(+Spec, :Goal)
Order solutions according to Spec. Spec is a list of terms, where each element is one of. The
ordering of solutions of Goal that only differ in variables that are not shared with Spec is not
changed.

asc(Term)
Order solution according to ascending Term

desc(Term)
Order solution according to descending Term

This predicate is based on findall/3 and (thus) variables in answers are copied.

group by(+By, +Template, :Goal, -Bag) [nondet]

Group bindings of Template that have the same value for By. This predicate is almost the same
as bagof/3, but instead of specifying the existential variables we specify the free variables.
It is provided for consistency and complete coverage of the common database vocabulary.

A.57 library(tables): XSB interface to tables

This module provides an XSB compatible library to access tables as created by tabling (see
table/1). The aim of this library is first of all compatibility with XSB. This library contains some
old and internal XSB predicates that are marked deprecated.

t not(:Goal)
Tabled negation.

SWI-Prolog 9.3 Reference Manual

744 APPENDIX A. THE SWI-PROLOG LIBRARY

deprecated This is a synonym to tnot/1.

tfindall(+Template, :Goal, -Answers)
This predicate emerged in XSB in an attempt to provide a safer alternative to findall/3.
This doesn’t really work in XSB and the SWI-Prolog emulation is a simple call to findall/3.
Note that Goal may not be a variant of an incomplete table.

deprecated Use findall/3

set pil on
set pil off

Dummy predicates for XSB compatibility.

deprecated These predicates have no effect.

get call(:CallTerm, -Trie, -Return) [semidet]

True when Trie is an answer trie for a variant of CallTerm. Return is a term ret/N with N
variables that share with variables in CallTerm. The Trie contains zero or more instances of the
Return term. See also get calls/3.

get calls(:CallTerm, -Trie, -Return) [nondet]

True when Trie is an answer trie for a variant that unifies with CallTerm and Skeleton is the
answer skeleton. See get call/3 for details.

get returns(+ATrie, -Return) [nondet]

True when Return is an answer template for the AnswerTrie.

Arguments

Return is a term ret(...). See get calls/3.

get returns(+AnswerTrie, -Return, -NodeID) [nondet]

True when Return is an answer template for the AnswerTrie and the answer is represented by
the trie node NodeID.

Arguments

Return is a term ret(...). See get calls/3.

get returns and tvs(+AnswerTrie, -Return, -TruthValue) [nondet]

Identical to get returns/2, but also obtains the truth value of a given answer, setting
TruthValue to t if the answer is unconditional and to u if it is conditional. If a conditional
answer has multiple delay lists, this predicate will succeed only once, so that using this
predicate may be more efficient than get residual/2 (although less informative)

get returns and dls(+AnswerTrie, -Return, :DelayLists) [nondet]

True when Return appears in AnswerTrie with the given DelayLists. DelayLists is a list of lists,
where the inner lists expresses a conjunctive condition and and outer list a disjunction.

get residual(:CallTerm, -DelayList) [nondet]

True if CallTerm appears in a table and has DelayList. SWI-Prolog’s representation for a delay
is a body term, more specifically a disjunction of conjunctions. The XSB representation is
non-deterministic and uses a list to represent the conjunction.

SWI-Prolog 9.3 Reference Manual

A.58. LIBRARY(TERMS): TERM MANIPULATION 745

The delay condition is a disjunction of conjunctions and is represented as such in the native
SWI-Prolog interface as a nested term of ;/2 and ,/2, using true if the answer is unconditional.
This XSB predicate returns the associated conjunctions non-deterministically as a list.

See also call residual program/2 from library(wfs).

get returns for call(:CallTerm, -AnswerTerm) [nondet]

True if AnswerTerm appears in the tables for the variant CallTerm.

abolish table pred(:CallTermOrPI)
Invalidates all tabled subgoals for the predicate denoted by the predicate or term indicator Pred.

To be done If Pred has a subgoal that contains a conditional answer, the default behavior will be
to transitively abolish any tabled predicates with subgoals having answers that depend on any
conditional answers of S.

abolish table call(+Head) [det]

abolish table call(+Head, +Options) [det]

Same as abolish table subgoals/1. See also abolish table pred/1.

deprecated Use abolish table subgoals/[1,2].

abolish table subgoals(:Head, +Options)
Behaves as abolish table subgoals/1, but allows the default table_gc_action
to be over-ridden with a flag, which can be either abolish_tables_transitively or
abolish_tables_singly.

Compatibility Options is compatible with XSB, but does not follow the ISO option handling conven-
tions.

A.58 library(terms): Term manipulation
Compatibility YAP, SICStus, Quintus. Not all versions of this library define exactly the same set of predi-

cates, but defined predicates are compatible.

Compatibility library for term manipulation predicates. Most predicates in this library are pro-
vided as SWI-Prolog built-ins.

term size(@Term, -Size) [det]

True if Size is the size in cells occupied by Term on the global (term) stack. A cell is 4 bytes
on 32-bit machines and 8 bytes on 64-bit machines. The calculation does take sharing into
account. For example:

?- A = a(1,2,3), term_size(A,S).
S = 4.
?- A = a(1,2,3), term_size(a(A,A),S).
S = 7.
?- term_size(a(a(1,2,3), a(1,2,3)), S).
S = 11.

SWI-Prolog 9.3 Reference Manual

746 APPENDIX A. THE SWI-PROLOG LIBRARY

Note that small objects such as atoms and small integers have a size 0. Space is allocated for
floats, large integers, strings and compound terms.

variant(@Term1, @Term2) [semidet]

Same as SWI-Prolog Term1 =@= Term2.

subsumes chk(@Generic, @Specific)
True if Generic can be made equivalent to Specific without changing Specific.

deprecated Replace by subsumes term/2.

subsumes(+Generic, @Specific)
True if Generic is unified to Specific without changing Specific.

deprecated It turns out that calls to this predicate almost always should have used
subsumes term/2. Also the name is misleading. In case this is really needed, one is ad-
viced to follow subsumes term/2 with an explicit unification.

term subsumer(+Special1, +Special2, -General) [det]

General is the most specific term that is a generalisation of Special1 and Special2. The imple-
mentation can handle cyclic terms.

author Inspired by LOGIC.PRO by Stephen Muggleton
Compatibility SICStus

term factorized(+Term, -Skeleton, -Substiution)
Is true when Skeleton is Term where all subterms that appear multiple times are replaced by a
variable and Substitution is a list of Var=Value that provides the subterm at the location Var.
I.e., After unifying all substitutions in Substiutions, Term == Skeleton. Term may be cyclic.
For example:

?- X = a(X), term_factorized(b(X,X), Y, S).
Y = b(_G255, _G255),
S = [_G255=a(_G255)].

mapargs(:Goal, ?Term1, ?Term2)
Term1 and Term2 have the same functor (name/arity) and for each matching pair of arguments
call(Goal, A1, A2) is true.

mapsubterms(:Goal, +Term1, -Term2) [det]

mapsubterms var(:Goal, +Term1, -Term2) [det]

Recursively map sub terms of Term1 into subterms of Term2 for every pair for which
call(Goal, ST1, ST2) succeeds. Procedurably, the mapping for each (sub) term pair
T1/T2 is defined as:

• If T1 is a variable

– mapsubterms/3 unifies T2 with T1.
– mapsubterms var/3 treats variables as other terms.

SWI-Prolog 9.3 Reference Manual

A.59. LIBRARY(THREAD): HIGH LEVEL THREAD PRIMITIVES 747

• If call(Goal, T1, T2) succeeds we are done. Note that the mapping does not con-
tinue in T2. If this is desired, Goal must call mapsubterms/3 explicitly as part of its
conversion.

• If T1 is a dict, map all values, i.e., the tag and keys are left untouched.

• If T1 is a list, map all elements, i.e., the list structure is left untouched.

• If T1 is a compound, use same functor/3 to instantiate T2 and recurse over the term
arguments left to right.

• Otherwise T2 is unified with T1.

Both predicates are implemented using foldsubterms/5.

foldsubterms(:Goal3, +Term1, +State0, -State) [semidet]

foldsubterms(:Goal4, +Term1, ?Term2, +State0, -State) [semidet]

The predicate foldsubterms/5 calls call(Goal4, SubTerm1, SubTerm2, StateIn, StateOut)
for each subterm, including variables, in Term1. If this call fails, StateIn and StateOut are the
same. This predicate may be used to map subterms in a term while collecting state about the
mapped subterms. The foldsubterms/4 variant does not map the term.

same functor(?Term1, ?Term2) [semidet]

same functor(?Term1, ?Term2, -Arity) [semidet]

same functor(?Term1, ?Term2, ?Name, ?Arity) [semidet]

True when Term1 and Term2 are terms that have the same functor (Name/Arity). The arguments
must be sufficiently instantiated, which means either Term1 or Term2 must be bound or both
Name and Arity must be bound.

If Arity is 0, Term1 and Term2 are unified with Name for compatibility.

Compatibility SICStus

A.59 library(thread): High level thread primitives
author Jan Wielemaker

This module defines simple to use predicates for running goals concurrently. Where the core
multi-threaded API is targeted at communicating long-living threads, the predicates here are defined
to run goals concurrently without having to deal with thread creation and maintenance explicitely.

Note that these predicates run goals concurrently and therefore these goals need to be thread-safe.
As the predicates in this module also abort branches of the computation that are no longer needed,
predicates that have side-effect must act properly. In a nutshell, this has the following consequences:

• Nice clean Prolog code without side-effects (but with cut) works fine.

• Side-effects are bad news. If you really need assert to store intermediate results, use the
thread local/1 declaration. This also guarantees cleanup of left-over clauses if the thread
is cancelled. For other side-effects, make sure to use call cleanup/2 to undo them should
the thread be cancelled.

SWI-Prolog 9.3 Reference Manual

748 APPENDIX A. THE SWI-PROLOG LIBRARY

• Global variables are ok as they are thread-local and destroyed on thread cancellation. Note
however that global variables in the calling thread are not available in the threads that are
created. You have to pass the value as an argument and initialise the variable in the new thread.

• Thread-cancellation uses thread signal/2. Using this code with long-blocking foreign
predicates may result in long delays, even if another thread asks for cancellation.

concurrent(+N, :Goals, +Options) [semidet]

Run Goals in parallel using N threads. This call blocks until all work has been done. The
Goals must be independent. They should not communicate using shared variables or any form
of global data. All Goals must be thread-safe.

Execution succeeds if all goals have succeeded. If one goal fails or throws an exception, other
workers are abandoned as soon as possible and the entire computation fails or re-throws the
exception. Note that if multiple goals fail or raise an error it is not defined which error or failure
is reported.

On successful completion, variable bindings are returned. Note however that threads have in-
dependent stacks and therefore the goal is copied to the worker thread and the result is copied
back to the caller of concurrent/3.

Choosing the right number of threads is not always obvious. Here are some scenarios:

• If the goals are CPU intensive and normally all succeeding, typically the number of CPUs
is the optimal number of threads. Less does not use all CPUs, more wastes time in context
switches and also uses more memory.

• If the tasks are I/O bound the number of threads is typically higher than the number of
CPUs.

• If one or more of the goals may fail or produce an error, using a higher number of threads
may find this earlier.

Arguments
N Number of worker-threads to create. Using 1, no threads are cre-

ated. If N is larger than the number of Goals we create exactly as
many threads as there are Goals.

Goals List of callable terms.
Options Passed to thread create/3 for creating the workers. Only op-

tions changing the stack-sizes can be used. In particular, do not
pass the detached or alias options.

See also In many cases, concurrent maplist/2 and friends is easier to program and is tractable
to program analysis.

concurrent forall(:Generate, :Action) [semidet]

concurrent forall(:Generate, :Action, +Options) [semidet]

True when Action is true for all solutions of Generate. This has the same semantics as
forall/2, but the Action goals are executed in multiple threads. Notable a failing Action or
a Action throwing an exception signals the calling thread which in turn aborts all workers and
fails or re-throws the generated error. Options:

SWI-Prolog 9.3 Reference Manual

A.59. LIBRARY(THREAD): HIGH LEVEL THREAD PRIMITIVES 749

threads(+Count)
Number of threads to use. The default is determined by the Prolog flag cpu count.

To be done Ideally we would grow the set of workers dynamically, similar to dynamic scheduling of
HTTP worker threads. This would avoid creating threads that are never used if Generate is too
slow or does not provide enough answers and would further raise the number of threads if Action
is I/O bound rather than CPU bound.

concurrent and(:Generator, :Test)
concurrent and(:Generator, :Test, +Options)

Concurrent version of (Generator,Test). This predicate creates a thread providing
solutions for Generator that are handed to a pool of threads that run Test for the different
instantiations provided by Generator concurrently. The predicate is logically equivalent to a
simple conjunction except for two aspects: (1) terms are copied from Generator to the test Test
threads while answers are copied back to the calling thread and (2) answers may be produced
out of order.

If the evaluation of some Test raises an exception, concurrent and/2,3 is terminated
with this exception. If the caller commits after a given answer or raises an exception while
concurrent and/2,3 is active with pending choice points, all involved resources are re-
claimed.

Options:

threads(+Count)
Create a worker pool holding Count threads. The default is the Prolog flag cpu count.

This predicate was proposed by Jan Burse as balance((Generator,Test)).

concurrent maplist(:Goal, +List) [semidet]

concurrent maplist(:Goal, +List1, +List2) [semidet]

concurrent maplist(:Goal, +List1, +List2, +List3) [semidet]

Concurrent version of maplist/2. This predicate uses concurrent/3, using multiple
worker threads. The number of threads is the minimum of the list length and the number of
cores available. The number of cores is determined using the prolog flag cpu_count. If this
flag is absent or 1 or List has less than two elements, this predicate calls the corresponding
maplist/N version using a wrapper based on once/1. Note that all goals are executed as if
wrapped in once/1 and therefore these predicates are semidet.

Note that the the overhead of this predicate is considerable and therefore Goal must be fairly
expensive before one reaches a speedup.

first solution(-X, :Goals, +Options) [semidet]

Try alternative solvers concurrently, returning the first answer. In a typical scenario, solving
any of the goals in Goals is satisfactory for the application to continue. As soon as one of the
tried alternatives is successful, all the others are killed and first solution/3 succeeds.

For example, if it is unclear whether it is better to search a graph breadth-first or depth-first we
can use:

search_graph(Grap, Path) :-
first_solution(Path, [breadth_first(Graph, Path),

SWI-Prolog 9.3 Reference Manual

750 APPENDIX A. THE SWI-PROLOG LIBRARY

depth_first(Graph, Path)
],

[]).

Options include thread stack-sizes passed to thread create, as well as the options on_fail and
on_error that specify what to do if a solver fails or triggers an error. By default execution of
all solvers is terminated and the result is returned. Sometimes one may wish to continue. One
such scenario is if one of the solvers may run out of resources or one of the solvers is known to
be incomplete.

on fail(Action)
If stop (default), terminate all threads and stop with the failure. If continue, keep
waiting.

on error(Action)
As above, re-throwing the error if an error appears.

bug first solution/3 cannot deal with non-determinism. There is no obvious way to fit non-
determinism into it. If multiple solutions are needed wrap the solvers in findall/3.

call in thread(+Thread, :Goal) [semidet]

Run Goal as an interrupt in the context of Thread. This is based on thread signal/2. If
waiting times out, we inject a stop(Reason) exception into Goal. Interrupts can be nested,
i.e., it is allowed to run a call in thread/2 while the target thread is processing such an
interrupt.

This predicate is primarily intended for debugging and inspection tasks.

A.60 library(thread pool): Resource bounded thread management
See also http handler/3 and http spawn/2.

The module library(thread_pool) manages threads in pools. A pool defines properties
of its member threads and the maximum number of threads that can coexist in the pool. The call
thread create in pool/4 allocates a thread in the pool, just like thread create/3. If the
pool is fully allocated it can be asked to wait or raise an error.

The library has been designed to deal with server applications that receive a variety of requests,
such as HTTP servers. Simply starting a thread for each request is a bit too simple minded for such
servers:

• Creating many CPU intensive threads often leads to a slow-down rather than a speedup.

• Creating many memory intensive threads may exhaust resources

• Tasks that require little CPU and memory but take long waiting for external resources can run
many threads.

Using this library, one can define a pool for each set of tasks with comparable characteristics
and create threads in this pool. Unlike the worker-pool model, threads are not started immediately.
Depending on the design, both approaches can be attractive.

SWI-Prolog 9.3 Reference Manual

A.60. LIBRARY(THREAD POOL): RESOURCE BOUNDED THREAD MANAGEMENT751

The library is implemented by means of a manager thread with the fixed thread id
__thread_pool_manager. All state is maintained in this manager thread, which receives and
processes requests to create and destroy pools, create threads in a pool and handle messages from
terminated threads. Thread pools are not saved in a saved state and must therefore be recreated using
the initialization/1 directive or otherwise during startup of the application.

thread pool create(+Pool, +Size, +Options) [det]

Create a pool of threads. A pool of threads is a declaration for creating threads with shared
properties (stack sizes) and a limited number of threads. Threads are created using
thread create in pool/4. If all threads in the pool are in use, the behaviour depends
on the wait option of thread create in pool/4 and the backlog option described
below. Options are passed to thread create/3, except for

backlog(+MaxBackLog)
Maximum number of requests that can be suspended. Default is infinite. Otherwise
it must be a non-negative integer. Using backlog(0) will never delay thread creation
for this pool.

The pooling mechanism does not interact with the detached state of a thread. Threads can
be created both detached and normal and must be joined using thread join/2 if they are
not detached.

thread pool destroy(+Name) [det]

Destroy the thread pool named Name.

Errors existence_error(thread_pool, Name).

current thread pool(?Name) [nondet]

True if Name refers to a defined thread pool.

thread pool property(?Name, ?Property) [nondet]

True if Property is a property of thread pool Name. Defined properties are:

options(Options)
Thread creation options for this pool

free(Size)
Number of free slots on this pool

size(Size)
Total number of slots on this pool

members(ListOfIDs)
ListOfIDs is the list or threads running in this pool

running(Running)
Number of running threads in this pool

backlog(Size)
Number of delayed thread creations on this pool

SWI-Prolog 9.3 Reference Manual

752 APPENDIX A. THE SWI-PROLOG LIBRARY

thread create in pool(+Pool, :Goal, -Id, +Options) [det]

Create a thread in Pool. Options overrule default thread creation options associated to the pool.
In addition, the following option is defined:

wait(+Boolean)
If true (default) and the pool is full, wait until a member of the pool completes. If
false, throw a resource error.

Errors
- resource_error(threads_in_pool(Pool)) is raised if wait is false or the back-
log limit has been reached.
- existence_error(thread_pool, Pool) if Pool does not exist.

worker exitted(+PoolName, +WorkerId, :AtExit)
It is possible that ’ thread pool manager’ no longer exists while closing down the process
because the manager was killed before the worker.

To be done Find a way to discover that we are terminating Prolog.

create pool(+PoolName) [semidet,multifile]

Hook to create a thread pool lazily. The hook is called if thread create in pool/4
discovers that the thread pool does not exist. If the hook succeeds,
thread create in pool/4 retries creating the thread. For example, we can use the
following declaration to create threads in the pool media, which holds a maximum of 20
threads.

:- multifile thread_pool:create_pool/1.

thread_pool:create_pool(media) :-
thread_pool_create(media, 20, []).

A.61 library(ugraphs): Graph manipulation library
author

- R.A.O’Keefe
- Vitor Santos Costa
- Jan Wielemaker

license BSD-2 or Artistic 2.0

The S-representation of a graph is a list of (vertex-neighbours) pairs, where the pairs are in stan-
dard order (as produced by keysort) and the neighbours of each vertex are also in standard order (as
produced by sort). This form is convenient for many calculations.

A new UGraph from raw data can be created using vertices edges to ugraph/3.
Adapted to support some of the functionality of the SICStus ugraphs library by Vitor Santos Costa.
Ported from YAP 5.0.1 to SWI-Prolog by Jan Wielemaker.

vertices(+Graph, -Vertices)
Unify Vertices with all vertices appearing in Graph. Example:

SWI-Prolog 9.3 Reference Manual

A.61. LIBRARY(UGRAPHS): GRAPH MANIPULATION LIBRARY 753

?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[]], L).
L = [1, 2, 3, 4, 5]

vertices edges to ugraph(+Vertices:list, +Edges:pairs, -UGraph) [det]

Create a UGraph from Vertices and Edges. UGraph must unify with the corresponding S-
representation. Note that vertices that do not appear in any of the Edges appear in UGraph
as Vertice-[]. The set of vertices in UGraph is the union of Vertices and all vertices that
appear in the Edges pairs.

?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L).
L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[]]

In this case all vertices are defined implicitly. The next example shows three unconnected
vertices:

?- vertices_edges_to_ugraph([1,2,6,7,8],[1-3,2-4,4-5,1-5], L).
L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[], 6-[], 7-[], 8-[]]

add vertices(+Graph, +Vertices, -NewGraph)
Unify NewGraph with a new graph obtained by adding the list of Vertices to Graph. Example:

?- add_vertices([1-[3,5],2-[]], [0,1,2,9], NG).
NG = [0-[], 1-[3,5], 2-[], 9-[]]

del vertices(+Graph, +Vertices, -NewGraph) [det]

Unify NewGraph with a new graph obtained by deleting the list of Vertices and all the edges
that start from or go to a vertex in Vertices to the Graph. Example:

?- del_vertices([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[2,6],8-[]],
[2,1],
NL).

NL = [3-[],4-[5],5-[],6-[],7-[6],8-[]]

Compatibility Upto 5.6.48 the argument order was (+Vertices, +Graph, -NewGraph). Both YAP and
SWI-Prolog have changed the argument order for compatibility with recent SICStus as well as
consistency with del edges/3.

add edges(+Graph, +Edges, -NewGraph)
Unify NewGraph with a new graph obtained by adding the list of Edges to Graph. Example:

?- add_edges([1-[3,5],2-[4],3-[],4-[5],
5-[],6-[],7-[],8-[]],
[1-6,2-3,3-2,5-7,3-2,4-5],
NL).

NL = [1-[3,5,6], 2-[3,4], 3-[2], 4-[5],
5-[7], 6-[], 7-[], 8-[]]

SWI-Prolog 9.3 Reference Manual

754 APPENDIX A. THE SWI-PROLOG LIBRARY

ugraph union(+Graph1, +Graph2, -NewGraph)
NewGraph is the union of Graph1 and Graph2. Example:

?- ugraph_union([1-[2],2-[3]],[2-[4],3-[1,2,4]],L).
L = [1-[2], 2-[3,4], 3-[1,2,4]]

del edges(+Graph, +Edges, -NewGraph)
Unify NewGraph with a new graph obtained by removing the list of Edges from Graph. Notice
that no vertices are deleted. Example:

?- del_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]],
[1-6,2-3,3-2,5-7,3-2,4-5,1-3],
NL).

NL = [1-[5],2-[4],3-[],4-[],5-[],6-[],7-[],8-[]]

edges(+Graph, -Edges)
Unify Edges with all edges appearing in Graph. Example:

?- edges([1-[3,5],2-[4],3-[],4-[5],5-[]], L).
L = [1-3, 1-5, 2-4, 4-5]

transitive closure(+Graph, -Closure)
Generate the graph Closure as the transitive closure of Graph. Example:

?- transitive_closure([1-[2,3],2-[4,5],4-[6]],L).
L = [1-[2,3,4,5,6], 2-[4,5,6], 4-[6]]

transpose ugraph(Graph, NewGraph) [det]

Unify NewGraph with a new graph obtained from Graph by replacing all edges of the form
V1-V2 by edges of the form V2-V1. The cost is O(|V|*log(|V|)). Notice that an undirected
graph is its own transpose. Example:

?- transpose([1-[3,5],2-[4],3-[],4-[5],
5-[],6-[],7-[],8-[]], NL).

NL = [1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]

Compatibility This predicate used to be known as transpose/2. Following SICStus 4,
we reserve transpose/2 for matrix transposition and renamed ugraph transposition to
transpose ugraph/2.

compose(+LeftGraph, +RightGraph, -NewGraph)
Compose NewGraph by connecting the drains of LeftGraph to the sources of RightGraph.
Example:

?- compose([1-[2],2-[3]],[2-[4],3-[1,2,4]],L).
L = [1-[4], 2-[1,2,4], 3-[]]

SWI-Prolog 9.3 Reference Manual

A.61. LIBRARY(UGRAPHS): GRAPH MANIPULATION LIBRARY 755

ugraph layers(Graph, -Layers) [semidet]

top sort(+Graph, -Sorted) [semidet]

Sort vertices topologically. Layers is a list of lists of vertices where there are no edges from a
layer to an earlier layer. The predicate top sort/2 flattens the layers using append/2.

These predicates fail if Graph is cyclic. If Graph is not connected, the sub-graphs are individu-
ally sorted, where the root of each subgraph is in the first layer, the nodes connected to the roots
in the second, etc.

?- top_sort([1-[2], 2-[3], 3-[]], L).
L = [1, 2, 3]

Compatibility
- The original version of this library provided top sort/3 as a difference list version of
top sort/2. We removed this because the argument order was non-standard. Fixing causes
hard to debug compatibility issues while we expect top sort/3 was rarely used. A backward
compatible top sort/3 can be defined as

top_sort(Graph, Tail, Sorted) :-
top_sort(Graph, Sorted0),
append(Sorted0, Tail, Sorted).

The original version returned all vertices in a layer in reverse order. The current one returns them
in standard order of terms, i.e., each layer is an ordered set.
- ugraph layers/2 is a SWI-Prolog specific addition to this library.

neighbors(+Vertex, +Graph, -Neigbours) [det]

neighbours(+Vertex, +Graph, -Neigbours) [det]

Neigbours is a sorted list of the neighbours of Vertex in Graph. Example:

?- neighbours(4,[1-[3,5],2-[4],3-[],
4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL).

NL = [1,2,7,5]

connect ugraph(+UGraphIn, -Start, -UGraphOut) [det]

Adds Start as an additional vertex that is connected to all vertices in UGraphIn. This can
be used to create an topological sort for a not connected graph. Start is before any vertex in
UGraphIn in the standard order of terms. No vertex in UGraphIn can be a variable.

Can be used to order a not-connected graph as follows:

top_sort_unconnected(Graph, Vertices) :-
(top_sort(Graph, Vertices)
-> true
; connect_ugraph(Graph, Start, Connected),

top_sort(Connected, Ordered0),
Ordered0 = [Start|Vertices]

).

complement(+UGraphIn, -UGraphOut)
UGraphOut is a ugraph with an edge between all vertices that are not connected in UGraphIn
and all edges from UGraphIn removed. Example:

SWI-Prolog 9.3 Reference Manual

756 APPENDIX A. THE SWI-PROLOG LIBRARY

?- complement([1-[3,5],2-[4],3-[],
4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL).

NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8],
4-[3,5,6,8],5-[1,2,3,4,6,7,8],6-[1,2,3,4,5,7,8],
7-[1,2,3,4,5,6,8],8-[1,2,3,4,5,6,7]]

To be done Simple two-step algorithm. You could be smarter, I suppose.

reachable(+Vertex, +UGraph, -Vertices)
True when Vertices is an ordered set of vertices reachable in UGraph, including Vertex. Exam-
ple:

?- reachable(1,[1-[3,5],2-[4],3-[],4-[5],5-[]],V).
V = [1, 3, 5]

A.62 library(url): Analysing and constructing URL
author

- Jan Wielemaker
- Lukas Faulstich

deprecated New code should use library(uri), provided by the clib package.

This library deals with the analysis and construction of a URL, Universal Resource Locator. URL
is the basis for communicating locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP, and a protocol-specific syntax further defining the location. URLs are
standardized in RFC-1738.

The implementation in this library covers only a small portion of the defined protocols. Though the
initial implementation followed RFC-1738 strictly, the current is more relaxed to deal with frequent
violations of the standard encountered in practical use.

global url(+URL, +Base, -Global) [det]

Translate a possibly relative URL into an absolute one.

Errors syntax_error(illegal_url) if URL is not legal.

is absolute url(+URL)
True if URL is an absolute URL. That is, a URL that starts with a protocol identifier.

http location(?Parts, ?Location)
Construct or analyze an HTTP location. This is similar to parse url/2, but only deals with
the location part of an HTTP URL. That is, the path, search and fragment specifiers. In the
HTTP protocol, the first line of a message is

<Action> <Location> HTTP/<version>

SWI-Prolog 9.3 Reference Manual

A.62. LIBRARY(URL): ANALYSING AND CONSTRUCTING URL 757

Arguments

Location Atom or list of character codes.

parse url(?URL, ?Attributes) [det]

Construct or analyse a URL. URL is an atom holding a URL or a variable. Attributes is a list of
components. Each component is of the format Name(Value). Defined components are:

protocol(Protocol)
The used protocol. This is, after the optional url:, an identifier separated from the
remainder of the URL using :. parse url/2 assumes the http protocol if no protocol
is specified and the URL can be parsed as a valid HTTP url. In addition to the RFC-1738
specified protocols, the file protocol is supported as well.

host(Host)
Host-name or IP-address on which the resource is located. Supported by all network-based
protocols.

port(Port)
Integer port-number to access on the \arg{Host}. This only appears if the port is explic-
itly specified in the URL. Implicit default ports (e.g., 80 for HTTP) do not appear in the
part-list.

path(Path)
(File-) path addressed by the URL. This is supported for the ftp, http and file
protocols. If no path appears, the library generates the path /.

search(ListOfNameValue)
Search-specification of HTTP URL. This is the part after the ?, normally used to transfer
data from HTML forms that use the HTTP GET method. In the URL it consists of
a www-form-encoded list of Name=Value pairs. This is mapped to a list of Prolog
Name=Value terms with decoded names and values.

fragment(Fragment)
Fragment specification of HTTP URL. This is the part after the # character.

The example below illustrates all of this for an HTTP URL.

?- parse_url(’http://www.xyz.org/hello?msg=Hello+World%21#x’,
P).

P = [protocol(http),
host(’www.xyz.org’),
fragment(x),
search([msg = ’Hello World!’

]),
path(’/hello’)

]

By instantiating the parts-list this predicate can be used to create a URL.

SWI-Prolog 9.3 Reference Manual

758 APPENDIX A. THE SWI-PROLOG LIBRARY

parse url(+URL, +BaseURL, -Attributes) [det]

Similar to parse url/2 for relative URLs. If URL is relative, it is resolved using the absolute
URL BaseURL.

www form encode(+Value, -XWWWFormEncoded) [det]

www form encode(-Value, +XWWWFormEncoded) [det]

En/decode to/from application/x-www-form-encoded. Encoding encodes all characters except
RFC 3986 unreserved (ASCII alnum (see code type/2)), and one of ”-. ˜” using percent
encoding. Newline is mapped to %OD%OA. When decoding, newlines appear as a single
newline (10) character.

Note that a space is encoded as %20 instead of +. Decoding decodes both to a space.

deprecated Use uri encoded/3 for new code.

set url encoding(?Old, +New) [semidet]

Query and set the encoding for URLs. The default is utf8. The only other defined value is
iso_latin_1.

To be done Having a global flag is highly inconvenient, but a work-around for old sites using ISO
Latin 1 encoding.

url iri(+Encoded, -Decoded) [det]

url iri(-Encoded, +Decoded) [det]

Convert between a URL, encoding in US-ASCII and an IRI. An IRI is a fully expanded
Unicode string. Unicode strings are first encoded into UTF-8, after which %-encoding takes
place.

parse url search(?Spec, ?Fields:list(Name=Value)) [det]

Construct or analyze an HTTP search specification. This deals with form data using the MIME-
type application/x-www-form-urlencoded as used in HTTP GET requests.

file name to url(+File, -URL) [det]

file name to url(-File, +URL) [semidet]

Translate between a filename and a file:// URL.

To be done Current implementation does not deal with paths that need special encoding.

A.63 library(varnumbers): Utilities for numbered terms

See also numbervars/4, =@=/2 (variant/2).
Compatibility This library was introduced by Quintus and available in many related implementations, al-

though not with exactly the same set of predicates.

This library provides the inverse functionality of the built-in numbervars/3. Note that this
library suffers from the known issues that ’$VAR’(X) is a normal Prolog term and, -unlike the built-in
numbervars-, the inverse predicates do not process cyclic terms. The following predicate is true for
any acyclic term that contains no ’$VAR’(X), integer(X) terms and no constraint variables:

SWI-Prolog 9.3 Reference Manual

A.64. LIBRARY(YALL): LAMBDA EXPRESSIONS 759

always_true(X) :-
copy_term(X, X2),
numbervars(X),
varnumbers(X, Copy),
Copy =@= X2.

numbervars(+Term) [det]

Number variables in Term using $VAR(N). Equivalent to numbervars(Term, 0, _).

See also numbervars/3, numbervars/4

varnumbers(+Term, -Copy) [det]

Inverse of numbervars/1. Equivalent to varnumbers(Term, 0, Copy).

varnumbers(+Term, +Start, -Copy) [det]

Inverse of numbervars/3. True when Copy is a copy of Term with all variables numbered
>= Start consistently replaced by fresh variables. Variables in Term are shared with Copy
rather than replaced by fresh variables.

Errors domain_error(acyclic_term, Term) if Term is cyclic.
Compatibility Quintus, SICStus. Not in YAP version of this library

max var number(+Term, +Start, -Max) [det]

True when Max is the max of Start and the highest numbered $VAR(N) term.

author Vitor Santos Costa
Compatibility YAP

varnumbers names(+Term, -Copy, -VariableNames) [det]

If Term is a term with numbered and named variables using the reserved term ’$VAR’(X),
Copy is a copy of Term where each ’$VAR’(X) is consistently replaced by a fresh variable and
Bindings is a list X = Var, relating the X terms with the variable it is mapped to.

See also numbervars/3, varnumbers/3, read term/3 using the variable_names op-
tion.

A.64 library(yall): Lambda expressions
author Paulo Moura and Jan Wielemaker
To be done Extend optimization support

Prolog realizes high-order programming with meta-calling. The core predicate of this is call/1,
which simply calls its argument. This can be used to define higher-order predicates such as
ignore/1 or forall/2. The call/N construct calls a closure with N-1 additional arguments.
This is used to define higher-order predicates such as the maplist/2-5 family or foldl/4-7.

SWI-Prolog 9.3 Reference Manual

760 APPENDIX A. THE SWI-PROLOG LIBRARY

The closure concept used here is somewhat different from the closure concept from functional
programming. The latter is a function that is always evaluated in the context that existed at function
creation time. Here, a closure is a term of arity 0 =< L =< K. The term’s functor is the name of a pred-
icate of arity K and the term’s L arguments (where L could be 0) correspond to L leftmost arguments
of said predicate, bound to parameter values. For example, a closure involving atom concat/3
might be the term atom_concat(prefix). In order of increasing L, one would have increasingly
more complete closures that could be passed to call/3, all giving the same result:

call(atom_concat,prefix,suffix,R).
call(atom_concat(prefix),suffix,R).
call(atom_concat(prefix,suffix),R).
call(atom_concat(prefix,suffix,R)).

The problem with higher order predicates based on call/N is that the additional arguments
are always added to the end of the closure’s argument list. This often requires defining triv-
ial helper predicates to get the argument order right. For example, if you want to add a
common postfix to a list of atoms you need to apply atom_concat(In,Postfix,Out),
but maplist(atom_concat(Postfix),ListIn,ListOut) calls
atom_concat(Postfix,In,Out). This is where library(yall) comes in, where
the module name, yall, stands for Yet Another Lambda Library.

The library allows us to write a lambda expression that wraps around the (possibly complex) goal
to call:

?- maplist([In,Out]>>atom_concat(In,’_p’,Out), [a,b], ListOut).
ListOut = [a_p, b_p].

A bracy list {...} specifies which variables are shared between the wrapped goal and the sur-
rounding context. This allows us to write the code below. Without the {Postfix} a fresh variable
would be passed to atom concat/3.

add_postfix(Postfix, ListIn, ListOut) :-
maplist({Postfix}/[In,Out]>>atom_concat(In,Postfix,Out),

ListIn, ListOut).

This introduces the second application area of lambda expressions: the ability to confine vari-
ables to the called goal’s context. This features shines when combined with bagof/3 or setof/3
where one normally has to list those variables whose bindings one is not interested in using the
VarˆGoal construct (marking Var as existentially quantified and confining it to the called goal’s
context). Lambda expressions allow you to do the converse: specify the variables which one is inter-
ested in. These variables are common to the context of the called goal and the surrounding context.

Lambda expressions use the syntax below

{...}/[...]>>Goal.

The {...} optional part is used for lambda-free variables (the ones shared between contexts).
The order of variables doesn’t matter, hence the {...} set notation.

SWI-Prolog 9.3 Reference Manual

A.64. LIBRARY(YALL): LAMBDA EXPRESSIONS 761

The [...] optional part lists lambda parameters. Here, order of variables matters, hence the list
notation.

As / and >> are standard infix operators, no new operators are added by this li-
brary. An advantage of this syntax is that we can simply unify a lambda expression with
{Free}/[Parameters]>>Lambda to access each of its components. Spaces in the lambda ex-
pression are not a problem although the goal may need to be written between ’()’s. Goals that are
qualified by a module prefix also need to be wrapped inside parentheses.

Combined with library(apply_macros), library(yall) allows writing one-liners for
many list operations that have the same performance as hand-written code.

This module implements Logtalk’s lambda expressions syntax.
The development of this module was sponsored by Kyndi, Inc.

+Parameters >> +Lambda
>>(+Parameters, +Lambda, ?A1)
>>(+Parameters, +Lambda, ?A1, ?A2)
>>(+Parameters, +Lambda, ?A1, ?A2, ?A3)
>>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)
>>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)
>>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)
>>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)

Calls a copy of Lambda. This is similar to call(Lambda,A1,...), but arguments are
reordered according to the list Parameters:

• The first length(Parameters) arguments from A1, ... are unified with (a copy of)
Parameters, which may share them with variables in Lambda.

• Possible excess arguments are passed by position.

Arguments
Parameters is either a plain list of parameters or a term {Free}/List. Free

represents variables that are shared between the context and the
Lambda term. This is needed for compiling Lambda expressions.

+Free / :Lambda
/(+Free, :Lambda, ?A1)
/(+Free, :Lambda, ?A1, ?A2)
/(+Free, :Lambda, ?A1, ?A2, ?A3)
/(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)
/(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)
/(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)
/(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)

Shorthand for Free/[]>>Lambda. This is the same as applying call/N on Lambda, except
that only variables appearing in Free are bound by the call. For example

p(1,a).
p(2,b).

SWI-Prolog 9.3 Reference Manual

https://logtalk.org/manuals/refman/grammar.html#lambda-expressions

762 APPENDIX A. THE SWI-PROLOG LIBRARY

?- {X}/p(X,Y).
X = 1;
X = 2.

This can in particularly be combined with bagof/3 and setof/3 to select particular vari-
ables to be concerned rather than using existential quantification (ˆ/2) to exclude variables.
For example, the two calls below are equivalent.

setof(X, Yˆp(X,Y), Xs)
setof(X, {X}/p(X,_), Xs)

is lambda(@Term) [semidet]

True if Term is a valid Lambda expression.

lambda calls(+LambdaExpression, -Goal) [det]

lambda calls(+LambdaExpression, +ExtraArgs, -Goal) [det]

Goal is the goal called if call/N is applied to LambdaExpression, where ExtraArgs are the
additional arguments to call/N. ExtraArgs can be an integer or a list of concrete arguments.
This predicate is used for cross-referencing and code highlighting.

SWI-Prolog 9.3 Reference Manual

Hackers corner B
This appendix describes a number of predicates which enable the Prolog user to inspect the Prolog
environment and manipulate (or even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described here should be handled with
some care as it is easy to corrupt the consistency of the Prolog system by misusing them.

B.1 Examining the Environment Stack

prolog current frame(-Frame) [det]

Unify Frame with an integer providing a reference to the parent of the current local stack
frame. A pointer to the current local frame cannot be provided as the predicate succeeds
deterministically and therefore its frame is destroyed immediately after succeeding.

prolog current choice(-Choice) [semidet]

Unify Choice with an integer provided a reference to the last choice point. Fails if the current
environment has no choice points. See also prolog choice attribute/3.

prolog frame attribute(+Frame, +Key, :Value)
Obtain information about the local stack frame Frame. Frame is a frame reference as ob-
tained through prolog current frame/1, prolog trace interception/4 or this
predicate. The key values are described below.

alternative
Value is unified with an integer reference to the local stack frame in which execution is
resumed if the goal associated with Frame fails. Fails if the frame has no alternative
frame.

has alternatives
Value is unified with true if Frame still is a candidate for backtracking; false other-
wise.

goal
Value is unified with the goal associated with Frame. If the definition module of the
active predicate is not the calling context, the goal is represented as ⟨module⟩:⟨goal⟩. Do
not instantiate variables in this goal unless you know what you are doing! Note that the
returned term may contain references to the frame and should be discarded before the
frame terminates.1

1The returned term is actually an illegal Prolog term that may hold references from the global to the local stack to
preserve the variable names.

SWI-Prolog 9.3 Reference Manual

764 APPENDIX B. HACKERS CORNER

parent goal
parent goal(-Parent)

If Value is instantiated to a callable term, find a frame executing the predicate described
by Value and unify the arguments of Value to the goal arguments associated with the
frame. This is intended to check the current execution context. The user must ensure the
checked parent goal is not removed from the stack due to last-call optimisation and be
aware of the slow operation on deeply nested calls.
The variant parent goal(-Parent) unifies the frame reference of the parent of the found
frame with Parent. That allows for finding frames higher up in the stack running the same
goal.

predicate indicator
Similar to goal, but only returning the [⟨module⟩:]⟨name⟩/⟨arity⟩ term describing the
term, not the actual arguments. It avoids creating an illegal term as goal and is used by
the library prolog stack.

clause
Value is unified with a reference to the currently running clause. Fails if the current
goal is associated with a foreign (C) defined predicate. See also nth clause/3 and
clause property/2.

level
Value is unified with the recursion level of Frame. The top level frame is at level ‘0’.

parent
Value is unified with an integer reference to the parent local stack frame of Frame. Fails
if Frame is the top frame.

context module
Value is unified with the name of the context module of the environment.

top
Value is unified with true if Frame is the top Prolog goal from a recursive call back
from the foreign language; false otherwise.

hidden
Value is unified with true if the frame is hidden from the user, either because a parent
has the hide-childs attribute (all system predicates), or the system has no trace-me
attribute.

skipped
Value is true if this frame was skipped in the debugger.

pc
Value is unified with the program pointer saved on behalf of the parent goal if the parent
goal is not owned by a foreign predicate or belongs to a compound meta-call (e.g.,
call((a,b))).

argument(N)
Value is unified with the N-th slot of the frame. Argument 1 is the first argument of the
goal. Arguments above the arity refer to local variables. Fails silently if N is out of range.

prolog choice attribute(+ChoicePoint, +Key, -Value)
Extract attributes of a choice point. ChoicePoint is a reference to a choice point as

SWI-Prolog 9.3 Reference Manual

B.2. ANCESTRAL CUTS 765

passed to prolog trace interception/4 on the 3rd argument or obtained using
prolog current choice/1. Key specifies the requested information:

parent
Requests a reference to the first older choice point.

frame
Requests a reference to the frame to which the choice point refers.

type
Requests the type. Defined values are clause (the goal has alternative clauses),
foreign (non-deterministic foreign predicate), jump (clause internal choice point),
top (first dummy choice point), catch (catch/3 to allow for undo), debug (help the
debugger), or none (has been deleted).

pc
Requests the program counter to which the choice point refers. Only applicable for
in-clause choice points.

clause
Request the clause that will be tried if this choice point is activated. Only applicable for
choice points of type clause.

This predicate is used for the graphical debugger to show the choice point stack.

deterministic(-Boolean)
Unifies its argument with true if no choice point exists that is more recent than the entry of the
clause in which it appears. There are few realistic situations for using this predicate. It is used
by the prolog/0 top level to check whether Prolog should prompt the user for alternatives.
Similar results can be achieved in a more portable fashion using call cleanup/2.

B.2 Ancestral cuts

prolog cut to(+Choice)
Prunes all choice points created since Choice. Can be used together with
prolog current choice/1 to implement ancestral cuts. This predicate is in the
hackers corner because it should not be used in normal Prolog code. It may be used to create
new high level control structures, particularly for compatibility purposes.

Note that in the current implementation, the pruned choice points and environment frames are
not reclaimed. As a consequence, where predicates that are deterministic due to clause indexing,
normal cuts or (if->then;else) and and tail recursive run in bounded local stack space,
predicates using prolog cut to/1 will run out of stack.

B.3 Intercepting the Tracer

prolog trace interception(+Port, +Frame, +Choice, -Action)
Dynamic predicate, normally not defined. This predicate is called from the SWI-Prolog debug-
ger just before it would show a port. If this predicate succeeds, the debugger assumes that the

SWI-Prolog 9.3 Reference Manual

766 APPENDIX B. HACKERS CORNER

trace action has been taken care of and continues execution as described by Action. Otherwise
the normal Prolog debugger actions are performed.

Port denotes the reason to activate the tracer (‘port’ in the 4/5-port, but with some additions):

call
Normal entry through the call port of the 4-port debugger.

redo(PC)
Normal entry through the redo port of the 4-port debugger. The redo port signals resum-
ing a predicate to generate alternative solutions. If PC is 0 (zero), clause indexing has
found another clause that will be tried next. Otherwise, PC is the program counter in the
current clause where execution continues. This implies we are dealing with an in-clause
choice point left by, e.g., ;/2. Note that non-determinism in foreign predicates are also
handled using an in-clause choice point.

unify
The unify port represents the neck instruction, signalling the end of the head-matching
process. This port is normally invisible. See leash/1 and visible/1.

exit
The exit port signals the goal is proved. It is possible for the goal to have alternatives. See
prolog frame attribute/3 to examine the goal stack.

fail
The fail port signals final failure of the goal.

exception(Except)
An exception is raised and still pending. This port is activated on each parent frame of the
frame generating the exception until the exception is caught or the user restarts normal
computation using retry. Except is the pending exception term.

cut call(PC)
A cut is encountered at PC. This port is used by the graphical debugger to visualise the
effect of the cut.

cut exit(PC)
A cut has been executed. See cut call(PC) for more information.

Frame is a reference to the current local stack frame, which can be examined using
prolog frame attribute/3. Choice is a reference to the last choice point and can be
examined using prolog choice attribute/3. Action must be unified with a term that
specifies how execution must continue. The following actions are defined:

abort
Abort execution. See abort/0.

continue
Continue (i.e., creep in the command line debugger).

fail
Make the current goal fail.

ignore
Step over the current goal without executing it.

SWI-Prolog 9.3 Reference Manual

B.3. INTERCEPTING THE TRACER 767

nodebug
Continue execution in normal nodebug mode. See nodebug/0.

leap
Continue execution in normal debug mode. See debug/0.

retry
Retry the current frame.

retry(Frame)
Retry the given frame. This must be a parent of the current frame.

skip
Skip over the current goal (i.e., skip in the command line debugger).

skip(Frame)
Skip to the end the execution of Frame. This is used to implement finish on an arbitrary
frame in the GUI debugger.

up
Skip to the parent goal (i.e., up in the command line debugger). This is the same as
skip(Frame) using the parent frame of the current frame.

Together with the predicates described in section 4.39 and the other predicates of this chapter,
this predicate enables the Prolog user to define a complete new debugger in Prolog. Besides
this, it enables the Prolog programmer to monitor the execution of a program. The example
below records all goals trapped by the tracer in the database.

prolog_trace_interception(Port, Frame, _PC, continue) :-
prolog_frame_attribute(Frame, goal, Goal),
prolog_frame_attribute(Frame, level, Level),
recordz(trace, trace(Port, Level, Goal)).

To trace the execution of ‘go’ this way the following query should be given:

?- trace, go, notrace.

As of version 9.1.12, unification against variables in the passed data as well as changes to
backtrackable global variables persist. The hook should not unify variables in its arguments.
One solution to this is to backtrace over the body of the interceptor. Note that the Action needs
to be preserved.

user:prolog_trace_interception(Port, Frame, Choice, Action) :-
State = state(0),
(my_trace_interception(Port, Frame, Choice, Action),

nb_setarg(1, State, Action),
fail

; arg(1, State, Action)
).

SWI-Prolog 9.3 Reference Manual

768 APPENDIX B. HACKERS CORNER

prolog skip level(-Old, +New)
Unify Old with the old value of ‘skip level’ and then set this level according to New. New
is an integer, the atom very deep (meaning don’t skip) or the atom skip in redo
(see prolog skip frame/1). The ‘skip level’ is a setting of each Prolog thread that
disables the debugger on all recursion levels deeper than the level of the variable. See also
prolog skip frame/1.

B.4 Simulating a debugger interrupt

prolog interrupt
Calls the functionality that allows for debugging after receiving (normally) SIGINT. This may
be used in IDE environments to start debugging a toplevel thread by injecting this into the
target thread using thread signal/2.

B.5 Breakpoint and watchpoint handling

SWI-Prolog support breakpoints. Breakpoints can be manipulated with the library
prolog breakpoints. Setting a breakpoint replaces a virtual machine instruction with the
D BREAK instruction. If the virtual machine executes a D BREAK, it performs a callback to decide on
the action to perform. This section describes this callback, called prolog:break hook/7.

prolog:break hook(+Clause, +PC, +FR, +BFR, +Expression, +Debug, -Action) [hook,semidet]

Experimental This hook is called if the virtual machine executes a D BREAK, set using
set breakpoint/4. Clause and PC identify the breakpoint. FR and BFR provide the
environment frame and current choicepoint. Debug is true if the system was in debug mode
when the breakpoint was reached, otherwise Debug is false. Expression identifies the action
that is interrupted, and is one of the following:

call(Goal)
The instruction will call Goal. This is generated for nearly all instructions. Note that
Goal is semantically equivalent to the compiled body term, but might differ syntactically.
This is notably the case when arithmetic expressions are compiled in optimized mode
(see optimise). In particular, the arguments of arithmetic expressions have already
been evaluated. Thus, A is 3*B, where B equals 3 results in a term call(A is 9) if
the clause was compiled with optimization enabled.

!
The instruction will call the cut. Because the semantics of metacalling the cut differs
from executing the cut in its original context we do not wrap the cut in call/1.

:-
The breakpoint is on the neck instruction, i.e., after performing the head unifications.

exit
The breakpoint is on the exit instruction, i.e., at the end of the clause. Note that the exit
instruction may not be reached due to last-call optimisation.

unify exit
The breakpoint is on the completion of an in-lined unification while the system is not

SWI-Prolog 9.3 Reference Manual

B.6. ADDING CONTEXT TO ERRORS: PROLOG EXCEPTION HOOK 769

in debug mode. If the system is in debug mode, inlined unification is returned as
call(Var=Term).2

If prolog:break hook/7 succeeds, it must unify Action with a value that describes how
execution must continue. Possible values for Action are:

continue
Just continue as if no breakpoint was present.

debug
Continue in debug mode. See debug/0.

trace
Continue in trace mode. See trace/0.

call(Goal)
Execute Goal instead of the goal that would be executed. Goal is executed as call/1,
preserving (non-)determinism and exceptions.

If this hook throws an exception, the exception is propagated normally. If this hook is not
defined or fails, the default action is executed. This implies that, if the thread is in debug mode,
the tracer will be enabled (trace) and otherwise the breakpoint is ignored (continue).

This hook allows for injecting various debugging scenarios into the executable without recom-
piling. The hook can access variables of the calling context using the frame inspection predi-
cates. Here are some examples.

• Create conditional breakpoints by imposing conditions before deciding the return trace.

• Watch variables at a specific point in the execution. Note that binding of these variables
can be monitored using attributed variables, see section 8.1.

• Dynamically add assertions on variables using assertion/1.

• Wrap the Goal into a meta-call that traces progress of the Goal.

B.6 Adding context to errors: prolog exception hook

The hook prolog:prolog exception hook/5 has been introduced to provide dedicated ex-
ception handling facilities for application frameworks, for example non-interactive server applications
that wish to provide extensive context for exceptions for offline debugging.

prolog:prolog exception hook(+ExceptionIn, -ExceptionOut, +Frame, +CatcherFrame, +DebugMode)
This hook predicate, if defined in the module prolog, is between raising an exception and
handling it. It is intended to allow a program adding additional context to an exception to
simplify diagnosing the problem. ExceptionIn is the exception term as raised by throw/1 or
one of the built-in predicates. The output argument ExceptionOut describes the exception that
is actually raised. Frame is the innermost frame. See prolog frame attribute/3 and
the library prolog stack for getting information from this. CatcherFrame is a reference to
the frame calling the matching catch/3, none if the exception is not caught or ’C’ if the

2This hack will disappear if we find a good solution for applying D BREAK to inlined unification. Only option might
be to place the break on both the unification start and end instructions.

SWI-Prolog 9.3 Reference Manual

770 APPENDIX B. HACKERS CORNER

exception is caught in C calling Prolog using the flag PL Q CATCH EXCEPTION. DebugMode
contains the setting of the Prolog flag debug from the calling context.

The hook is run in ‘nodebug’ mode. If it succeeds, ExceptionOut is considered the current
exception. If it fails, ExceptionIn is used for further processing. The hook is never called
recursively. The hook is not allowed to modify ExceptionOut in such a way that it no longer
unifies with the catching frame.

Typically, prolog:prolog exception hook/5 is used to fill the second argument of
error(Formal, Context) exceptions. Formal is defined by the ISO standard, while SWI-
Prolog defines Context as a term context(Location, Message). Location is bound to a term
⟨name⟩/⟨arity⟩ by the kernel. This hook can be used to add more information on the calling
context, such as a full stack trace.

Applications that use exceptions as part of normal processing must do a quick test of the envi-
ronment before starting expensive gathering information on the state of the program.

The hook can call trace/0 to enter trace mode immediately. For example, imagine an appli-
cation performing an unwanted division by zero while all other errors are expected and handled.
We can force the debugger using the hook definition below. Run the program in debug mode
(see debug/0) to preserve as much as possible of the error context.

user:prolog_exception_hook(
error(evaluation_error(zero_divisor), _),
_, _, _) :-

trace, fail.

This hook is used by prolog stack to print stack traces on uncaught exceptions, trap/1
to debug after exceptions and the GUI exception editor that is part of the GUI debugger.

B.7 Hooks using the exception predicate

This section describes the predicate exception/3, which can be defined by the user in the module
user as a multifile predicate. Unlike the name suggests, this is actually a hook predicate that has no
relation to Prolog exceptions as defined by the ISO predicates catch/3 and throw/1.

The predicate exception/3 is called by the kernel on a couple of events, allowing the user to
‘fix’ errors just-in-time. The mechanism allows for lazy creation of objects such as predicates.

exception(+Exception, +Context, -Action)
Dynamic predicate, normally not defined. Called by the Prolog system on run-time exceptions
that can be repaired ‘just-in-time’. The values for Exception are described below. See also
catch/3 and throw/1.

If this hook predicate succeeds it must instantiate the Action argument to the atom fail to
make the operation fail silently, retry to tell Prolog to retry the operation or error to make
the system generate an exception. The action retry only makes sense if this hook modified
the environment such that the operation can now succeed without error.

undefined predicate
Context is instantiated to a predicate indicator ([module]:⟨name⟩/⟨arity⟩). If the predicate

SWI-Prolog 9.3 Reference Manual

B.8. PROLOG EVENTS 771

fails, Prolog will generate an existence error exception. The hook is intended
to implement alternatives to the built-in autoloader, such as autoloading code from a
database. Do not use this hook to suppress existence errors on predicates. See also
unknown and section 2.14.

undefined global variable
Context is instantiated to the name of the missing global variable. The hook must call
nb setval/2 or b setval/2 before returning with the action retry. See also
nb current/2.

B.8 Prolog events

Version 8.1.9 introduces a uniform mechanism to listen to events that happen in the Prolog engine. It
replaces and generalises prolog event hook/1, a hook that was introduced to support the graph-
ical debugger. The current implementation deals with debug, thread and dynamic database events. We
expect this mechanism to deal with more hooks in the future.

prolog listen(+Channel, :Closure)
prolog listen(+Channel, :Closure, +Options)

Call Closure if an event that matches Channel happens inside Prolog. Possible choice points
are pruned as by once/1. Possible failure is ignored, but exceptions are propagated into the
environment. Multiple closures can be associated with the same channel. Execution of the list
of closures may be terminated by an exception. Options:

as(+Location)
Location is one of first (default) or last and determines whether the new handler is
expected as first or last.

name(+Atom)
Give the handler a name. A new registration using the same name replaces the existing
handler rather than adding a new handler. Names are local to the Channel, i.e., different
channels can use the same name.

Defined channels are described below. The Channel argument is the name of the term listed
below. The arguments are added as additional arguments to the given Closure.

abort
Called by abort/0.

erase(DbRef)
Called on an erased recorded database reference or clause. Note that a retracted clauses is
not immediately removed. Clauses are reclaimed by garbage collect clauses/0,
which is normally executed automatically in the gc thread. This specific channel is used
by clause info/5 to reclaim source layout of reclaimed clauses. User applications
should typically use the PredicateIndicator channel.

break(Action, ClauseRef, PCOffset)
Traps events related to Prolog break points. See library prolog breakpoints

SWI-Prolog 9.3 Reference Manual

772 APPENDIX B. HACKERS CORNER

frame finished(FrameRef)
Indicates that a stack frame that has been examined using prolog current frame/1,
prolog frame attribute/3 and friends has been deleted. Used by the source level
debugger to avoid that the stack view references non-existing frames.

thread exit(Thread)
Globally registered channel that is called by any thread just before the thread is terminated.

thread start(Thread)
Globally registered channel that is called by any thread after the thread initialization and
before running the thread’s goal.

this thread exit
Thread local version of the thread exit channel that is also used by the
at exit(Closure) option of thread create/3.

PredicateIndicator(Action, Context)
Track changes to a predicate. This notably allows tracking modifications to dynamic
predicates. The channel also allows tracking changes to monotonic tables (section 7.8).
Both monotonic and incremental tabling use this to track changes to incremental and
monotonic dynamic predicates. Below is an example illustrating events from changing
a dynamic predicate.

:- dynamic p/1.
:- prolog_listen(p/1, updated(p/1)).

updated(Pred, Action, Context) :-
format(’Updated ˜p: ˜p ˜p˜n’, [Pred, Action, Context]).

?- assert(p(a)).
Updated p/1: assertz <clause>(0x55db261709d0)
?- retractall(p(_)).
Updated p/1: retractall start(user:p(_12294))
Updated p/1: retract <clause>(0x55db261719c0)
Updated p/1: retractall end(user:p(_12294))

asserta

assertz
A new clauses has been added as first (last) for the given predicate. Context is a
clause reference. The hook is called after the clause has been added. If the hook fails
the clause is removed.

retract
A clause was retracted from the given predicate using either retract/1, erase/1
or retractall/1. Context is a clause reference. The hook is called before the
clause is removed. If the hook fails, the clause is not removed.

retractall
The beginning and end of retractall/1 is indicated with the Action
retractall. The context argument is start(Head) or end(Head).

SWI-Prolog 9.3 Reference Manual

B.9. HOOKS FOR INTEGRATING LIBRARIES 773

rollback(Action)
Issued when rolling back (discarding) a transaction. Action is the local action being
reverted and is one of asserta, assertz or retract. Context is the involved
clause. See transaction/1 and snapshot/1.

new answer
A new answer was added to a tabled predicate. The context is the answer term.
Currently implemented for monotonic tabling only. Future versions may also
implement this for normal tabling. See section 7.8.2.

prolog unlisten(+Channel, :Closure)
Remove matching closures registered with prolog listen/3.

B.9 Hooks for integrating libraries

Some libraries realise an entirely new programming paradigm on top of Prolog. An example is XPCE
which adds an object system to Prolog as well as an extensive set of graphical primitives. SWI-Prolog
provides several hooks to improve the integration of such libraries. See also section A.24 for editing
hooks and section 4.11 for hooking into the message system.

prolog list goal(:Goal)
Hook, normally not defined. This hook is called by the ’L’ command of the tracer in the
module user to list the currently called predicate. This hook may be defined to list only
relevant clauses of the indicated Goal and/or show the actual source code in an editor. See also
portray/1 and multifile/1.

prolog:debug control hook(:Action)
Hook for the debugger control predicates that allows the creator of more high-level program-
ming languages to use the common front-end predicates to control the debugger. For example,
XPCE uses these hooks to allow for spying methods rather than predicates. Action is one of:

spy(Spec)
Hook in spy/1. If the hook succeeds spy/1 takes no further action.

nospy(Spec)
Hook in nospy/1. If the hook succeeds nospy/1 takes no further action. If spy/1 is
hooked, it is advised to place a complementary hook for nospy/1.

nospyall
Hook in nospyall/0. Should remove all spy points. This hook is called in a failure-
driven loop.

debugging(DebugMode)
Hook in debugging/0. DebugMode holds the current value of the debug flag. The
hook can be used in two ways. It can report the status of the additional debug points
controlled by the above hooks and fail to let the system report the others, or it succeeds,
overruling the entire behaviour of debugging/0.

prolog:help hook(+Action)
Hook into help/0 and help/1. If the hook succeeds, the built-in actions are not executed.

SWI-Prolog 9.3 Reference Manual

774 APPENDIX B. HACKERS CORNER

For example, ?- help(picture). is caught by the XPCE help hook to give help on the
class picture. Defined actions are:

help
User entered plain help/0 to give default help. The default performs help(help/1),
giving help on help.

help(What)
Hook in help/1 on the topic What.

apropos(What)
Hook in apropos/1 on the topic What.

B.10 Hooks for loading files

All loading of source files is achieved by load files/2. The hook prolog load file/2 can
be used to load Prolog code from non-files or even load entirely different information, such as foreign
files.

prolog load file(+Spec, +Options)
Load a single object. If this call succeeds, load files/2 assumes the action has been taken
care of. This hook is only called if Options does not contain the stream(Input) option. The
hook must be defined in the module user.

This can be used to load from unusual places as well as dealing with Prolog code that is
not represented as a Prolog source text (for example some binary representation). For ex-
ample, library http/http load loads Prolog directly from an HTTP server. See also
prolog:open source hook/3, which merely allows for changing how a physical file is
opened.

prolog:open source hook(+Path, -Stream, +Options)
This hooks is called by the compiler to overrule the default open/3 call open(Path, read,
Stream). Options provide the options as provided to load files/2. If the hook succeeds
compilation continues by loading from the returned (input) stream. This hook is particularly
suited to support running the code to a preprocessor. See also prolog load file/2.

prolog:comment hook(+Comments, +Pos, +Term)
This hook allows for processing comments encountered by the compiler. If this hook is defined,
the compiler calls read term/2 with the option comments(Comments). If the list of
comments returned by read term/2 is not empty it calls this comment hook with the
following arguments.

• Comments is the non-empty list of comments. Each comment is a pair Position-String,
where String is a string object (see section 5.2) that contains the comment including de-
limiters. Consecutive line comments are returned as a single comment.

• Pos is a stream-position term that describes the starting position of Term
• Term is the term read.

This hook is exploited by the documentation system. See stream position data/3. See
also read term/3.

SWI-Prolog 9.3 Reference Manual

Compatibility with other
Prolog dialects C
This chapter explains issues for writing portable Prolog programs. It was started after discussion with
Vitor Santos Costa, the leading developer of YAP Prolog1 YAP and SWI-Prolog have expressed the
ambition to enhance the portability beyond the trivial Prolog examples, including complex libraries
involving foreign code.

Although it is our aim to enhance compatibility, we are still faced with many incompatibilities
between the dialects. As a first step both YAP and SWI will provide some instruments that help
developing portable code. A first release of these tools appeared in SWI-Prolog 5.6.43. Some of the
facilities are implemented in the base system, others in the library dialect.pl.

• The Prolog flag dialect is an unambiguous and fast way to find out which Prolog dialect
executes your program. It has the value swi for SWI-Prolog and yap on YAP.

• The Prolog flag version data is bound to a term swi(Major, Minor, Patch, Extra)

• Conditional compilation using :- if(Condition) . . .:- endif is supported. See sec-
tion 4.3.1.

• The predicate expects dialect/1 allows for specifying for which Prolog system the code
was written.

• The predicates exists source/1 and source exports/2 can be used to query the li-
brary content. The require/1 directive can be used to get access to predicates without know-
ing their location.

• The module predicates use module/1, use module/2 have been extended with a notion
for ‘import-except’ and ‘import-as’. This is particularly useful together with reexport/1
and reexport/2 to compose modules from other modules and mapping names.

• Foreign code can expect SWI PROLOG when compiled for SWI-Prolog and
YAP PROLOG when compiled on YAP.

:- expects dialect(+Dialect)
This directive states that the code following the directive is written for the given Prolog Dialect.
See also dialect. The declaration holds until the end of the file in which it appears. The
current dialect is available using prolog load context/2.

The exact behaviour of this predicate is still subject to discussion. Of course, if Dialect
matches the running dialect the directive has no effect. Otherwise we check for the existence of
library(dialect/Dialect) and load it if the file is found. Currently, this file has this function-
ality:

1http://yap.sourceforge.net/

SWI-Prolog 9.3 Reference Manual

http://yap.sourceforge.net/

776 APPENDIX C. COMPATIBILITY WITH OTHER PROLOG DIALECTS

• Define system predicates of the requested dialect we do not have.

• Apply goal expansion/2 rules that map conflicting predicates to versions emulating
the requested dialect. These expansion rules reside in the dialect compatibility module,
but are applied if prolog load context(dialect, Dialect) is active.

• Modify the search path for library directories, putting libraries compatible with the target
dialect before the native libraries.

• Setup support for the default filename extension of the dialect.

source exports(+Spec, +Export)
Is true if source Spec exports Export, a predicate indicator. Fails without error otherwise.

C.1 Some considerations for writing portable code

The traditional way to write portable code is to define custom predicates for all potentially non-
portable code and define these separately for all Prolog dialects one wishes to support. Here are some
considerations.

• Probably the best reason for this is that it allows to define minimal semantics required by the
application for the portability predicates. Such functionality can often be mapped efficiently to
the target dialect. Contrary, if code was written for dialect X , the defined semantics are those of
dialect X . Emulating all extreme cases and full error handling compatibility may be tedious and
result in a much slower implementation than needed. Take for example call cleanup/2.
The SICStus definition is fundamentally different from the SWI definition, but 99% of the appli-
cations just want to make calls like below to guarantee StreamIn is closed, even if process/1
misbehaves.

call_cleanup(process(StreamIn), close(In))

• As a drawback, the code becomes full of my call cleanup, etc. and every potential portability
conflict needs to be abstracted. It is hard for people who have to maintain such code later to
grasp the exact semantics of the my * predicates and applications that combine multiple libraries
using this compatibility approach are likely to encounter conflicts between the portability layers.
A good start is not to use my *, but a prefix derived from the library or application name or
names that explain the intended semantics more precisely.

• Another problem is that most code is initially not written with portability in mind. Instead,
ports are requested by users or arise from the desire to switch Prolog dialect. Typically, we
want to achieve compatibility with the new Prolog dialect with minimal changes, often keeping
compatibility with the original dialect(s). This problem is well known from the C/Unix world
and we advise anyone to study the philosophy of GNU autoconf, from which we will illustrate
some highlights below.

The GNU autoconf suite, known to most people as configure, was an answer to the frustrating
life of Unix/C programmers when Unix dialects were about as abundant and poorly standardised as
Prolog dialects today. Writing a portable C program can only be achieved using cpp, the C preproces-
sor. The C preprocessor performs two tasks: macro expansion and conditional compilation. Prolog

SWI-Prolog 9.3 Reference Manual

http://www.gnu.org/software/autoconf/

C.1. SOME CONSIDERATIONS FOR WRITING PORTABLE CODE 777

realises macro expansion through term expansion/2 and goal expansion/2. Conditional
compilation is achieved using :- if(Condition) as explained in section 4.3.1. The situation
appears similar.

The important lesson learned from GNU autoconf is that the last resort for conditional compilation
to achieve portability is to switch on the platform or dialect. Instead, GNU autoconf allows you to
write tests for specific properties of the platform. Most of these are whether or not some function or
file is available. Then there are some standard tests for difficult-to-write-portable situations and finally
there is a framework that allows you to write arbitrary C programs and check whether they can be
compiled and/or whether they show the intended behaviour. Using a separate configure program
is needed in C, as you cannot perform C compilation step or run C programs from the C preprocessor.
In most Prolog environments we do not need this distinction as the compiler is integrated into the
runtime environment and Prolog has excellent reflexion capabilities.

We must learn from the distinction to test for features instead of platform (dialect), as this makes
the platform-specific code robust for future changes of the dialect. Suppose we need compare/3 as
defined in this manual. The compare/3 predicate is not part of the ISO standard, but many systems
support it and it is not unlikely it will become ISO standard or the intended dialect will start supporting
it. GNU autoconf strongly advises to test for the availability:

:- if(\+current_predicate(_, compare(_,_,_))).
compare(<, Term1, Term2) :-

Term1 @< Term2, !.
compare(>, Term1, Term2) :-

Term1 @> Term2, !.
compare(=, Term1, Term2) :-

Term1 == Term2.
:- endif.

This code is much more robust against changes to the intended dialect and, possibly at least as impor-
tant, will provide compatibility with dialects you didn’t even consider porting to right now.

In a more challenging case, the target Prolog has compare/3, but the semantics are different.
What to do? One option is to write a my compare/3 and change all occurrences in the code.
Alternatively you can rename calls using goal expansion/2 like below. This construct will not
only deal with Prolog dialects lacking compare/3 as well as those that only implement it for numeric
comparison or have changed the argument order. Of course, writing rock-solid code would require a
complete test-suite, but this example will probably cover all Prolog dialects that allow for conditional
compilation, have core ISO facilities and provide goal expansion/2, the things we claim a Prolog
dialect should have to start writing portable code for it.

:- if(\+catch(compare(<,a,b), _, fail)).
compare_standard_order(<, Term1, Term2) :-

Term1 @< Term2, !.
compare_standard_order(>, Term1, Term2) :-

Term1 @> Term2, !.
compare_standard_order(=, Term1, Term2) :-

Term1 == Term2.

goal_expansion(compare(Order, Term1, Term2),

SWI-Prolog 9.3 Reference Manual

778 APPENDIX C. COMPATIBILITY WITH OTHER PROLOG DIALECTS

compare_standard_order(Order, Term1, Term2)).
:- endif.

C.2 Notes on specific dialects

The level of maturity of the various dialect emulation implementations varies enormously. All of
them have been developed to realise portability for one or more, often large, programs. This section
provides some notes on emulating a particular dialect.

C.2.1 Notes on specific dialects

XSB Prolog compatibility emerged from a project to integrate XSB’s advanced tabling support in
SWI-Prolog (see section 7). This project has been made possible by Kyndi.2 The XSB dialect imple-
mentation has been created to share as much as possible of the XSB test suite as well as some larger
programs to evaluate both tabling implementations. The dialect emulation was extended to support
Pharos.3.

Emulating XSB is relatively complicated due to the large distance from the Quintus descendant
Prolog systems. Notably XSB’s name based module system is hard to map on SWI-Prolog’s predicate
based module system. As a result, only non-modular projects or projects with basic usage of modules
are supported. For the development of new projects that require modules more advanced module
support we suggest using Logtalk.

Loading XSB source files

SWI-Prolog’s emulation of XSB depends on the XSB preferred file name extension .P. This
extension is used by dialect/xsb/source to initiate a two phase loading process based on
term expansion/2 of the virtual term begin of file.

1. In the first phase the file is read with XSB compatible operator declarations and all directives
(:- Term) are extracted. The directives are used to determine that the file defines a module
(iff the file contains an export/1 directive) and construct a SWI-Prolog compatible module
declaration. As XSB has a two phase compiler where SWI has a single phase compiler, this is
also used to move some directives to the start of the file.

2. The second phase loads the file as normal.

To load a project in both XSB and SWI-Prolog it is advised to make sure all source files use the
.P file name extension. Next, write a SWI-Prolog loader in a .pl file that contains e.g.,

:- use_module(library(dialect/xsb/source)).

:- [main_file].

2This project was initiated by Benjamin Grosof and carried out in cooperation with Theresa Swift, David S. Warren and
Fabrizio Riguzzi.

3Pharos was used to evaluate incremental tabling (section 7.7), a protect with Edward Schwatz and Cory Cohen from
CMU

SWI-Prolog 9.3 Reference Manual

http://xsb.sourceforge.net/
https://kyndi.com/
https://github.com/cmu-sei/pharos
https://logtalk.org/

C.2. NOTES ON SPECIFIC DIALECTS 779

It is also possible to put the able use module/1 directive in your personal initialization file (see
section 2.2), after which XSB files can be loaded as normal SWI-Prolog files using

% swipl file.P

XSB code may depend on the gpp preprocessor. We do not provide gpp. It is however possible to
send XSB source files through gpp by loading library/dialect/xsb/gpp. This require gpp
to be accessible through the environment variable PATH or the file search path/2 alias path.
We refer to the gpp library for details.

C.2.2 The XSB import directive

The XSB import directive takes the form as below.

:- import p/1, q/2, ... from <lib>.

This import directive is resolved as follows:

• If the referenced library is found as a local file, it is loaded and the requested predicates are
imported.

• Otherwise, the referenced library is searched for in the dialect/xsb directory of the SWI-
Prolog library. If found, the predicates are imported from this library.

• The referenced predicates are searched for in SWI-Prolog built-in predicates and the SWI-
Prolog library. If found, they are made available if necessary.

SWI-Prolog 9.3 Reference Manual

Glossary of Terms D
anonymous [variable]

The variable _ is called the anonymous variable. Multiple occurrences of _ in a single term are
not shared.

arguments
Arguments are terms that appear in a compound term. A1 and a2 are the first and second
argument of the term myterm(A1, a2).

arity
Argument count (= number of arguments) of a compound term.

assert
Add a clause to a predicate. Clauses can be added at either end of the clause-list of a predicate.
See asserta/1 and assertz/1.

atom
Textual constant. Used as name for compound terms, to represent constants or text.

backtracking
Search process used by Prolog. If a predicate offers multiple clauses to solve a goal, they are
tried one-by-one until one succeeds. If a subsequent part of the proof is not satisfied with the
resulting variable binding, it may ask for an alternative solution (= binding of the variables),
causing Prolog to reject the previously chosen clause and try the next one.

binding [of a variable]
Current value of the variable. See also backtracking and query.

built-in [predicate]
Predicate that is part of the Prolog system. Built-in predicates cannot be redefined by the user,
unless this is overruled using redefine system predicate/1.

body
Part of a clause behind the neck operator (:-).

choice point
A choice point represents a choice in the search for a solution. Choice points are created if
multiple clauses match a query or using disjunction (;/2). On backtracking, the execution
state of the most recent choice point is restored and search continues with the next alternative
(i.e., next clause or second branch of ;/2).

SWI-Prolog 9.3 Reference Manual

781

clause
‘Sentence’ of a Prolog program. A clause consists of a head and body separated by the neck
operator (:-) or it is a fact. For example:

parent(X) :-
father(X, _).

Expressed as “X is a parent if X is a father of someone”. See also variable and predicate.

compile
Process where a Prolog program is translated to a sequence of instructions. See also interpreted.
SWI-Prolog always compiles your program before executing it.

compound [term]
Also called structure. It consists of a name followed by N arguments, each of which are terms.
N is called the arity of the term.

context module
If a term is referring to a predicate in a module, the context module is used to find the target
module. The context module of a goal is the module in which the predicate is defined, unless
this predicate is module transparent, in which case the context module is inherited from the
parent goal. See also module transparent/1 and meta-predicate.

dcg
Abbreviation for Definite Clause Grammar.

det [determinism]
Short for deterministic.

determinism
How many solutions a goal can provide. Values are ‘nondet’ (zero to infinite), ‘multi’ (one to
infinite), ‘det’ (exactly one) and ‘semidet’ (zero or one).

deterministic
A predicate is deterministic if it succeeds exactly one time without leaving a choice point.

dynamic [predicate]
A dynamic predicate is a predicate to which clauses may be asserted and from which clauses
may be retracted while the program is running. See also update view.

exported [predicate]
A predicate is said to be exported from a module if it appears in the public list. This im-
plies that the predicate can be imported into another module to make it visible there. See also
use module/[1,2].

fact
Clause without a body. This is called a fact because, interpreted as logic, there is no condition
to be satisfied. The example below states john is a person.

person(john).

SWI-Prolog 9.3 Reference Manual

782 APPENDIX D. GLOSSARY OF TERMS

fail
A goal is said to have failed if it could not be proven.

float
Computer’s crippled representation of a real number. Represented as ‘IEEE double’.

foreign
Computer code expressed in languages other than Prolog. SWI-Prolog can only cooperate
directly with the C and C++ computer languages.

functor
Combination of name and arity of a compound term. The term foo(a, b, c) is said to be a term
belonging to the functor foo/3. foo/0 is used to refer to the atom foo.

goal
Question stated to the Prolog engine. A goal is either an atom or a compound term. A goal
either succeeds, in which case the variables in the compound terms have a binding, or it fails if
Prolog fails to prove it.

hashing
Indexing technique used for quick lookup.

head
Part of a clause before the neck operator (:-). This is an atom or compound term.

imported [predicate]
A predicate is said to be imported into a module if it is defined in another module and made
available in this module. See also chapter 6.

indexing
Indexing is a technique used to quickly select candidate clauses of a predicate for a specific
goal. In most Prolog systems, indexing is done (only) on the first argument of the head. If this
argument is instantiated to an atom, integer, float or compound term with functor, hashing is
used to quickly select all clauses where the first argument may unify with the first argument of
the goal. SWI-Prolog supports just-in-time and multi-argument indexing. See section 2.17.

integer
Whole number. On all implementations of SWI-Prolog integers are at least 64-bit signed
values. When linked to the GNU GMP library, integer arithmetic is unbounded. See also
current prolog flag/2, flags bounded, max integer and min integer.

interpreted
As opposed to compiled, interpreted means the Prolog system attempts to prove a goal by
directly reading the clauses rather than executing instructions from an (abstract) instruction set
that is not or only indirectly related to Prolog.

instantiation [of an argument]
To what extend a term is bound to a value. Typical levels are ‘unbound’ (a variable), ‘ground’
(term without variables) or ‘partially bound’ (term with embedded variables).

SWI-Prolog 9.3 Reference Manual

783

meta-predicate
A predicate that reasons about other predicates, either by calling them, (re)defining them or
querying properties.

mode [declaration]
Declaration of an argument instantiation pattern for a predicate, often accompanied with a
determinism.

module
Collection of predicates. Each module defines a name-space for predicates. built-in predicates
are accessible from all modules. Predicates can be published (exported) and imported to make
their definition available to other modules.

module transparent [predicate]
A predicate that does not change the context module. Sometimes also called a meta-predicate.

multi [determinism]
A predicate is said to have determinism multi if it generates at least one answer.

multifile [predicate]
Predicate for which the definition is distributed over multiple source files. See multifile/1.

neck
Operator (:-) separating head from body in a clause.

nondet
Short for non deterministic.

non deterministic
A non deterministic predicate is a predicate that may fail or succeed any number of times.

operator
Symbol (atom) that may be placed before its operand (prefix), after its operand (postfix) or
between its two operands (infix).

In Prolog, the expression a+b is exactly the same as the canonical term +(a,b).

operand
Argument of an operator.

precedence
The priority of an operator. Operator precedence is used to interpret a+b*c as
+(a, *(b,c)).

predicate
Collection of clauses with the same functor (name/arity). If a goal is proved, the system looks
for a predicate with the same functor, then uses indexing to select candidate clauses and then
tries these clauses one-by-one. See also backtracking.

predicate indicator
Term of the form Name/Arity (traditional) or Name//Arity (ISO DCG proposal), where Name
is an atom and Arity a non-negative integer. It acts as an indicator (or reference) to a predicate
or DCG rule.

SWI-Prolog 9.3 Reference Manual

784 APPENDIX D. GLOSSARY OF TERMS

priority
In the context of operators a synonym for precedence.

program
Collection of predicates.

property
Attribute of an object. SWI-Prolog defines various * property predicates to query the status of
predicates, clauses. etc.

prove
Process where Prolog attempts to prove a query using the available predicates.

public list
List of predicates exported from a module.

query
See goal.

retract
Remove a clause from a predicate. See also dynamic, update view and assert.

semidet
Shorthand for

semi deterministic
.

semi deterministic
A predicate that is semi deterministic either fails or succeeds exactly once without a choice
point. See also deterministic.

shared
Two variables are called shared after they are unified. This implies if either of them is bound,
the other is bound to the same value:

?- A = B, A = a.
A = B, B = a.

singleton [variable]
Variable appearing only one time in a clause. SWI-Prolog normally warns for this to avoid
you making spelling mistakes. If a variable appears on purpose only once in a clause, write
it as _ (see anonymous). Rules for naming a variable and avoiding a warning are given in
section 2.15.1.

solution
Bindings resulting from a successfully proven goal.

structure
Synonym for compound term.

SWI-Prolog 9.3 Reference Manual

785

string
Used for the following representations of text: a packed array (see section 5.2, SWI-Prolog
specific), a list of character codes or a list of one-character atoms.

succeed
A goal is said to have succeeded if it has been proven.

term
Value in Prolog. A term is either a variable, atom, integer, float or compound term. In addition,
SWI-Prolog also defines the type string.

transparent
See module transparent.

unify
Prolog process to make two terms equal by assigning variables in one term to values at the
corresponding location of the other term. For example:

?- foo(a, B) = foo(A, b).
A = a,
B = b.

Unlike assignment (which does not exist in Prolog), unification is not directed.

update view
How Prolog behaves when a dynamic predicate is changed while it is running. There are two
models. In most older Prolog systems the change becomes immediately visible to the goal, in
modern systems including SWI-Prolog, the running goal is not affected. Only new goals ‘see’
the new definition.

variable
A Prolog variable is a value that ‘is not yet bound’. After binding a variable, it cannot be
modified. Backtracking to a point in the execution before the variable was bound will turn it
back into a variable:

?- A = b, A = c.
false.

?- (A = b; true; A = c).
A = b ;
true ;
A = c .

See also unify.

SWI-Prolog 9.3 Reference Manual

SWI-Prolog License Conditions
and Tools E
As of version 7.4.01, the SWI-Prolog source code is distributed under the Simplified BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This, unfortunately, does not mean you can any version of SWI-Prolog under the above license.
The SWI-Prolog core may be linked to libraries that are more restrictive and in addition your code
may have loaded extension packages that have more restrictive conditions. In particular, the core is
by default linked to libgmp, distributed under the Lesser GNU Public license.

The above implies you need to configure and recompile the system without these components.
For this we provide options to the configure script:

./configure --without-gpl

./configure --without-lgpl

1Actually pre-release 7.3.33

SWI-Prolog 9.3 Reference Manual

https://opensource.org/licenses/BSD-2-Clause
https://gmplib.org/

E.1. CONTRIBUTING TO THE SWI-PROLOG PROJECT 787

The GNU MP Bignum Library provides unbounded integers, rational numbers and some crypto-
graphical functionality. As libgmp is provided under the Lesser GNU Public license it may legally be
combined with proprietary software as long as libgmp is dynamically linked (default) and the end user
can replace the libgmp shared object and use your application with their (possibly modified) version
of libgmp. In practice this leads to problems if the application is not accessible (e.g., embedded in
closed hardware) or you want to avoid customers to peek around in the process memory as they can
easily do so by adding a backdoor to the modified LGPL component. Note that such a protection is
in general not possible anyway if the customer has unrestricted access to the machine on which the
application runs.

E.1 Contributing to the SWI-Prolog project

To reach maximal coherence we will, as a rule of thumb, only accept new code that has the Simplified
BSD license and existing code with a permissive license such as MIT, Apache, BSD-3, etc. In excep-
tional cases we may accept code with GPL or LGPL conditions. Such code must be tagged using a
license/1 directive (Prolog) or a call to PL license() for foreign code and, if they are part of
the core, the code must be excluded using the --without-gpl or --without-lgpl option.

E.2 Software support to keep track of license conditions

Given the above, it is possible that SWI-Prolog packages and extensions rely on the GPL, LGPL or
other licenses. The predicates below allow for registering license requirements for Prolog files and
foreign modules. The predicate license/0 reports which components from the currently config-
ured system are distributed under non-permissive open source licenses and therefore may need to be
replaced to suit your requirements.

license
Evaluate the license conditions of all loaded components. If the system contains one or more
components that are licensed under GPL-like restrictions the system indicates this program
may only be distributed under the GPL license as well as which components prohibit the use of
other license conditions. Likewise for for LGPL components.

license(+LicenseId, +Component)
Register the fact that Component is distributed under a license identified by LicenseId. Known
license identifiers can be listed using known licenses/0. A new license can be registered
as a known language using a declaration like below. The second argument defines the category
if the license, which is one of gpl, lgpl, permissive or proprietary.

:- multifile license:license/3.

license:license(mylicense, permissive,
[comment(’My personal license’),

url(’http://www.mine.org/license.html’)
]).

:- license(mylicense).

SWI-Prolog 9.3 Reference Manual

788 APPENDIX E. SWI-PROLOG LICENSE CONDITIONS AND TOOLS

license(+LicenseId)
Intended as a directive in Prolog source files. It takes the current filename and calls
license/2.

void PL license(const char *LicenseId, const char *Component)
Intended for the install() procedure of foreign libraries. This call can be made before
PL initialise().

known licenses
List all licenses known to the system. This does not imply the system contains code covered by
the listed licenses. See license/2.

E.3 License conditions inherited from used code

E.3.1 Cryptographic routines

Cryptographic routines are used in variant sha1/2 and crypt. These routines are provided
under the following conditions:

Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.

LICENSE TERMS

The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:

1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;

2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;

3. the copyright holder’s name is not used to endorse products
built using this software without specific written permission.

ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.

DISCLAIMER

This software is provided ’as is’ with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.

SWI-Prolog 9.3 Reference Manual

Summary F
F.1 Predicates

The predicate summary is used by the Prolog predicate apropos/1 to suggest predicates from a
keyword.

@/2 Call using calling context
!/0 Cut (discard choicepoints)
$/0 Discard choicepoints and demand deterministic success
$/1 Verify goal succeeds deterministically
,/2 Conjunction of goals
->/2 If-then-else
*->/2 Soft-cut
./2 Consult. Also functional notation
:</2 Select keys from a dict
:=/2 WASM: Call JavaScript
;/2 Disjunction of two goals
</2 Arithmetic smaller
=/2 True when arguments are unified
=../2 “Univ.” Term to list conversion
=:=/2 Arithmetic equality
=</2 Arithmetic smaller or equal
==/2 Test for strict equality
=@=/2 Test for structural equality (variant)
=\=/2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
>:</2 Partial dict unification
?=/2 Test of terms can be compared now
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+/1 Negation by failure. Same as not/1
\=/2 True if arguments cannot be unified
\==/2 True if arguments are not strictly equal
\=@=/2 Not structural identical
ˆ/2 Existential quantification (bagof/3, setof/3)
|/2 Disjunction in DCGs. Same as ;/2

SWI-Prolog 9.3 Reference Manual

790 APPENDIX F. SUMMARY

{}/1 DCG escape; constraints
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abolish all tables/0 Abolish computed tables
abolish module tables/1 Abolish all tables in a module
abolish monotonic tables/0 Abolish all monotonic tables
abolish nonincremental tables/0 Abolish non-automatic tables
abolish nonincremental tables/1 Abolish non-automatic tables
abolish private tables/0 Abolish tables of this thread
abolish shared tables/0 Abolish tables shared between threads
abolish table subgoals/1 Abolish tables for a goal
abort/0 Abort execution, return to top level
absolute file name/2 Get absolute path name
absolute file name/3 Get absolute path name with options
answer count restraint/0 Undefined answer due to max answers
access file/2 Check access permissions of a file
acyclic term/1 Test term for cycles
add import module/3 Add module to the auto-import list
add nb set/2 Add term to a non-backtrackable set
add nb set/3 Add term to a non-backtrackable set
append/1 Append to a file
apple current locale identifier/1 Get Apple locale info
apply/2 Call goal with additional arguments
apropos/1 online help Search manual
arg/3 Access argument of a term
assoc to list/2 Convert association tree to list
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertion/1 Make assertions about your program
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
attach console/0 Attach I/O console to thread
attach packs/0 Attach add-ons
attach packs/1 Attach add-ons from directory
attach packs/2 Attach add-ons from directory
attribute goals/3 Project attributes to goals
attr unify hook/2 Attributed variable unification hook
attr portray hook/2 Attributed variable print hook
attvar/1 Type test for attributed variable
at end of stream/0 Test for end of file on input
at end of stream/1 Test for end of file on stream
at halt/1 Register goal to run at halt/1
atom/1 Type check for an atom
atom chars/2 Convert between atom and list of characters
atom codes/2 Convert between atom and list of characters codes

SWI-Prolog 9.3 Reference Manual

F.1. PREDICATES 791

atom concat/3 Concatenate two atoms
atom length/2 Determine length of an atom
atom number/2 Convert between atom and number
atom prefix/2 Test for start of atom
atom string/2 Conversion between atom and string
atom to term/3 Convert between atom and term
atomic/1 Type check for primitive
atomic concat/3 Concatenate two atomic values to an atom
atomic list concat/2 Append a list of atomics
atomic list concat/3 Append a list of atomics with separator
atomics to string/2 Concatenate list of inputs to a string
atomics to string/3 Concatenate list of inputs to a string
autoload/1 Declare a file for autoloading
autoload/2 Declare a file for autoloading specific predicates
autoload all/0 Autoload all predicates now
autoload path/1 Add directories for autoloading
await/2 WASM: Wait for a Promise
b getval/2 Fetch backtrackable global variable
b set dict/3 Destructive assignment on a dict
b setval/2 Assign backtrackable global variable
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
blob/2 Type check for a blob
bounded number/3 Number between bounds
break/0 Start interactive top level
break hook/6 (hook) Debugger hook
byte count/2 Byte-position in a stream
call/1 Call a goal
call/[2..] Call with additional arguments
call cleanup/2 Guard a goal with a cleanup-handler
call dcg/3 As phrase/3 without type checking
call delays/2 Get the condition associated with an answer
call residue vars/2 Find residual attributed variables
call residual program/2 Get residual program associated with an answer
call shared object function/2 UNIX: Call C-function in shared (.so) file
call with depth limit/3 Prove goal with bounded depth
call with inference limit/3 Prove goal in limited inferences
callable/1 Test for atom or compound term
cancel halt/1 Cancel halt/0 from an at halt/1 hook
catch/3 Call goal, watching for exceptions
char code/2 Convert between character and character code
char conversion/2 Provide mapping of input characters
char type/2 Classify characters
character count/2 Get character index on a stream
chdir/1 Compatibility: change working directory
chr constraint/1 CHR Constraint declaration
chr show store/1 List suspended CHR constraints

SWI-Prolog 9.3 Reference Manual

792 APPENDIX F. SUMMARY

chr trace/0 Start CHR tracer
chr type/1 CHR Type declaration
chr notrace/0 Stop CHR tracer
chr leash/1 Define CHR leashed ports
chr option/2 Specify CHR compilation options
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clause property/2 Get properties of a clause
close/1 Close stream
close/2 Close stream (forced)
close dde conversation/1 Win32: Close DDE channel
close shared object/1 UNIX: Close shared library (.so file)
collation key/2 Sort key for locale dependent ordering
comment hook/3 (hook) handle comments in sources
compare/3 Compare, using a predicate to determine the order
compile aux clauses/1 Compile predicates for goal expansion/2
compile predicates/1 Compile dynamic code to static
compiling/0 Is this a compilation run?
compound/1 Test for compound term
compound name arity/3 Name and arity of a compound term
compound name arguments/3 Name and arguments of a compound term
code type/2 Classify a character-code
consult/1 Read (compile) a Prolog source file
context module/1 Get context module of current goal
convert time/8 Break time stamp into fields
convert time/2 Convert time stamp to string
copy stream data/2 Copy all data from stream to stream
copy stream data/3 Copy n bytes from stream to stream
copy predicate clauses/2 Copy clauses between predicates
copy term/2 Make a copy of a term
copy term/3 Copy a term and obtain attribute-goals
copy term/4 Copy part of the variables in a term
copy term nat/2 Make a copy of a term without attributes
copy term nat/4 Copy part of the variables in a term
create prolog flag/3 Create a new Prolog flag
current arithmetic function/1 Examine evaluable functions
current atom/1 Examine existing atoms
current blob/2 Examine typed blobs
current char conversion/2 Query input character mapping
current engine/1 Enumerate known engines
current flag/1 Examine existing flags
current foreign library/2 shlib Examine loaded shared libraries (.so files)
current format predicate/2 Enumerate user-defined format codes
current functor/2 Examine existing name/arity pairs
current input/1 Get current input stream
current key/1 Examine existing database keys
current locale/1 Get the current locale

SWI-Prolog 9.3 Reference Manual

F.1. PREDICATES 793

current module/1 Examine existing modules
current op/3 Examine current operator declarations
current output/1 Get the current output stream
current predicate/1 Examine existing predicates (ISO)
current predicate/2 Examine existing predicates
current signal/3 Current software signal mapping
current stream/3 Examine open streams
current table/2 Find answer table for a variant
current transaction/1 Detect encapsulating transactions
current trie/1 Enumerate known tries
cyclic term/1 Test term for cycles
day of the week/2 Determine ordinal-day from date
date time stamp/2 Convert date structure to time-stamp
date time value/3 Extract info from a date structure
dcg translate rule/2 Source translation of DCG rules
dcg translate rule/4 Source translation of DCG rules
dde current connection/2 Win32: Examine open DDE connections
dde current service/2 Win32: Examine DDE services provided
dde execute/2 Win32: Execute command on DDE server
dde register service/2 Win32: Become a DDE server
dde request/3 Win32: Make a DDE request
dde poke/3 Win32: POKE operation on DDE server
dde unregister service/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debug/1 Select topic for debugging
debug/3 Print debugging message on topic
debug control hook/1 (hook) Extend spy/1, etc.
debugging/0 Show debugger status
debugging/1 Test where we are debugging topic
default module/2 Query module inheritance
del attr/2 Delete attribute from variable
del attrs/1 Delete all attributes from variable
del dict/4 Delete Key-Value pair from a dict
delays residual program/2 Get the residual program for an answer
delete directory/1 Remove a folder from the file system
delete file/1 Remove a file from the file system
delete import module/2 Remove module from import list
det/1 Declare predicates as deterministic
deterministic/1 Test determinicity of current clause
dict create/3 Create a dict from data
dict pairs/3 Convert between dict and list of pairs
dict same keys/2 True when dicts have the same keys
dif/2 Constrain two terms to be different
directory files/2 Get entries of a directory/folder
discontiguous/1 Indicate distributed definition of a predicate
divmod/4 Compute quotient and remainder of two integers
downcase atom/2 Convert atom to lower-case

SWI-Prolog 9.3 Reference Manual

794 APPENDIX F. SUMMARY

duplicate term/2 Create a copy of a term
dwim match/2 Atoms match in “Do What I Mean” sense
dwim match/3 Atoms match in “Do What I Mean” sense
dwim predicate/2 Find predicate in “Do What I Mean” sense
dynamic/1 Indicate predicate definition may change
dynamic/2 Indicate predicate definition may change
edit/0 Edit current script- or associated file
edit/1 Edit a file, predicate, module (extensible)
elif/1 Part of conditional compilation (directive)
else/0 Part of conditional compilation (directive)
empty assoc/1 Create/test empty association tree
empty nb set/1 Test/create an empty non-backtrackable set
encoding/1 Define encoding inside a source file
endif/0 End of conditional compilation (directive)
engine create/3 Create an interactor
engine create/4 Create an interactor
engine destroy/1 Destroy an interactor
engine fetch/1 Get term from caller
engine next/2 Ask interactor for next term
engine next reified/2 Ask interactor for next term
engine post/2 Send term to an interactor
engine post/3 Send term to an interactor and wait for reply
engine self/1 Get handle to running interactor
engine yield/1 Make term available to caller
ensure loaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause
exception/3 (hook) Handle runtime exceptions
exists directory/1 Check existence of directory
exists file/1 Check existence of file
exists source/1 Check existence of a Prolog source
exists source/2 Check existence of a Prolog source
expand answer/2 Expand answer of query (deprecated)
expand answer/3 Expand answer of query
expand file name/2 Wildcard expansion of file names
expand file search path/2 Wildcard expansion of file paths
expand goal/2 Compiler: expand goal in clause-body
expand goal/4 Compiler: expand goal in clause-body
expand query/4 Expanded entered query
expand term/2 Compiler: expand read term into clause(s)
expand term/4 Compiler: expand read term into clause(s)
expects dialect/1 For which Prolog dialect is this code written?
explain/1 explain Explain argument
explain/2 explain 2nd argument is explanation of first
export/1 Export a predicate from a module
fail/0 Always false
false/0 Always false
fast term serialized/2 Fast term (de-)serialization

SWI-Prolog 9.3 Reference Manual

F.1. PREDICATES 795

fast read/2 Read binary term serialization
fast write/2 Write binary term serialization
current prolog flag/2 Get system configuration parameters
file base name/2 Get file part of path
file directory name/2 Get directory part of path
file name extension/3 Add, remove or test file extensions
file search path/2 Define path-aliases for locating files
find chr constraint/1 Returns a constraint from the store
findall/3 Find all solutions to a goal
findall/4 Difference list version of findall/3
findnsols/4 Find first N solutions
findnsols/5 Difference list version of findnsols/4
fill buffer/1 Fill the input buffer of a stream
flag/3 Simple global variable system
float/1 Type check for a floating point number
float class/2 Classify (special) floats
float parts/4 Get mantissa and exponent of a float
flush output/0 Output pending characters on current stream
flush output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format time/3 C strftime() like date/time formatter
format time/4 date/time formatter with explicit locale
format predicate/2 Program format/[1,2]
term attvars/2 Find attributed variables in a term
term variables/2 Find unbound variables in a term
term variables/3 Find unbound variables in a term
text to string/2 Convert arbitrary text to a string
freeze/2 Delay execution until variable is bound
frozen/2 Query delayed goals on var
functor/3 Get name and arity of a term or construct a term
functor/4 Get name and arity of a term or construct a term
garbage collect/0 Invoke the garbage collector
garbage collect atoms/0 Invoke the atom garbage collector
garbage collect clauses/0 Invoke clause garbage collector
gen assoc/3 Enumerate members of association tree
gen nb set/2 Generate members of non-backtrackable set
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream
get assoc/3 Fetch key from association tree
get assoc/5 Fetch key from association tree
get attr/3 Fetch named attribute from a variable
get attrs/2 Fetch all attributes of a variable
get byte/1 Read next byte (ISO)

SWI-Prolog 9.3 Reference Manual

796 APPENDIX F. SUMMARY

get byte/2 Read next byte from a stream (ISO)
get char/1 Read next character as an atom (ISO)
get char/2 Read next character from a stream (ISO)
get code/1 Read next character (ISO)
get code/2 Read next character from a stream (ISO)
get dict/3 Get the value associated to a key from a dict
get dict/5 Replace existing value in a dict
get flag/2 Get value of a flag
get single char/1 Read next character from the terminal
get string code/3 Get character code at index in string
get time/1 Get current time
get0/1 Read next character
get0/2 Read next character from a stream
getenv/2 Get shell environment variable
goal expansion/2 Hook for macro-expanding goals
goal expansion/4 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
gdebug/0 Debug using graphical tracer
gspy/1 Spy using graphical tracer
gtrace/0 Trace using graphical tracer
guitracer/0 Install hooks for the graphical debugger
gxref/0 Cross-reference loaded program
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status
term hash/2 Hash-value of ground term
term hash/4 Hash-value of term with depth limit
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
help hook/1 (hook) User-hook in the help-system
if/1 Start conditional compilation (directive)
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module
import module/2 Query import modules
in pce thread/1 Run goal in XPCE thread
in pce thread sync/1 Run goal in XPCE thread
include/1 Include a file with declarations
initialization/1 Initialization directive
initialization/2 Initialization directive
initialize/0 Run program initialization
instance/2 Fetch clause or record from reference
integer/1 Type check for integer
interactor/0 Start new thread with console and top level
is/2 Evaluate arithmetic expression
is absolute file name/1 True if arg defines an absolute path
is assoc/1 Verify association list
is async/0 WASM: Test Prolog can call await/2
is dict/1 Type check for a dict

SWI-Prolog 9.3 Reference Manual

F.1. PREDICATES 797

is dict/2 Type check for a dict in a class
is engine/1 Type check for an engine handle
is list/1 Type check for a list
is message queue/1 Type check for a message queue
is most general term/1 Type check for general term
is object/1 WASM: Test JavaScript object
is object/2 WASM: Test JavaScript object and class
is stream/1 Type check for a stream handle
is trie/1 Type check for a trie handle
is thread/1 Type check for an thread handle
join threads/0 Join all terminated threads interactively
keysort/2 Sort, using a key
known licenses/0 Print known licenses
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library directory/1 (hook) Directories holding Prolog libraries
license/0 Evaluate licenses of loaded modules
license/1 Define license for current file
license/2 Define license for named module
line count/2 Line number on stream
line position/2 Character position in line on stream
list debug topics/0 List registered topics for debugging
list to assoc/2 Create association tree from list
list to set/2 Remove duplicates from a list
list strings/0 Help porting to version 7
load files/1 Load source files
load files/2 Load source files with options
load foreign library/1 shlib Load shared library (.so file)
load foreign library/2 shlib Load shared library (.so file)
locale create/3 Create a new locale object
locale destroy/1 Destroy a locale object
locale property/2 Query properties of locale objects
locale sort/2 Language dependent sort of atoms
make/0 Reconsult all changed source files
make directory/1 Create a folder on the file system
make library index/1 Create autoload file INDEX.pl
malloc property/1 Property of the allocator
make library index/2 Create selective autoload file INDEX.pl
map assoc/2 Map association tree
map assoc/3 Map association tree
max assoc/3 Highest key in association tree
memberchk/2 Deterministic member/2
message hook/3 Intercept print message/2
message line element/2 (hook) Intercept print message lines/3
message property/2 (hook) Define display of a message
message queue create/1 Create queue for thread communication

SWI-Prolog 9.3 Reference Manual

798 APPENDIX F. SUMMARY

message queue create/2 Create queue for thread communication
message queue destroy/1 Destroy queue for thread communication
message queue property/2 Query message queue properties
message queue set/2 Set a message queue property
message to string/2 Translate message-term to string
meta predicate/1 Declare access to other predicates
min assoc/3 Lowest key in association tree
mode/1 module
1Query/set current type-in module module/2 Declare a module
module/3 Declare a module with language options
module property/2 Find properties of a module
module transparent/1 Indicate module based meta-predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
mutex create/1 Create a thread-synchronisation device
mutex create/2 Create a thread-synchronisation device
mutex destroy/1 Destroy a mutex
mutex lock/1 Become owner of a mutex
mutex property/2 Query mutex properties
mutex statistics/0 Print statistics on mutex usage
mutex trylock/1 Become owner of a mutex (non-blocking)
mutex unlock/1 Release ownership of mutex
mutex unlock all/0 Release ownership of all mutexes
name/2 Convert between atom and list of character codes
nb current/2 Enumerate non-backtrackable global variables
nb delete/1 Delete a non-backtrackable global variable
nb getval/2 Fetch non-backtrackable global variable
nb link dict/3 Non-backtrackable assignment to dict
nb linkarg/3 Non-backtrackable assignment to term
nb linkval/2 Assign non-backtrackable global variable
nb set to list/2 Convert non-backtrackable set to list
nb set dict/3 Non-backtrackable assignment to dict
nb setarg/3 Non-backtrackable assignment to term
nb setval/2 Assign non-backtrackable global variable
nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
nodebug/1 Disable debug-topic
noguitracer/0 Disable the graphical debugger
nonground/2 Term is not ground due to witness
nonvar/1 Type check for bound term
nonterminal/1 Set predicate property
noprofile/1 Hide (meta-) predicate for the profiler
noprotocol/0 Disable logging of user interaction
normalize space/2 Normalize white space
nospy/1 Remove spy point
nospyall/0 Remove all spy points

SWI-Prolog 9.3 Reference Manual

F.1. PREDICATES 799

not/1 Negation by failure (argument not provable). Same as \+/1
not exists/1 Tabled negation for non-ground or non-tabled goals
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth clause/3 N-th clause of a predicate
nth integer root and remainder/4 Integer root and remainder
number/1 Type check for integer or float
number chars/2 Convert between number and one-char atoms
number codes/2 Convert between number and character codes
number string/2 Convert between number and string
numbervars/3 Number unbound variables of a term
numbervars/4 Number unbound variables of a term
on signal/3 Handle a software signal
once/1 Call a goal deterministically
op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)
open dde conversation/3 Win32: Open DDE channel
open null stream/1 Open a stream to discard output
open resource/3 Open a program resource as a stream
open shared object/2 UNIX: Open shared library (.so file)
open shared object/3 UNIX: Open shared library (.so file)
open source hook/3 (hook) Open a source file
open string/2 Open a string as a stream
ord list to assoc/2 Convert ordered list to assoc
parse time/2 Parse text to a time-stamp
parse time/3 Parse text to a time-stamp
pce dispatch/1 Run XPCE GUI in separate thread
pce call/1 Run goal in XPCE GUI thread
peek byte/1 Read byte without removing
peek byte/2 Read byte without removing
peek char/1 Read character without removing
peek char/2 Read character without removing
peek code/1 Read character-code without removing
peek code/2 Read character-code without removing
peek string/3 Read a string without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
phrase from quasi quotation/2 Parse quasi quotation with DCG
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour of print/1
predicate property/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
print/1 Print a term
print/2 Print a term on a stream
print message/2 Print message from (exception) term

SWI-Prolog 9.3 Reference Manual

800 APPENDIX F. SUMMARY

print message lines/3 Print message to stream
profile/1 Obtain execution statistics
profile/2 Obtain execution statistics
profile count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler
prolog/0 Run interactive top level
prolog alert signal/2 Query/set unblock signal
prolog choice attribute/3 Examine the choice point stack
prolog current choice/1 Reference to most recent choice point
prolog current frame/1 Reference to goal’s environment stack
prolog cut to/1 Realise global cuts
prolog edit:locate/2 Locate targets for edit/1
prolog edit:locate/3 Locate targets for edit/1
prolog edit:edit source/1 Call editor for edit/1
prolog edit:edit command/2 Specify editor activation
prolog edit:load/0 Load edit/1 extensions
prolog exception hook/5 Rewrite exceptions
prolog file type/2 Define meaning of file extension
prolog frame attribute/3 Obtain information on a goal environment
prolog ide/1 Program access to the development environment
prolog interrupt/0 Allow debugging a thread
prolog list goal/1 (hook) Intercept tracer ’L’ command
prolog listen/2 Listen to Prolog events
prolog listen/3 Listen to Prolog events
prolog load context/2 Context information for directives
prolog load file/2 (hook) Program load files/2
prolog skip level/2 Indicate deepest recursion to trace
prolog stack property/2 Query properties of the stacks
prolog to os filename/2 Convert between Prolog and OS filenames
prolog trace interception/4 user Intercept the Prolog tracer
prolog unlisten/2 Stop listening to Prolog events
project attributes/2 Project constraints to query variables
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used by read/1
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged
public/1 Declaration that a predicate may be called
put/1 Write a character
put/2 Write a character on a stream
put assoc/4 Add Key-Value to association tree
put attr/3 Put attribute on a variable
put attrs/2 Set/replace all attributes on a variable
put byte/1 Write a byte
put byte/2 Write a byte on a stream
put char/1 Write a character
put char/2 Write a character on a stream

SWI-Prolog 9.3 Reference Manual

F.1. PREDICATES 801

put code/1 Write a character-code
put code/2 Write a character-code on a stream
put dict/3 Add/replace multiple keys in a dict
put dict/4 Add/replace a single key in a dict
qcompile/1 Compile source to Quick Load File
qcompile/2 Compile source to Quick Load File
qsave program/1 Create runtime application
qsave program/2 Create runtime application
quasi quotation syntax/1 Declare quasi quotation syntax
quasi quotation syntax error/1 Raise syntax error
radial restraint/0 Tabling radial restraint was violated
random property/1 Query properties of random generation
rational/1 Type check for a rational number
rational/3 Decompose a rational
read/1 Read Prolog term
read/2 Read Prolog term from stream
read clause/3 Read clause from stream
read link/3 Read a symbolic link
read pending codes/3 Fetch buffered input from a stream
read pending chars/3 Fetch buffered input from a stream
read string/3 Read a number of characters into a string
read string/5 Read string up to a delimiter
read term/2 Read term with options
read term/3 Read term with options from stream
read term from atom/3 Read term with options from atom
read term with history/2 Read term with command line history
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database
recorded/3 Obtain term from the database
recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefine system predicate/1 Abolish system definition
reexport/1 Load files and re-export the imported predicates
reexport/2 Load predicates from a file and re-export it
reload foreign libraries/0 Reload DLLs/shared objects
reload library index/0 Force reloading the autoload index
rename file/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
reset/3 Wrapper for delimited continuations
reset gensym/1 Reset a gensym key
reset gensym/0 Reset all gensym keys
reset profiler/0 Clear statistics obtained by the profiler
resource/2 Declare a program resource
resource/3 Declare a program resource
retract/1 Remove clause from the database

SWI-Prolog 9.3 Reference Manual

802 APPENDIX F. SUMMARY

retractall/1 Remove unifying clauses from the database
same file/2 Succeeds if arguments refer to same file
same term/2 Test terms to be at the same address
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
select dict/2 Select matching attributes from a dict
select dict/3 Select matching attributes from a dict
set end of stream/1 Set physical end of an open file
set flag/2 Set value of a flag
set input/1 Set current input stream from a stream
set locale/1 Set the default local
set malloc/1 Set memory allocator property
set module/1 Set properties of a module
set output/1 Set current output stream from a stream
set prolog IO/3 Prepare streams for interactive session
set prolog flag/2 Define a system feature
set prolog gc thread/1 Control the gc thread
set prolog stack/2 Modify stack characteristics
set random/1 Control random number generation
set stream/2 Set stream attribute
set stream position/2 Seek stream to position
set system IO/3 Rebind stdin/stderr/stdout
setup call cleanup/3 Undo side-effects safely
setup call catcher cleanup/4 Undo side-effects safely
setarg/3 Destructive assignment on term
setenv/2 Set shell environment variable
setlocale/3 Set/query C-library regional information
setof/3 Find all unique solutions to a goal
shell/1 Execute OS command
shell/2 Execute OS command
shift/1 Shift control to the closest reset/3
shift for copy/1 Shift control to the closest reset/3
show profile/1 Show results of the profiler
sig atomic/1 Run goal without handling signals
sig block/1 Block matching thread signals
sig pending/1 Query pending signals
sig remove/2 Remove pending signals
sig unblock/1 Unblock matching thread signals
size abstract term/3 Abstract a term (tabling support)
size file/2 Get size of a file in characters
size nb set/2 Determine size of non-backtrackable set
skip/1 Skip to character in current input
skip/2 Skip to character on stream
sleep/1 Suspend execution for specified time
snapshot/1 Run goal in isolation

SWI-Prolog 9.3 Reference Manual

F.1. PREDICATES 803

sort/2 Sort elements in a list
sort/4 Sort elements in a list
source exports/2 Check whether source exports a predicate
source file/1 Examine currently loaded source files
source file/2 Obtain source file of predicate
source file property/2 Information about loaded files
source location/2 Location of last read term
split string/4 Break a string into substrings
spy/1 Force tracer on specified predicate
stamp date time/3 Convert time-stamp to date structure
statistics/2 Obtain collected statistics
stream pair/3 Create/examine a bi-directional stream
stream position data/3 Access fields from stream position
stream property/2 Get stream properties
string/1 Type check for string
string bytes/3 Translates between text and bytes in encoding
string concat/3 atom concat/3 for strings
string length/2 Determine length of a string
string chars/2 Conversion between string and list of characters
string codes/2 Conversion between string and list of character codes
string code/3 Get or find a character code in a string
string lower/2 Case conversion to lower case
string upper/2 Case conversion to upper case
string predicate/1 (hook) Predicate contains strings
strip module/3 Extract context module and term
style check/1 Change level of warnings
sub atom/5 Take a substring from an atom
sub atom icasechk/3 Case insensitive substring match
sub string/5 Take a substring from a string
subsumes term/2 One-sided unification test
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string
swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
table/1 Declare predicate to be tabled
tabled call/1 Helper for not exists/1
tdebug/0 Switch all threads into debug mode
tdebug/1 Switch a thread into debug mode
tell/1 Change current output stream
telling/1 Query current output stream
term expansion/2 (hook) Convert term before compilation
term expansion/4 (hook) Convert term before compilation
term singletons/2 Find singleton variables in a term
term string/2 Read/write a term from/to a string
term string/3 Read/write a term from/to a string
term subsumer/3 Most specific generalization of two terms

SWI-Prolog 9.3 Reference Manual

804 APPENDIX F. SUMMARY

term to atom/2 Convert between term and atom
thread affinity/3 Query and control the affinity mask
thread alias/1 Set the alias name of a thread
thread at exit/1 Register goal to be called at exit
thread create/2 Create a new Prolog task
thread create/3 Create a new Prolog task
thread detach/1 Make thread cleanup after completion
thread exit/1 Terminate Prolog task with value
thread get message/1 Wait for message
thread get message/2 Wait for message in a queue
thread get message/3 Wait for message in a queue
thread idle/2 Reduce footprint while waiting
thread initialization/1 Run action at start of thread
thread join/1 Wait for Prolog task-completion
thread join/2 Wait for Prolog task-completion
thread local/1 Declare thread-specific clauses for a predicate
thread message hook/3 Thread local message hook/3
thread peek message/1 Test for message
thread peek message/2 Test for message in a queue
thread property/2 Examine Prolog threads
thread self/1 Get identifier of current thread
thread send message/2 Send message to another thread
thread send message/3 Send message to another thread
thread setconcurrency/2 Number of active threads
thread signal/2 Execute goal in another thread
thread statistics/3 Get statistics of another thread
thread update/2 Update a module and signal waiters
thread wait/2 Wait for a goal to become true
threads/0 List running threads
throw/1 Raise an exception (see catch/3)
time/1 Determine time needed to execute goal
time file/2 Get last modification time of file
tmp file/2 Create a temporary filename
tmp file stream/3 Create a temporary file and open it
tnodebug/0 Switch off debug mode in all threads
tnodebug/1 Switch off debug mode in a thread
tnot/1 Tabled negation
told/0 Close current output
tprofile/1 Profile a thread for some period
trace/0 Start the tracer
tracing/0 Query status of the tracer
transaction/1 Run goal in a transaction
transaction/2 Run goal in a transaction
transaction/3 Run goal in a transaction
transaction updates/1 Updates to be committed in a transaction
trie delete/3 Remove term from trie
trie destroy/1 Destroy a trie

SWI-Prolog 9.3 Reference Manual

F.1. PREDICATES 805

trie gen/3 Get all terms from a trie
trie gen compiled/2 Get all terms from a trie
trie gen compiled/3 Get all terms from a trie
trie insert/2 Insert term into a trie
trie insert/3 Insert term into a trie
trie insert/4 Insert term into a trie
trie lookup/3 Lookup a term in a trie
trie new/1 Create a trie
trie property/2 Examine a trie’s properties
trie update/3 Update associated value in trie
trie term/2 Get term from a trie by handle
trim heap/0 Release unused malloc() resources
trim stacks/0 Release unused stack resources
tripwire/2 (hook) Handle a tabling tripwire event
true/0 Succeed
tspy/1 Set spy point and enable debugging in all threads
tspy/2 Set spy point and enable debugging in a thread
tty get capability/3 Get terminal parameter
tty goto/2 Goto position on screen
tty put/2 Write control string to terminal
tty size/2 Get row/column size of the terminal
ttyflush/0 Flush output on terminal
undefined/0 Well Founded Semantics: true nor false
undo/1 Schedule goal for backtracking
unify with occurs check/2 Logically sound unification
unifiable/3 Determining binding required for unification
unknown/2 Trap undefined predicates
unload file/1 Unload a source file
unload foreign library/1 shlib Detach shared library (.so file)
unload foreign library/2 shlib Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
untable/1 Remove tabling instrumentation
upcase atom/2 Convert atom to upper-case
use foreign library/1 Load DLL/shared object (directive)
use foreign library/2 Load DLL/shared object (directive)
use module/1 Import a module
use module/2 Import predicates from a module
valid string goal/1 (hook) Goal handles strings
var/1 Type check for unbound variable
var number/2 Check that var is numbered by numbervars
var property/2 Variable properties during macro expansion
variant sha1/2 Term-hash for term-variants
variant hash/2 Term-hash for term-variants
version/0 Print system banner message
version/1 Add messages to the system banner
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved

SWI-Prolog 9.3 Reference Manual

806 APPENDIX F. SUMMARY

wait for input/3 Wait for input with optional timeout
when/2 Execute goal when condition becomes true
wildcard match/2 POSIX style glob pattern matching
wildcard match/3 POSIX style glob pattern matching
win add dll directory/1 Add directory to DLL search path
win add dll directory/2 Add directory to DLL search path
win remove dll directory/1 Remove directory from DLL search path
win exec/2 Win32: spawn Windows task
win has menu/0 Win32: true if console menu is available
win folder/2 Win32: get special folder by CSIDL
win insert menu/2 swipl-win.exe: add menu
win insert menu item/4 swipl-win.exe: add item to menu
win process modules/1 Win32 get .exe and .dll files of the process
win shell/2 Win32: open document through Shell
win shell/3 Win32: open document through Shell
win registry get value/3 Win32: get registry value
win get user preferred ui languages/2 Win32: get language preferences
win window color/2 Win32: change colors of console window
win window pos/1 Win32: change size and position of window
window title/2 Win32: change title of window
with mutex/2 Run goal while holding mutex
with output to/2 Write to strings and more
with quasi quotation input/3 Parse quasi quotation from stream
with tty raw/1 Run goal with terminal in raw mode
working directory/2 Query/change CWD
write/1 Write term
write/2 Write term to stream
writeln/1 Write term, followed by a newline
writeln/2 Write term, followed by a newline to a stream
write canonical/1 Write a term with quotes, ignore operators
write canonical/2 Write a term with quotes, ignore operators on a stream
write length/3 Determine #characters to output a term
write term/2 Write term with options
write term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream
writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 807

F.2 Library predicates

F.2.1 library(aggregate)

aggregate/3 Aggregate bindings in Goal according to Template.
aggregate/4 Aggregate bindings in Goal according to Template.
aggregate all/3 Aggregate bindings in Goal according to Template.
aggregate all/4 Aggregate bindings in Goal according to Template.
foldall/4 Use Folder to fold V0 to V using all answers of Goal.
foreach/2 True when the conjunction of instances of Goal created from solutions for Generator is true.
free variables/4 Find free variables in bagof/setof template.

F.2.2 library(ansi term)

ansi format/3 Format text with ANSI attributes.
ansi get color/2 Obtain the RGB color for an ANSI color parameter.
ansi hyperlink/2 Create a hyperlink for a terminal emulator.
ansi hyperlink/3 Create a hyperlink for a terminal emulator.
console color/2 Hook that allows for mapping abstract terms to concrete ANSI attributes.

F.2.3 library(apply)

convlist/3 Similar to maplist/3, but elements for which call(Goal, ElemIn,) fails are omitted from ListOut.
exclude/3 Filter elements for which Goal fails.
foldl/4 Fold an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”fold-left”), using columns of m list elements as arguments for Goal.
foldl/5 Fold an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”fold-left”), using columns of m list elements as arguments for Goal.
foldl/6 Fold an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”fold-left”), using columns of m list elements as arguments for Goal.
foldl/7 Fold an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”fold-left”), using columns of m list elements as arguments for Goal.
include/3 Filter elements for which Goal succeeds.
maplist/2 True if Goal is successfully applied on all matching elements of the list.
maplist/3 True if Goal is successfully applied on all matching elements of the list.
maplist/4 True if Goal is successfully applied on all matching elements of the list.
maplist/5 True if Goal is successfully applied on all matching elements of the list.
partition/4 Filter elements of List according to Pred.
partition/5 Filter List according to Pred in three sets.
scanl/4 Scan an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”scan-left”), using columns of m list elements as arguments for Goal.
scanl/5 Scan an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”scan-left”), using columns of m list elements as arguments for Goal.
scanl/6 Scan an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”scan-left”), using columns of m list elements as arguments for Goal.
scanl/7 Scan an ensemble of m (0 <= m <= 4) lists of length n head-to-tail (”scan-left”), using columns of m list elements as arguments for Goal.

F.2.4 library(assoc)

assoc to list/2 Translate assoc into a pairs list
assoc to keys/2 Translate assoc into a key list

SWI-Prolog 9.3 Reference Manual

808 APPENDIX F. SUMMARY

assoc to values/2 Translate assoc into a value list
empty assoc/1 Test/create an empty assoc
gen assoc/3 Non-deterministic enumeration of assoc
get assoc/3 Get associated value
get assoc/5 Get and replace associated value
list to assoc/2 Translate pair list to assoc
map assoc/2 Test assoc values
map assoc/3 Map assoc values
max assoc/3 Max key-value of an assoc
min assoc/3 Min key-value of an assoc
ord list to assoc/2 Translate ordered list into an assoc
put assoc/4 Add association to an assoc

F.2.5 library(broadcast)

broadcast/1 Send event notification
broadcast request/1 Request all agents
listen/2 Listen to event notifications
listen/3 Listen to event notifications
unlisten/1 Stop listening to event notifications
unlisten/2 Stop listening to event notifications
unlisten/3 Stop listening to event notifications
listening/3 Who is listening to event notifications?

F.2.6 library(charsio)

atom to chars/2 Convert Atom into a list of character codes.
atom to chars/3 Convert Atom into a difference list of character codes.
format to chars/3 Use format/2 to write to a list of character codes.
format to chars/4 Use format/2 to write to a difference list of character codes.
number to chars/2 Convert Atom into a list of character codes.
number to chars/3 Convert Number into a difference list of character codes.
open chars stream/2 Open Codes as an input stream.
read from chars/2 Read Codes into Term.
read term from chars/3 Read Codes into Term.
with output to chars/2 Run Goal as with once/1.
with output to chars/3 Run Goal as with once/1.
with output to chars/4 Same as with output to chars/3 using an explicit stream.
write to chars/2 Write a term to a code list.
write to chars/3 Write a term to a code list.

F.2.7 library(check)

check/0 Run all consistency checks defined by checker/2.
checker/2 Register code validation routines.

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 809

list autoload/0 Report predicates that may be auto-loaded.
list cross module calls/0 List calls from one module to another using Module:Goal where the callee is not defined exported, public or multifile, i.e., where the callee should be considered private .
list format errors/0 List argument errors for format/2,3.
list format errors/1 List argument errors for format/2,3.
list rationals/0 List rational numbers that appear in clauses.
list rationals/1 List rational numbers that appear in clauses.
list redefined/0 Lists predicates that are defined in the global module =user= as well as in a normal module; that is, predicates for which the local definition overrules the global default definition.
list strings/0 List strings that appear in clauses.
list strings/1 List strings that appear in clauses.
list trivial fails/0 List goals that trivially fail because there is no matching clause.
list trivial fails/1 List goals that trivially fail because there is no matching clause.
list undefined/0 Report undefined predicates.
list undefined/1 Report undefined predicates.
list void declarations/0 List predicates that have declared attributes, but no clauses.
string predicate/1 Multifile hook to disable list strings/0 on the given predicate.
trivial fail goal/1 Multifile hook that tells list trivial fails/0 to accept Goal as valid.
valid string goal/1 Multifile hook that qualifies Goal as valid for list strings/0.

F.2.8 library(clpb)

labeling/1 Enumerate concrete solutions.
random labeling/2 Select a single random solution.
sat/1 True iff Expr is a satisfiable Boolean expression.
sat count/2 Count the number of admissible assignments.
taut/2 Tautology check.
weighted maximum/3 Enumerate weighted optima over admissible assignments.

F.2.9 library(clpfd)

#/\/2 P and Q hold.
#</2 The arithmetic expression X is less than Y.
#<==/2 Q implies P.
#<==>/2 P and Q are equivalent.
#=/2 The arithmetic expression X equals Y.
#=</2 The arithmetic expression X is less than or equal to Y.
#==>/2 P implies Q.
#>/2 Same as Y #< X.
#>=/2 Same as Y #=< X.
#\/1 Q does not hold.
#\/2 Either P holds or Q holds, but not both.
#\//2 P or Q holds.
#\=/2 The arithmetic expressions X and Y evaluate to distinct integers.
all different/1 Like all distinct/1, but with weaker propagation.
all distinct/1 True iff Vars are pairwise distinct.
automaton/3 Describes a list of finite domain variables with a finite automaton.

SWI-Prolog 9.3 Reference Manual

810 APPENDIX F. SUMMARY

automaton/8 Describes a list of finite domain variables with a finite automaton.
chain/2 Zs form a chain with respect to Relation.
circuit/1 True iff the list Vs of finite domain variables induces a Hamiltonian circuit.
cumulative/1 Equivalent to cumulative(Tasks, [limit(1)]).
cumulative/2 Schedule with a limited resource.
disjoint2/1 True iff Rectangles are not overlapping.
element/3 The N-th element of the list of finite domain variables Vs is V.
empty fdset/1 Set is the empty FD set.
empty interval/2 Min..Max is an empty interval.
fd degree/2 Degree is the number of constraints currently attached to Var.
fd dom/2 Dom is the current domain (see in/2) of Var.
fd inf/2 Inf is the infimum of the current domain of Var.
fd set/2 Set is the FD set representation of the current domain of Var.
fd size/2 Reflect the current size of a domain.
fd sup/2 Sup is the supremum of the current domain of Var.
fd var/1 True iff Var is a CLP(FD) variable.
fdset add element/3 Set2 is the same FD set as Set1, but with the integer Elt added.
fdset complement/2 The FD set Complement is the complement of the FD set Set.
fdset del element/3 Set2 is the same FD set as Set1, but with the integer Elt removed.
fdset disjoint/2 The FD sets Set1 and Set2 have no elements in common.
fdset eq/2 True if the FD sets Set1 and Set2 are equal, i.
fdset intersect/2 The FD sets Set1 and Set2 have at least one element in common.
fdset intersection/3 Intersection is an FD set (possibly empty) of all elements that the FD sets Set1 and Set2 have in common.
fdset interval/3 Interval is a non-empty FD set consisting of the single interval Min..Max.
fdset max/2 Max is the upper bound (supremum) of the non-empty FD set Set.
fdset member/2 The integer Elt is a member of the FD set Set.
fdset min/2 Min is the lower bound (infimum) of the non-empty FD set Set.
fdset parts/4 Set is a non-empty FD set representing the domain Min..Max \/ Rest, where Min..Max is a non-empty interval (see fdset interval/3) and Rest is another FD set (possibly empty).
fdset singleton/2 Set is the FD set containing the single integer Elt.
fdset size/2 Size is the number of elements of the FD set Set, or the atom *sup* if Set is infinite.
fdset subset/2 The FD set Set1 is a (non-strict) subset of Set2, i.
fdset subtract/3 The FD set Difference is Set1 with all elements of Set2 removed, i.
fdset to list/2 List is a list containing all elements of the finite FD set Set, in ascending order.
fdset to range/2 Domain is a domain equivalent to the FD set Set.
fdset union/2 The FD set Union is the n-ary union of all FD sets in the list Sets.
fdset union/3 The FD set Union is the union of FD sets Set1 and Set2.
global cardinality/2 Global Cardinality constraint.
global cardinality/3 Global Cardinality constraint.
in/2 Var is an element of Domain.
in set/2 Var is an element of the FD set Set.
indomain/1 Bind Var to all feasible values of its domain on backtracking.
ins/2 The variables in the list Vars are elements of Domain.
is fdset/1 Set is currently bound to a valid FD set.
label/1 Equivalent to labeling([], Vars).
labeling/2 Assign a value to each variable in Vars.
lex chain/1 Lists are lexicographically non-decreasing.
list to fdset/2 Set is an FD set containing all elements of List, which must be a list of integers.

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 811

range to fdset/2 Set is an FD set equivalent to the domain Domain.
scalar product/4 True iff the scalar product of Cs and Vs is in relation Rel to Expr.
serialized/2 Describes a set of non-overlapping tasks.
sum/3 The sum of elements of the list Vars is in relation Rel to Expr.
transpose/2 Transpose a list of lists of the same length.
tuples in/2 True iff all Tuples are elements of Relation.
zcompare/3 Analogous to compare/3, with finite domain variables A and B.

F.2.10 library(clpqr)

entailed/1 Check if constraint is entailed
inf/2 Find the infimum of an expression
sup/2 Find the supremum of an expression
minimize/1 Minimizes an expression
maximize/1 Maximizes an expression
bb inf/3 Infimum of expression for mixed-integer problems
bb inf/4 Infimum of expression for mixed-integer problems
bb inf/5 Infimum of expression for mixed-integer problems
dump/3 Dump constraints on variables

F.2.11 library(csv)

csv options/2 Compiled is the compiled representation of the CSV processing options as they may be passed into csv//2, etc.
csv read file/2 Read a CSV file into a list of rows.
csv read file/3 Read a CSV file into a list of rows.
csv read file row/3 True when Row is a row in File.
csv read row/3 Read the next CSV record from Stream and unify the result with Row.
csv read stream/3 Read CSV data from Stream.
csv write file/2 Write a list of Prolog terms to a CSV file.
csv write file/3 Write a list of Prolog terms to a CSV file.
csv write stream/3 Write the rows in Data to Stream.
csv//1 Prolog DCG to ‘read/write’ CSV data.
csv//2 Prolog DCG to ‘read/write’ CSV data.

F.2.12 library(dcgbasics)

alpha to lower//1 Read a letter (class =alpha=) and return it as a lowercase letter.
atom//1 Generate codes of Atom.
blank//0 Take next =space= character from input.
blanks//0 Skip zero or more white-space characters.
blanks to nl//0 Take a sequence of blank//0 codes if blanks are followed by a newline or end of the input.
csym//1 Recognise a C symbol according to the ‘csymf‘ and ‘csym‘ code type classification provided by the C library.
digit//1 Number processing.
digits//1 Number processing.
eol//0 Matches end-of-line.

SWI-Prolog 9.3 Reference Manual

812 APPENDIX F. SUMMARY

eos//0 Matches end-of-input.
float//1 Process a floating point number.
integer//1 Number processing.
nonblank//1 Code is the next non-blank (=graph=) character.
nonblanks//1 Take all =graph= characters.
number//1 Generate extract a number.
prolog var name//1 Matches a Prolog variable name.
remainder//1 Unify List with the remainder of the input.
string//1 Take as few as possible tokens from the input, taking one more each time on backtracking.
string without//2 Take as many codes from the input until the next character code appears in the list EndCodes.
white//0 Take next =white= character from input.
whites//0 Skip white space inside a line.
xdigit//1 True if the next code is a hexdecimal digit with Weight.
xdigits//1 List of weights of a sequence of hexadecimal codes.
xinteger//1 Generate or extract an integer from a sequence of hexadecimal digits.

F.2.13 library(dcghighorder)

foreach//2 Generate a list from the solutions of Generator.
foreach//3 Generate a list from the solutions of Generator.
optional//2 Perform an optional match, executing Default if Match is not matched.
sequence//2 Match or generate a sequence of Element.
sequence//3 Match or generate a sequence of Element where each pair of elements is separated by Sep.
sequence//5 Match or generate a sequence of Element enclosed by Start end End, where each pair of elements is separated by Sep.

F.2.14 library(debug)

assertion/1 Acts similar to C assert() macro.
assertion failed/2 This hook is called if the Goal of assertion/1 fails.
debug/1 Add/remove a topic from being printed.
debug/3 Format a message if debug topic is enabled.
debug message context/1 Specify additional context for debug messages.
debug print hook/3 Hook called by debug/3.
debugging/1 Examine debug topics.
debugging/2 Examine debug topics.
list debug topics/0 List currently known topics for debug/3 and their setting.
list debug topics/1 List currently known topics for debug/3 and their setting.
nodebug/1 Add/remove a topic from being printed.

F.2.15 library(dicts)

dict fill/4 Implementation for the dicts to same keys/3 ‘OnEmpty‘ closure that fills new cells with a copy of ValueIn.
dict keys/2 True when Keys is an ordered set of the keys appearing in Dict.
dict size/2 True when KeyCount is the number of keys in Dict.
dicts join/3 Join dicts in Dicts that have the same value for Key, provided they do not have conflicting values on other keys.

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 813

dicts join/4 Join two lists of dicts (Dicts1 and Dicts2) on Key.
dicts same keys/2 True if List is a list of dicts that all have the same keys and Keys is an ordered set of these keys.
dicts same tag/2 True when List is a list of dicts that all have the tag Tag.
dicts slice/3 DictsOut is a list of Dicts only containing values for Keys.
dicts to compounds/4 True when Dicts and Compounds are lists of the same length and each element of Compounds is a compound term whose arguments represent the values associated with the corresponding keys in Keys.
dicts to same keys/3 DictsOut is a copy of DictsIn, where each dict contains all keys appearing in all dicts of DictsIn.
mapdict/2 True when all dicts have the same set of keys and call(Goal, Key, V1, ...) is true for all keys in the dicts.
mapdict/3 True when all dicts have the same set of keys and call(Goal, Key, V1, ...) is true for all keys in the dicts.
mapdict/4 True when all dicts have the same set of keys and call(Goal, Key, V1, ...) is true for all keys in the dicts.

F.2.16 library(dom)

append html/2 Extend the HTMLElement Elem using DOM elements created from Spec using html//1.
bind/4 Bind EventType on Elem to call Goal.
bind async/4 Bind EventType on Elem to call Goal.
html dom/2 Mapping of HTML attribute names to DOM element attributes.
unbind/2 Remove the event listener for EventType.
wait/3 Make the calling task wait for EventType on Elem.
html//1 This DCG transforms a DOM specification into a list of HTMLElement objects.

F.2.17 library(error)

current encoding/1 True if Name is the name of a supported encoding.
current type/3 True when Type is a currently defined type and Var satisfies Type of the body term Body succeeds.
domain error/2 The argument is of the proper type, but has a value that is outside the supported values.
existence error/2 Culprit is of the correct type and correct domain, but there is no existing (external) resource of type ObjectType that is represented by it.
existence error/3 Culprit is of the correct type and correct domain, but there is no existing (external) resource of type ObjectType that is represented by it in the provided set.
has type/2 True if Term satisfies Type.
instantiation error/1 An argument is under-instantiated.
is of type/2 True if Term satisfies Type.
must be/2 True if Term satisfies the type constraints for Type.
permission error/3 It is not allowed to perform Operation on (whatever is represented by) Culprit that is of the given PermissionType (in fact, the ISO Standard is confusing and vague about these terms’ meaning).
representation error/1 A representation error indicates a limitation of the implementation.
resource error/1 A goal cannot be completed due to lack of resources.
syntax error/1 A text has invalid syntax.
type error/2 Tell the user that Culprit is not of the expected ValidType.
uninstantiation error/1 An argument is over-instantiated.

F.2.18 library(exceptions)

catch/4 As catch/3, only catching exceptions for which exception(ErrorType,Ball) is true.
error term/2 Describe the formal part of error(Formal,ImplDefined) exceptions.
exception/2 If Ball is unbound, adds a delayed goal that tests the error belongs to Type when Ball is instantiated (by catch/3).
exception term/2 Describe exceptions that are not error(Formal,) terms.
exception type/2 Declare all exceptions subsumed by Term to be an exception of Type.

SWI-Prolog 9.3 Reference Manual

814 APPENDIX F. SUMMARY

F.2.19 library(fastrw)

fast read/1 The next term is read from current standard input and is unified with Term.
fast write/1 Output Term in a way that fast read/1 and fast read/2 will be able to read it back.
fast write to string/3 Perform a fast-write to the difference-slist String\Tail.

F.2.20 library(explain)

explain/1 Give an explanation on Term.
explain/2 True when Explanation is an explanation of Term.

F.2.21 library(help)

apropos/1 Print objects from the manual whose name or summary match with Query.
help/0 Show help for What.
help/1 Show help for What.
show html hook/1 Hook called to display the extracted HTML document.

F.2.22 library(gensym)

gensym/2 Generate <Base>1, <Base>2, etc atoms on each subsequent call.
reset gensym/0 Reset gensym for all registered keys.
reset gensym/1 Restart generation of identifiers from Base at <Base>1.

F.2.23 library(heaps)

add to heap/4 Adds Key with priority Priority to Heap0, constructing a new heap in Heap.
delete from heap/4 Deletes Key from Heap0, leaving its priority in Priority and the resulting data structure in Heap.
empty heap/1 True if Heap is an empty heap.
get from heap/4 Retrieves the minimum-priority pair Priority-Key from Heap0.
heap size/2 Determines the number of elements in Heap.
heap to list/2 Constructs a list List of Priority-Element terms, ordered by (ascending) priority.
is heap/1 Returns true if X is a heap.
list to heap/2 If List is a list of Priority-Element terms, constructs a heap out of List.
merge heaps/3 Merge the two heaps Heap0 and Heap1 in Heap.
min of heap/3 Unifies Key with the minimum-priority element of Heap and Priority with its priority value.
min of heap/5 Gets the two minimum-priority elements from Heap.
singleton heap/3 True if Heap is a heap with the single element Priority-Key.

F.2.24 library(increval)

incr directly depends/2 True if Goal1 depends on Goal2 in the IDG.
incr invalid subgoals/1 List is a sorted list (set) of the incremental subgoals that are currently invalid.

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 815

incr invalidate call/1 This is the XSB name, but the manual says incr invalidate calls/1 and the comment with the code suggests this is misnamed.
incr invalidate calls/1 Invalidate all tables for subgoals of Goal as well as tables that are affected by these.
incr is invalid/1 True when Subgoal’s table is marked as invalid.
incr propagate calls/1 Activate the monotonic answer propagation similarly to when a new fact is asserted for a monotonic dynamic predicate.
incr table update/0 Updated all invalid tables.
incr trans depends/2 True for each pair in the transitive closure of incr directly depends(G1, G2).
is incremental subgoal/1 This predicate non-deterministically unifies Subgoal with incrementally tabled subgoals that are currently table entries.

F.2.25 library(intercept)

intercept/3 Run Goal as call/1.
intercept/4 Similar to intercept/3, but the copy of Handler is called as call(Copy,Arg), which allows passing large context arguments or arguments subject to unification or destructive assignment .
intercept all/4 True when List contains all instances of Template that have been sent using send signal/1 where the argument unifies with Ball.
nb intercept all/4 As intercept all/4, but backtracing inside Goal does not reset List.
send signal/1 If this predicate is called from a sub-goal of intercept/3, execute the associated Handler of the intercept/3 environment.
send silent signal/1 As send signal/1, but succeed silently if there is no matching intercept environment.

F.2.26 library(iostream)

close any/1 Execute the ‘Close‘ closure returned by open any/5.
open any/5 Establish a stream from Specification that should be closed using Close, which can either be called or passed to close any/1.
open hook/6 Open Spec in Mode, producing Stream.

F.2.27 library(listing)

listing/0 Lists all predicates defined in the calling module.
listing/1 List matching clauses.
listing/2 List matching clauses.
portray clause/1 Portray ‘Clause’ on the current output stream.
portray clause/2 Portray ‘Clause’ on the current output stream.
portray clause/3 Portray ‘Clause’ on the current output stream.

F.2.28 library(lists)

append/2 Concatenate a list of lists.
append/3 List1AndList2 is the concatenation of List1 and List2.
clumped/2 Pairs is a list of ‘Item-Count‘ pairs that represents the run length encoding of Items.
delete/3 Delete matching elements from a list.
flatten/2 Is true if FlatList is a non-nested version of NestedList.
intersection/3 True if Set3 unifies with the intersection of Set1 and Set2.
is set/1 True if Set is a proper list without duplicates.
last/2 Succeeds when Last is the last element of List.
list to set/2 True when Set has the same elements as List in the same order.
max list/2 True if Max is the largest number in List.

SWI-Prolog 9.3 Reference Manual

816 APPENDIX F. SUMMARY

max member/2 True when Max is the largest member in the standard order of terms.
max member/3 True when Max is the largest member according to Pred, which must be a 2-argument callable that behaves like (@=<)/2.
member/2 True if Elem is a member of List.
min list/2 True if Min is the smallest number in List.
min member/2 True when Min is the smallest member in the standard order of terms.
min member/3 True when Min is the smallest member according to Pred, which must be a 2-argument callable that behaves like (@=<)/2.
nextto/3 True if Y directly follows X in List.
nth0/3 True when Elem is the Index’th element of List.
nth0/4 Select/insert element at index.
nth1/3 Is true when Elem is the Index’th element of List.
nth1/4 As nth0/4, but counting starts at 1.
numlist/3 List is a list [Low, Low+1, ... High].
permutation/2 True when Xs is a permutation of Ys.
prefix/2 True iff Part is a leading substring of Whole.
proper length/2 True when Length is the number of elements in the proper list List.
reverse/2 Is true when the elements of List2 are in reverse order compared to List1.
same length/2 Is true when List1 and List2 are lists with the same number of elements.
select/3 Is true when List1, with Elem removed, results in List2.
select/4 Select from two lists at the same position.
selectchk/3 Semi-deterministic removal of first element in List that unifies with Elem.
selectchk/4 Semi-deterministic version of select/4.
subseq/3 Is true when SubList contains a subset of the elements of List in the same order and Complement contains all elements of List not in SubList, also in the order they appear in List.
subset/2 True if all elements of SubSet belong to Set as well.
subtract/3 Delete all elements in Delete from Set.
sum list/2 Sum is the result of adding all numbers in List.
union/3 True if Set3 unifies with the union of the lists Set1 and Set2.

F.2.29 library(macros)

expand macros/5 Perform macro expansion on TermIn with layout PosIn to produce TermOut with layout PosOut.
include macros/3 Include macros from another module.
macro position/1 True when Position is the position of the macro.

F.2.30 library(main)

argv options/3 Parse command line arguments.
argv options/4 As argv options/3 in guided mode, Currently this version allows parsing argument options throwing an exception rather than calling halt/1 by passing an empty list to ParseOptions.
argv usage/1 Use print message/2 to print a usage message at Level.
cli debug opt help/2 Implements opt type/3, opt help/2 and opt meta/2 for debug arguments.
cli debug opt meta/2 Implements opt type/3, opt help/2 and opt meta/2 for debug arguments.
cli debug opt type/3 Implements opt type/3, opt help/2 and opt meta/2 for debug arguments.
cli enable development system/0 Re-enable the development environment.
cli parse debug options/2 Parse certain commandline options for debugging and development purposes.
main/0 Call main/1 using the passed command-line arguments.

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 817

F.2.31 library(occurs)

contains term/2 Succeeds if Sub is contained in Term (=, deterministically).
contains var/2 Succeeds if Sub is contained in Term (==, deterministically).
free of term/2 Succeeds of Sub does not unify to any subterm of Term.
free of var/2 Succeeds of Sub is not equal (==) to any subterm of Term.
occurrences of term/3 Count the number of SubTerms in Term that unify with SubTerm.
occurrences of var/3 Count the number of SubTerms in Term that are equal to SubTerm.
sub term/2 Generates (on backtracking) all subterms of Term.
sub term shared variables/3 If Sub is a sub term of Term, Vars is bound to the list of variables in Sub that also appear outside Sub in Term.
sub var/2 Generates (on backtracking) all subterms (==) of Term.

F.2.32 library(option)

dict options/2 Convert between an option list and a dictionary.
merge options/3 Merge two option sets.
meta options/3 Perform meta-expansion on options that are module-sensitive.
option/2 Get an Option from Options.
option/3 Get an Option from Options.
select option/3 Get and remove Option from Options.
select option/4 Get and remove Option with default value.

F.2.33 library(optparse)

opt arguments/3 Extract commandline options according to a specification.
opt help/2 True when Help is a help string synthesized from OptsSpec.
opt parse/4 Equivalent to opt parse(OptsSpec, ApplArgs, Opts, PositionalArgs, []).
opt parse/5 Parse the arguments Args (as list of atoms) according to OptsSpec.
parse type/3 Hook to parse option text Codes to an object of type Type.

F.2.34 library(ordsets)

is ordset/1 True if Term is an ordered set.
list to ord set/2 Transform a list into an ordered set.
ord add element/3 Insert an element into the set.
ord del element/3 Delete an element from an ordered set.
ord disjoint/2 True if Set1 and Set2 have no common elements.
ord empty/1 True when List is the empty ordered set.
ord intersect/2 True if both ordered sets have a non-empty intersection.
ord intersect/3 Intersection holds the common elements of Set1 and Set2.
ord intersection/2 Intersection of a powerset.
ord intersection/3 Intersection holds the common elements of Set1 and Set2.
ord intersection/4 Intersection and difference between two ordered sets.
ord memberchk/2 True if Element is a member of OrdSet, compared using ==.

SWI-Prolog 9.3 Reference Manual

818 APPENDIX F. SUMMARY

ord selectchk/3 Selectchk/3, specialised for ordered sets.
ord seteq/2 True if Set1 and Set2 have the same elements.
ord subset/2 Is true if all elements of Sub are in Super.
ord subtract/3 Diff is the set holding all elements of InOSet that are not in NotInOSet.
ord symdiff/3 Is true when Difference is the symmetric difference of Set1 and Set2.
ord union/2 True if Union is the union of all elements in the superset SetOfSets.
ord union/3 Union is the union of Set1 and Set2.
ord union/4 True iff ord union(Set1, Set2, Union) and ord subtract(Set2, Set1, New).

F.2.35 library(persistency)

current persistent predicate/1 True if PI is a predicate that provides access to the persistent database DB.
db assert/1 Assert Term into the database and record it for persistency.
db attach/2 Use File as persistent database for the calling module.
db attached/1 True if the context module attached to the persistent database File.
db detach/0 Detach persistency from the calling module and delete all persistent clauses from the Prolog database.
db retract/1 Retract terms from the database one-by-one.
db retractall/1 Retract all matching facts and do the same in the database.
db sync/1 Synchronise database with the associated file.
db sync all/1 Sync all registered databases.
persistent/1 Declare dynamic database terms.

F.2.36 library(portraytext)

is text code/1 Multifile hook that can be used to extend the set of character codes that is recognised as likely text.
portray text/1 Switch portraying on or off.
set portray text/2 Set options for portraying.
set portray text/3 Set options for portraying.

F.2.37 library(predicate options)

assert predicate options/4 As predicate options(:PI, +Arg, +Options).
check predicate option/3 Verify predicate options at runtime.
check predicate options/0 Analyse loaded program for erroneous options.
current option arg/2 True when Arg of PI processes predicate options.
current predicate option/3 True when Arg of PI processes Option.
current predicate options/3 True when Options is the current active option declaration for PI on Arg.
derive predicate options/0 Derive new predicate option declarations.
derived predicate options/1 Derive predicate option declarations for a module.
derived predicate options/3 Derive option arguments using static analysis.
predicate options/3 Declare that the predicate PI processes options on Arg.
retractall predicate options/0 Remove all dynamically (derived) predicate options.

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 819

F.2.38 library(prologcoverage)

cov load data/2 Reload coverage data from File.
cov property/1 True when coverage analysis satisfies Property.
cov reset/0 Discard all collected coverage data.
cov save data/2 Save the coverage information to File.
coverage/1 As call(Goal), collecting coverage information while Goal is running.
coverage/2 Collect and optionally report coverage by Goal.
report hook/2 This hook is called after the data collection.
show coverage/1 Show collected coverage data.

F.2.39 library(prologdebug)

debugging/0 Report current status of the debugger.
debugging hook/1 Multifile hook that is called as forall(debugging hook(DebugMode), true) and that may be used to extend the information printed from other debugging libraries.
exception hook/5 Trap exceptions and consider whether or not to start the tracer.
nospy/1 Set/clear spy-points.
nospyall/0 Set/clear spy-points.
notrap/1 Install a trap on error(Formal, Context) exceptions that unify.
spy/1 Set/clear spy-points.
trap/1 Install a trap on error(Formal, Context) exceptions that unify.
trap alias/2 Define short hands for commonly used exceptions.

F.2.40 library(prologjiti)

jiti list/0 List the JITI (Just In Time Indexes) of selected predicates.
jiti list/1 List the JITI (Just In Time Indexes) of selected predicates.
jiti suggest modes/0 Propose modes for the predicates referenced by Spec.
jiti suggest modes/1 Propose modes for the predicates referenced by Spec.

F.2.41 library(prologpack)

pack info/1 Print more detailed information about Pack.
pack install/1 Install one or more packs from SpecOrList.
pack install/2 Install one or more packs from SpecOrList.
pack install local/3 Install a number of packages in a local directory.
pack list/1 Query package server and installed packages and display results.
pack list/2 Query package server and installed packages and display results.
pack list installed/0 List currently installed packages and report possible dependency issues.
pack property/2 True when Property is a property of an installed Pack.
pack publish/2 Publish a package.
pack rebuild/0 Rebuild possible foreign components of Pack.
pack rebuild/1 Rebuild possible foreign components of Pack.
pack remove/1 Remove the indicated package.

SWI-Prolog 9.3 Reference Manual

820 APPENDIX F. SUMMARY

pack remove/2 Remove the indicated package.
pack search/1 Query package server and installed packages and display results.
pack upgrade/1 Upgrade Pack.
pack url file/2 True if File is a unique id for the referenced pack and version.

F.2.42 library(prologversions)

cmp versions/3 Compare to versions.
require prolog version/2 Claim that the running Prolog version is at least version Required and provides the requested Features.
require version/3 Require Component to have version CmpRequired, while Component is know to have version Available.

F.2.43 library(prologtrace)

list tracing/0 List predicates we are currently tracing.
notraceall/0 Remove all trace points.
trace/1 Print passes through ports of specified predicates.
trace/2 Print passes through ports of specified predicates.
tracing/2 True if Spec is traced using Ports.

F.2.44 library(prologxref)

prolog:called by/2 (hook) Extend cross-referencer
xref built in/1 Examine defined built-ins
xref called/3 Examine called predicates
xref clean/1 Remove analysis of source
xref current source/1 Examine cross-referenced sources
xref defined/3 Examine defined predicates
xref exported/2 Examine exported predicates
xref module/2 Module defined by source
xref source/1 Cross-reference analysis of source

F.2.45 library(pairs)

group pairs by key/2 Group values with equivalent (==/2) consecutive keys.
map list to pairs/3 Create a Key-Value list by mapping each element of List.
pairs keys/2 Remove the values from a list of Key-Value pairs.
pairs keys values/3 True if Keys holds the keys of Pairs and Values the values.
pairs values/2 Remove the keys from a list of Key-Value pairs.
transpose pairs/2 Swap Key-Value to Value-Key.

F.2.46 library(pio)

library(pure input)

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 821

phrase from file/2 Process the content of File using the DCG rule Grammar.
phrase from file/3 As phrase from file/2, providing additional Options.
phrase from stream/2 Run Grammer against the character codes on Stream.
stream to lazy list/2 Create a lazy list representing the character codes in Stream.
lazy list character count//1 True when CharCount is the current character count in the Lazy list.
lazy list location//1 Determine current (error) location in a lazy list.
syntax error//1 Throw the syntax error Error at the current location of the input.

F.2.47 library(random)

getrand/1 Query/set the state of the random generator.
maybe/0 Succeed/fail with equal probability (variant of maybe/1).
maybe/1 Succeed with probability P, fail with probability 1-P.
maybe/2 Succeed with probability K/N (variant of maybe/1).
random/1 Binds R to a new random float in the open interval (0.0,1.0).
random/3 Generate a random integer or float in a range.
random between/3 Binds R to a random integer in [L,U] (i.e., including both L and U).
random member/2 X is a random member of List.
random numlist/4 Unify List with an ascending list of integers between L and U (inclusive).
random perm2/4 Does X=A,Y=B or X=B,Y=A with equal probability.
random permutation/2 Permutation is a random permutation of List.
random select/3 Randomly select or insert an element.
random subseq/3 Selects a random subsequence Subseq of List, with Complement containing all elements of List that were not selected.
randseq/3 S is a list of K unique random integers in the range 1..N.
randset/3 S is a sorted list of K unique random integers in the range 1..N.
setrand/1 Query/set the state of the random generator.

F.2.48 library(rbtrees)

is rbtree/1 True if Term is a valid Red-Black tree.
list to rbtree/2 Tree is the red-black tree corresponding to the mapping in List, which should be a list of Key-Value pairs.
ord list to rbtree/2 Tree is the red-black tree corresponding to the mapping in list List, which should be a list of Key-Value pairs.
rb apply/4 If the value associated with key Key is Val0 in Tree, and if call(G,Val0,ValF) holds, then NewTree differs from Tree only in that Key is associated with value ValF in tree NewTree.
rb clone/3 ‘Clone’ the red-back tree TreeIn into a new tree TreeOut with the same keys as the original but with all values set to unbound values.
rb del max/4 Delete the largest element from the tree Tree, returning the key Key, the value Val associated with the key and a new tree NewTree.
rb del min/4 Delete the least element from the tree Tree, returning the key Key, the value Val associated with the key and a new tree NewTree.
rb delete/3 Delete element with key Key from the tree Tree, returning the value Val associated with the key and a new tree NewTree.
rb delete/4 Same as rb delete(Tree, Key, NewTree), but also unifies Val with the value associated with Key in Tree.
rb empty/1 Succeeds if Tree is an empty Red-Black tree.
rb fold/4 Fold the given predicate over all the key-value pairs in Tree, starting with initial state State0 and returning the final state State.
rb in/3 True when Key-Value is a key-value pair in red-black tree Tree.
rb insert/4 Add an element with key Key and Value to the tree Tree creating a new red-black tree NewTree.
rb insert new/4 Add a new element with key Key and Value to the tree Tree creating a new red-black tree NewTree.
rb keys/2 Keys is unified with an ordered list of all keys in the Red-Black tree Tree.
rb lookup/3 True when Value is associated with Key in the Red-Black tree Tree.

SWI-Prolog 9.3 Reference Manual

822 APPENDIX F. SUMMARY

rb map/2 True if call(Goal, Value) is true for all nodes in T.
rb map/3 For all nodes Key in the tree Tree, if the value associated with key Key is Val0 in tree Tree, and if call(G,Val0,ValF) holds, then the value associated with Key in NewTree is ValF.
rb max/3 Key is the maximal key in Tree, and is associated with Val.
rb min/3 Key is the minimum key in Tree, and is associated with Val.
rb new/1 Create a new Red-Black tree Tree.
rb next/4 Next is the next element after Key in Tree, and is associated with Val.
rb partial map/4 For all nodes Key in Keys, if the value associated with key Key is Val0 in tree Tree, and if call(G,Val0,ValF) holds, then the value associated with Key in NewTree is ValF, otherwise it is the value associated with the key in Tree.
rb previous/4 Previous is the previous element after Key in Tree, and is associated with Val.
rb size/2 Size is the number of elements in Tree.
rb update/4 Tree NewTree is tree Tree, but with value for Key associated with NewVal.
rb update/5 Same as =|rb update(Tree, Key, NewVal, NewTree)|= but also unifies OldVal with the value associated with Key in Tree.
rb visit/2 Pairs is an infix visit of tree Tree, where each element of Pairs is of the form Key-Value.

F.2.49 library(readutil)

read file to codes/3 Read the file Spec into a list of Codes.
read file to string/3 Read the file Spec into a the string String.
read file to terms/3 Read the file Spec into a list of terms.
read line to codes/2 Read the next line of input from Stream.
read line to codes/3 Difference-list version to read an input line to a list of character codes.
read line to string/2 Read the next line from Stream into String.
read stream to codes/2 Read input from Stream to a list of character codes.
read stream to codes/3 Read input from Stream to a list of character codes.

F.2.50 library(record)

record/1 Define named fields in a term

F.2.51 library(registry)

This library is only available on Windows systems.

registry get key/2 Get principal value of key
registry get key/3 Get associated value of key
registry set key/2 Set principal value of key
registry set key/3 Set associated value of key
registry delete key/1 Remove a key
shell register file type/4 Register a file-type
shell register dde/6 Register DDE action
shell register prolog/1 Register Prolog

F.2.52 library(rwlocks)

with rwlock/3 Run Goal, synchronized with LockId in ModeSpec.
with rwlock/4 Run Goal, synchronized with LockId in ModeSpec.

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 823

F.2.53 library(settings)

convert setting text/3 Converts from textual form to Prolog Value.
current setting/1 True if Setting is a currently defined setting.
env/2 Evaluate environment variables on behalf of arithmetic expressions.
env/3 Evaluate environment variables on behalf of arithmetic expressions.
list settings/0 List settings to =current output=.
list settings/1 List settings to =current output=.
load settings/1 Load local settings from File.
load settings/2 Load local settings from File.
restore setting/1 Restore the value of setting Name to its default.
save settings/0 Save modified settings to File.
save settings/1 Save modified settings to File.
set setting/2 Change a setting.
set setting default/2 Change the default for a setting.
setting/2 True when Name is a currently defined setting with Value.
setting/4 Define a setting.
setting property/2 Query currently defined settings.

F.2.54 library(simplex)

assignment/2 Solve assignment problem
constraint/3 Add linear constraint to state
constraint/4 Add named linear constraint to state
constraint add/4 Extend a named constraint
gen state/1 Create empty linear program
maximize/3 Maximize objective function in to linear constraints
minimize/3 Minimize objective function in to linear constraints
objective/2 Fetch value of objective function
shadow price/3 Fetch shadow price in solved state
transportation/4 Solve transportation problem
variable value/3 Fetch value of variable in solved state

F.2.55 library(statistics)

call time/2 Call Goal as call/1, unifying Time with a dict that provides information on the resource usage.
call time/3 Call Goal as call/1, unifying Time with a dict that provides information on the resource usage.
statistics/0 Print information about resource usage using print message/2.
statistics/1 Stats is a dict representing the same information as statistics/0.
thread statistics/2 Obtain statistical information about a single thread.
time/1 Execute Goal, reporting statistics to the user.

F.2.56 library(terms)

SWI-Prolog 9.3 Reference Manual

824 APPENDIX F. SUMMARY

foldsubterms/4 The predicate foldsubterms/5 calls call(Goal4, SubTerm1, SubTerm2, StateIn, StateOut) for each subterm, including variables, in Term1.
foldsubterms/5 The predicate foldsubterms/5 calls call(Goal4, SubTerm1, SubTerm2, StateIn, StateOut) for each subterm, including variables, in Term1.
mapargs/3 Term1 and Term2 have the same functor (name/arity) and for each matching pair of arguments call(Goal, A1, A2) is true.
mapsubterms/3 Recursively map sub terms of Term1 into subterms of Term2 for every pair for which call(Goal, ST1, ST2) succeeds.
mapsubterms var/3 Recursively map sub terms of Term1 into subterms of Term2 for every pair for which call(Goal, ST1, ST2) succeeds.
same functor/2 True when Term1 and Term2 are terms that have the same functor (Name/Arity).
same functor/3 True when Term1 and Term2 are terms that have the same functor (Name/Arity).
same functor/4 True when Term1 and Term2 are terms that have the same functor (Name/Arity).
subsumes/2 True if Generic is unified to Specific without changing Specific.
subsumes chk/2 True if Generic can be made equivalent to Specific without changing Specific.
term factorized/3 Is true when Skeleton is Term where all subterms that appear multiple times are replaced by a variable and Substitution is a list of Var=Value that provides the subterm at the location Var.
term size/2 True if Size is the size in cells occupied by Term on the global (term) stack.
term subsumer/3 General is the most specific term that is a generalisation of Special1 and Special2.
variant/2 Same as SWI-Prolog =|Term1 =@= Term2|=.

F.2.57 library(ugraphs)

add edges/3 Unify NewGraph with a new graph obtained by adding the list of Edges to Graph.
add vertices/3 Unify NewGraph with a new graph obtained by adding the list of Vertices to Graph.
complement/2 UGraphOut is a ugraph with an edge between all vertices that are not connected in UGraphIn and all edges from UGraphIn removed.
compose/3 Compose NewGraph by connecting the drains of LeftGraph to the sources of RightGraph.
connect ugraph/3 Adds Start as an additional vertex that is connected to all vertices in UGraphIn.
del edges/3 Unify NewGraph with a new graph obtained by removing the list of Edges from Graph.
del vertices/3 Unify NewGraph with a new graph obtained by deleting the list of Vertices and all the edges that start from or go to a vertex in Vertices to the Graph.
edges/2 Unify Edges with all edges appearing in Graph.
neighbors/3 Neigbours is a sorted list of the neighbours of Vertex in Graph.
neighbours/3 Neigbours is a sorted list of the neighbours of Vertex in Graph.
reachable/3 True when Vertices is an ordered set of vertices reachable in UGraph, including Vertex.
top sort/2 Sort vertices topologically.
transitive closure/2 Generate the graph Closure as the transitive closure of Graph.
transpose ugraph/2 Unify NewGraph with a new graph obtained from Graph by replacing all edges of the form V1-V2 by edges of the form V2-V1.
ugraph layers/2 Sort vertices topologically.
ugraph union/3 NewGraph is the union of Graph1 and Graph2.
vertices/2 Unify Vertices with all vertices appearing in Graph.
vertices edges to ugraph/3 Create a UGraph from Vertices and Edges.

vertices edges to ugraph/3 Create unweighted graph
vertices/2 Find vertices in graph
edges/2 Find edges in graph
add vertices/3 Add vertices to graph
del vertices/3 Delete vertices from graph
add edges/3 Add edges to graph
del edges/3 Delete edges from graph
transpose ugraph/2 Invert the direction of all edges
neighbors/3 Find neighbors of vertice

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 825

neighbours/3 Find neighbors of vertice
complement/2 Inverse presense of edges
compose/3
top sort/2 Sort graph topologically
top sort/3 Sort graph topologically
transitive closure/2 Create transitive closure of graph
reachable/3 Find all reachable vertices
ugraph union/3 Union of two graphs

F.2.58 library(url)

file name to url/2 Translate between a filename and a file:// URL.
global url/3 Translate a possibly relative URL into an absolute one.
http location/2 Construct or analyze an HTTP location.
is absolute url/1 True if URL is an absolute URL.
parse url/2 Construct or analyse a URL.
parse url/3 Similar to parse url/2 for relative URLs.
parse url search/2 Construct or analyze an HTTP search specification.
set url encoding/2 Query and set the encoding for URLs.
url iri/2 Convert between a URL, encoding in US-ASCII and an IRI.
www form encode/2 En/decode to/from application/x-www-form-encoded.

F.2.59 library(wasm)

:=/2 Call a JavaScript function expressed by Call.
await/2 Call asynchronous behavior.
fetch/3 Fetch the content from URL asynchronously.
is async/0 True when we can call await/2.
is object/1 Test whether a Prolog term is a JavaScript object.
is object/2 Test whether a Prolog term is a JavaScript object.
js script/2 Evaluate String as JavaScript, for example for defining a function.
must be async/1 True when the engine is in async state (see is async/0).
sleep/1 Sleep by yielding when possible.

F.2.60 library(www browser)

expand url path/2 Expand URL specifications similar to absolute file name/3.
known browser/2 True if browser FileBaseName has a remote protocol compatible to Compatible.
www open url/1 Open URL in running version of the users’ browser or start a new browser.

F.2.61 library(solution sequences)

call nth/2 True when Goal succeeded for the Nth time.
distinct/1 True if Goal is true and no previous solution of Goal bound Witness to the same value.

SWI-Prolog 9.3 Reference Manual

826 APPENDIX F. SUMMARY

distinct/2 True if Goal is true and no previous solution of Goal bound Witness to the same value.
group by/4 Group bindings of Template that have the same value for By.
limit/2 Limit the number of solutions.
offset/2 Ignore the first Count solutions.
order by/2 Order solutions according to Spec.
reduced/1 Similar to distinct/1, but does not guarantee unique results in return for using a limited amount of memory.
reduced/3 Similar to distinct/1, but does not guarantee unique results in return for using a limited amount of memory.

F.2.62 library(thread)

call in thread/2 Run Goal as an interrupt in the context of Thread.
concurrent/3 Run Goals in parallel using N threads.
concurrent and/2 Concurrent version of ‘(Generator,Test)‘.
concurrent and/3 Concurrent version of ‘(Generator,Test)‘.
concurrent forall/2 True when Action is true for all solutions of Generate.
concurrent forall/3 True when Action is true for all solutions of Generate.
concurrent maplist/2 Concurrent version of maplist/2.
concurrent maplist/3 Concurrent version of maplist/2.
concurrent maplist/4 Concurrent version of maplist/2.
first solution/3 Try alternative solvers concurrently, returning the first answer.

F.2.63 library(thread pool)

create pool/1 Hook to create a thread pool lazily.
current thread pool/1 True if Name refers to a defined thread pool.
thread create in pool/4 Create a thread in Pool.
thread pool create/3 Create a pool of threads.
thread pool destroy/1 Destroy the thread pool named Name.
thread pool property/2 True if Property is a property of thread pool Name.
worker exitted/3 It is possible that ’ thread pool manager’ no longer exists while closing down the process because the manager was killed before the worker.

F.2.64 library(varnumbers)

max var number/3 True when Max is the max of Start and the highest numbered $VAR(N) term.
numbervars/1 Number variables in Term using $VAR(N).
varnumbers/2 Inverse of numbervars/1.
varnumbers/3 Inverse of numbervars/3.
varnumbers names/3 If Term is a term with numbered and named variables using the reserved term ’$VAR’(X), Copy is a copy of Term where each ’$VAR’(X) is consistently replaced by a fresh variable and Bindings is a list ‘X = Var‘, relating the ‘X‘ terms with the variable it is mapped to.

F.2.65 library(yall)

//2 Shorthand for ‘Free/[]>>Lambda‘.
//3 Shorthand for ‘Free/[]>>Lambda‘.
//4 Shorthand for ‘Free/[]>>Lambda‘.

SWI-Prolog 9.3 Reference Manual

F.2. LIBRARY PREDICATES 827

//5 Shorthand for ‘Free/[]>>Lambda‘.
//6 Shorthand for ‘Free/[]>>Lambda‘.
//7 Shorthand for ‘Free/[]>>Lambda‘.
//8 Shorthand for ‘Free/[]>>Lambda‘.
//9 Shorthand for ‘Free/[]>>Lambda‘.
>>/2 Calls a copy of Lambda.
>>/3 Calls a copy of Lambda.
>>/4 Calls a copy of Lambda.
>>/5 Calls a copy of Lambda.
>>/6 Calls a copy of Lambda.
>>/7 Calls a copy of Lambda.
>>/8 Calls a copy of Lambda.
>>/9 Calls a copy of Lambda.
is lambda/1 True if Term is a valid Lambda expression.
lambda calls/2 Goal is the goal called if call/N is applied to LambdaExpression, where ExtraArgs are the additional arguments to call/N.
lambda calls/3 Goal is the goal called if call/N is applied to LambdaExpression, where ExtraArgs are the additional arguments to call/N.

SWI-Prolog 9.3 Reference Manual

828 APPENDIX F. SUMMARY

F.3 Arithmetic Functions

*/2 Multiplication
**/2 Power function
+/1 Unary plus (No-op)
+/2 Addition
-/1 Unary minus
-/2 Subtraction
//2 Division
///2 Integer division
/\/2 Bitwise and
<</2 Bitwise left shift
>>/2 Bitwise right shift
./2 List of one character: character code
\/1 Bitwise negation
\//2 Bitwise or
ˆ/2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
acosh/1 Inverse hyperbolic cosine
asin/1 Inverse (arc) sine
asinh/1 Inverse (arc) sine
atan/1 Inverse hyperbolic sine
atan/2 Rectangular to polar conversion
atanh/1 Inverse hyperbolic tangent
atan2/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cosh/1 Hyperbolic cosine
copysign/2 Apply sign of N2 to N1
cputime/0 Get CPU time
denominator/1 Denominator of a rational number (N/D)
div/2 Integer division
e/0 Mathematical constant
erf/1 Gauss error function
erfc/1 Complementary error function
epsilon/0 Floating point precision
eval/1 Evaluate term as expression
exp/1 Exponent (base e)
float/1 Explicitly convert to float
float fractional part/1 Fractional part of a float
float integer part/1 Integer part of a float
floor/1 Largest integer below argument
gcd/2 Greatest common divisor
getbit/2 Get bit at index from large integer

SWI-Prolog 9.3 Reference Manual

F.3. ARITHMETIC FUNCTIONS 829

inf/0 Positive infinity
integer/1 Round to nearest integer
lgamma/1 Log of gamma function
log/1 Natural logarithm
log10/1 10 base logarithm
lcm/2 Least Common Multiple
lsb/1 Least significant bit
max/2 Maximum of two numbers
min/2 Minimum of two numbers
msb/1 Most significant bit
mod/2 Remainder of division
nan/0 Not a Number (NaN)
nexttoward/2 Next float in some direction
numerator/1 Numerator of a rational number (N/D)
powm/3 Integer exponent and modulo
random/1 Generate random number
random float/0 Generate random number
rational/1 Convert to rational number
rationalize/1 Convert to rational number
rdiv/2 Ration number division
rem/2 Remainder of division
round/1 Round to nearest integer
roundtoward/2 Float arithmetic with specified rounding
truncate/1 Truncate float to integer
pi/0 Mathematical constant
popcount/1 Count 1s in a bitvector
sign/1 Extract sign of value
sin/1 Sine
sinh/1 Hyperbolic sine
sqrt/1 Square root
tan/1 Tangent
tanh/1 Hyperbolic tangent
xor/2 Bitwise exclusive or

SWI-Prolog 9.3 Reference Manual

830 APPENDIX F. SUMMARY

F.4 Operators

$ 1 fx Bind top-level variable
ˆ 200 xfy Existential qualification
ˆ 200 xfy Arithmetic function
mod 300 xfx Arithmetic function
* 400 yfx Arithmetic function
/ 400 yfx Arithmetic function
// 400 yfx Arithmetic function
<< 400 yfx Arithmetic function
>> 400 yfx Arithmetic function
xor 400 yfx Arithmetic function
+ 500 fx Arithmetic function
- 500 fx Arithmetic function
? 500 fx XPCE: obtainer
\ 500 fx Arithmetic function
+ 500 yfx Arithmetic function
- 500 yfx Arithmetic function
/\ 500 yfx Arithmetic function
\/ 500 yfx Arithmetic function
: 600 xfy module:term separator
< 700 xfx Predicate
= 700 xfx Predicate
=.. 700 xfx Predicate
=:= 700 xfx Predicate
< 700 xfx Predicate
== 700 xfx Predicate
=@= 700 xfx Predicate
=\= 700 xfx Predicate
> 700 xfx Predicate
>= 700 xfx Predicate
@< 700 xfx Predicate
@=< 700 xfx Predicate
@> 700 xfx Predicate
@>= 700 xfx Predicate
as 700 xfx Predicate
is 700 xfx Predicate
\= 700 xfx Predicate
\== 700 xfx Predicate
=@= 700 xfx Predicate
not 900 fy Predicate
\+ 900 fy Predicate
, 1000 xfy Predicate
-> 1050 xfy Predicate
*-> 1050 xfy Predicate
; 1100 xfy Predicate

SWI-Prolog 9.3 Reference Manual

F.4. OPERATORS 831

| 1105 xfy DCG disjunction
discontiguous 1150 fx Directive
dynamic 1150 fx Directive
module transparent 1150 fx Directive
meta predicate 1150 fx Head
multifile 1150 fx Directive
thread local 1150 fx Directive
volatile 1150 fx Directive
initialization 1150 fx Directive
:- 1200 fx Introduces a directive
?- 1200 fx Introduces a directive
--> 1200 xfx DCGrammar: rewrite
==¿ 1200 xfx DCGrammar: rewrite
:- 1200 xfx head :- body. separator

SWI-Prolog 9.3 Reference Manual

Bibliography

[Bowen et al., 1983] D. L. Bowen, L. M. Byrd, and WF. Clocksin. A portable Prolog com-
piler. In L. M. Pereira, editor, Proceedings of the Logic Programming
Workshop 1983, Lisabon, Portugal, 1983. Universidade nova de Lisboa.

[Bratko, 1986] I. Bratko. Prolog Programming for Artificial Intelligence. Addison-
Wesley, Reading, Massachusetts, 1986.

[Butenhof, 1997] David R. Butenhof. Programming with POSIX threads. Addison-Wes-
ley, Reading, MA, USA, 1997.

[Byrd, 1980] L. Byrd. Understanding the control flow of Prolog programs. Logic
Programming Workshop, 1980.

[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish. Programming in Prolog. Springer-
Verlag, New York, Third, Revised and Extended edition, 1987.

[Demoen, 2002] Bart Demoen. Dynamic attributes, their hProlog implementation,
and a first evaluation. Report CW 350, Department of Com-
puter Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

[Desouter et al., 2015] Benoit Desouter, Marko van Dooren, and Tom Schrijvers. Tabling as a
library with delimited control. TPLP, 15(4-5):419–433, 2015.

[Frühwirth,] T. Frühwirth. Thom Fruehwirth’s constraint handling rules website.
http://www.constraint-handling-rules.org.

[Frühwirth, 2009] T. Frühwirth. Constraint Handling Rules. Cambridge University Press,
2009.

[Graham et al., 1982] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof:
a call graph execution profiler. In SIGPLAN Symposium on Compiler
Construction, pages 120–126, 1982.

[Grosof & Swift, 2013] Benjamin Nathan Grosof and Terrance Swift. Radial Restraint: A se-
mantically clean approach to bounded rationality for logic programs. In
Marie desJardins and Michael L. Littman, editors, Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18,
2013, Bellevue, Washington, USA. AAAI Press, 2013.

[Hodgson, 1998] Jonathan Hodgson. Validation suite for conformance with part 1 of
the standard, 1998, http://www.sju.edu/˜jhodgson/pub/
suite.tar.gz.

SWI-Prolog 9.3 Reference Manual

http://www.sju.edu/~jhodgson/pub/suite.tar.gz
http://www.sju.edu/~jhodgson/pub/suite.tar.gz

BIBLIOGRAPHY 833

[Holzbaur, 1992] Christian Holzbaur. Metastructures versus attributed variables in the
context of extensible unification. In PLILP, volume 631, pages 260–
268. Springer-Verlag, 1992. LNCS 631.

[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[Neumerkel, 1993] Ulrich Neumerkel. The binary WAM, a simplified Prolog en-
gine. Technical report, Technische Universität Wien, 1993.
http://www.complang.tuwien.ac.at/ulrich/papers/PDF/binwam-
nov93.pdf.

[O’Keefe, 1990] R. A. O’Keefe. The Craft of Prolog. MIT Press, Massachussetts, 1990.

[Pereira, 1986] F. Pereira. C-Prolog User’s Manual. EdCaad, University of Edinburgh,
1986.

[Qui, 1997] AI International ltd., Berkhamsted, UK. Quintus Prolog, User Guide
and Reference Manual, 1997.

[Sagonas & Swift, 1998] Konstantinos Sagonas and Terrance Swift. An abstract machine for
tabled execution of fixed-order stratified logic programs. ACM Trans.
Program. Lang. Syst., 20(3):586–634, 1998.

[Sagonas et al., 2000] Konstantinos Sagonas, Terrance Swift, and David S. Warren. An ab-
stract machine for efficiently computing queries to well-founded mod-
els. The Journal of Logic Programming, 45(1):1 – 41, 2000.

[Schimpf, 2002] Joachim Schimpf. Logical loops. In PeterJ. Stuckey, editor, Logic Pro-
gramming, volume 2401 of Lecture Notes in Computer Science, pages
224–238. Springer Berlin Heidelberg, 2002.

[Schrijvers et al., 2013] Tom Schrijvers, Bart Demoen, Benoit Desouter, and Jan Wielemaker.
Delimited continuations for Prolog. TPLP, 13(4-5):533–546, 2013.

[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cambridge,
Massachusetts, 1986.

[Swift, 2014] Terrance Swift. Incremental tabling in support of knowledge represen-
tation and reasoning. TPLP, 14(4-5):553–567, 2014.

[Tarau, 2011] Paul Tarau. Coordination and concurrency in multi-engine Prolog. In
Wolfgang De Meuter and Gruia-Catalin Roman, editors, Coordination
Models and Languages - 13th International Conference, COORDINA-
TION 2011, Reykjavik, Iceland, June 6-9, 2011. Proceedings, volume
6721 of Lecture Notes in Computer Science, pages 157–171. Springer,
2011.

[Triska, 2016] Markus Triska. The Boolean constraint solver of SWI-Prolog: System
description. In FLOPS, volume 9613 of LNCS, pages 45–61, 2016.
https://www.metalevel.at/swiclpb.pdf.

SWI-Prolog 9.3 Reference Manual

834 BIBLIOGRAPHY

[Wielemaker, 2013] Jan Wielemaker. Extending the logical update view with transaction
support. CoRR, abs/1301.7669, 2013.

[Zhou, 2010] Neng-Fa Zhou. Declarative loops and list comprehensions for Prolog.
http://www.sci.brooklyn.cuny.edu/ zhou/papers/loops.pdf, Jan 2010.

SWI-Prolog 9.3 Reference Manual

Index

(library, 422
(*Sclose function)(), 530
(*Scontrol function)(), 530
(*Sread function)(), 530
(*Sseek64 function)(), 530
(*Sseek function)(), 530
(*Swrite function)(), 530
-lswipl library, 517
.pl, 97
.pro, 97
:=/2, 552, 556
?=/2, 145
@/2, 345
=:=/2, 242
/\/2, 252
=\=/2, 241
|/2, 146
#/\/2, 634
#=/2, 625
#<==>/2, 634
#>=/2, 626
#>/2, 626
#=</2, 626
#</2, 626
#\=/2, 625
#\/1, 633
#\/2, 635
,/2, 146
#\//2, 634
{}/1, 641
!/0, 145
/, 97
//2, 246, 761
//3, 761
//4, 761
//5, 761
//6, 761
//7, 761
//8, 761
//9, 761
$/0, 294
$/1, 294

./2, 249

./3, 323
=/2, 140
==/2, 142
>=/2, 241
>/2, 241
ˆ/2, 253
///2, 246
->/2, 146
=</2, 241
#<==/2, 634
<</2, 251
</2, 241
>:</2, 327
:</2, 327
-/1, 246
-/2, 246
\=/2, 141
\/1, 252
\==/2, 142
\+/1, 148
\//2, 251
+/1, 246
+/2, 246
**/2, 253
#==>/2, 634
>>/2, 251, 761
>>/3, 761
>>/4, 761
>>/5, 761
>>/6, 761
>>/7, 761
>>/8, 761
>>/9, 761
;/2, 146
*->/2, 147
=@=/2, 143
\=@=/2, 144
@>=/2, 142
@>/2, 142
*/2, 246
@=</2, 142

SWI-Prolog 9.3 Reference Manual

836 INDEX

@</2, 142
=../2, 223
poll(), 208
select(), 208
\, 97
PL get arg(), 456

ABI
compatibility, 95

abolish/1, 171, 173
abolish/2, 171
abolish/[1

2], 63
abolish all tables/0, 364, 373, 374
abolish module tables/1, 373, 374
abolish monotonic tables/0, 364
abolish nonincremental tables/0, 374
abolish nonincremental tables/1, 374
abolish private tables/0, 373, 374
abolish shared tables/0, 367, 373, 374
abolish table call/1, 745
abolish table call/2, 745
abolish table pred/1, 745
abolish table subgoals/1, 373, 374
abolish table subgoals/2, 745
abort/0, 29, 156–158, 195, 198, 201, 288, 393,

413, 502, 506, 766, 771
abs/1, 247
absolute file name/2, 19, 116, 123, 284, 286, 288,

570
absolute file name/3, 21, 23, 52, 61, 62, 68, 76,

107, 114, 115, 121, 122, 124, 125, 273,
284, 285, 499, 570, 575

absolute file name/[2
3], 73, 122, 285

access file/2, 61, 74, 205, 282, 285, 568
acos/1, 252
acosh/1, 253
acquire(), 478
acyclic term/1, 86, 140, 143
add-ons, 573
add class/2, 558
add edges/3, 753
add import module/3, 347, 348, 353
add nb set/2, 681
add nb set/3, 681
add to heap/4, 661

add vertices/3, 753
agent, 600
aggregate library, 423
aggregate/3, 170, 343, 592
aggregate/4, 343, 592
aggregate all/3, 171, 592
aggregate all/4, 592
all different/1, 628
all distinct/1, 628
alpha to lower//1, 647
anonymous

variable, 85
anonymous variable, 780
ansi format/3, 30, 164, 264, 594
ansi get color/2, 595
ansi hyperlink/2, 595
ansi hyperlink/3, 595
ansi term library, 58, 163, 164
answer subsumption

tabling, 357
answer count restraint/0, 371
append/1, 203, 204
append/2, 340, 669
append/3, 192, 230, 669
append child/2, 559
append html/2, 557
apple current locale identifier/1, 274
apply/2, 149
apply macros library, 69, 149, 169
apropos/1, 33, 77, 774, 789
apropos match/2, 232
arg/3, 223, 227
argument mode indicator, 111
argv options/2, 48
argv options/3, 51, 563, 677
argv options/4, 679
argv usage/1, 679
arity, 780
asan, 526
asin/1, 252
asinh/1, 252
assert, 780
assert/1, 115, 173, 175, 184, 185, 188, 268, 338,

342, 364, 410–412, 414
assert/2, 59, 173, 180, 192
assert predicate options/4, 704

SWI-Prolog 9.3 Reference Manual

INDEX 837

asserta/1, 28, 87, 121, 144, 170, 173, 176, 344,
345, 363, 497, 780

asserta/2, 173, 180
assertion/1, 69, 652, 769
assertz/1, 22, 121, 170, 171, 173, 176, 190, 192,

352, 377, 425, 497, 780
assertz/2, 152, 173, 180
assignment/2, 739
assoc library, 141, 142, 325, 329, 330, 681
assoc to keys/2, 600
assoc to list/2, 600
assoc to values/2, 600
at end of stream/0, 211
at end of stream/1, 211, 212
at end of stream/[0

1], 198
at halt/1, 60, 125, 126, 167, 289, 403, 479, 506,

514, 791
atan/1, 252
atan/2, 252
atan2/2, 252
atanh/1, 253
atom, 780
atom//1, 648
atom/1, 73, 139, 140, 382, 450
atom chars/2, 114, 206, 210, 228, 229, 236, 313,

337
atom codes/2, 114, 206, 228–230, 236, 337
atom concat/3, 230, 314, 571, 803
ATOM dot(), 448
atom length/2, 63, 231, 314
ATOM nil(), 448
atom number/2, 206, 230, 313
atom prefix/2, 231
atom result/2, 350
atom string/2, 312, 313
atom to chars/2, 603
atom to chars/3, 603
atom to term/3, 221, 230
atomic/1, 139, 242
atomic concat/3, 230, 231
atomic list concat/2, 231
atomic list concat/3, 231
atomics to string/2, 315
atomics to string/3, 315
attach console/0, 417, 502
attach packs/0, 27, 575

attach packs/1, 575
attach packs/2, 573–576
attr/3, 559
attr portray hook/2, 213, 381
attr unify hook/2, 77, 377–379
attribute goals/1, 380
attvar/1, 379
autoload/0, 564, 571
autoload/1, 56, 341, 342
autoload/2, 56, 120, 187, 341, 342
autoload/[1

2], 56, 77
autoload all/0, 79, 565
autoload path/1, 78
automaton/3, 632
automaton/8, 632
await/2, 554, 555, 796

b getval/2, 268, 269
b set dict/3, 328
b setval/2, 70, 171, 268, 328, 425, 488, 771
backcomp library, 225, 267, 341
backtracking, 780
bagof/3, 86, 259–261, 343, 423, 789
bb inf/3, 641
bb inf/4, 641
bb inf/5, 641
bdb library, 496
between/3, 240
bind/4, 558, 561
bind async/4, 558, 561
binding, 780
bits

32/64, 95
blackboard, 410, 600
blank//0, 647
blanks//0, 647
blanks to nl//0, 647
blob/2, 139, 140, 194
body, 780
body/1, 559
BOM, 92
bounded number/3, 244
break/0, 29, 57, 71, 288, 369, 393, 502
broadcast, 600
broadcast library, 600
broadcast/1, 601

SWI-Prolog 9.3 Reference Manual

838 INDEX

broadcast request/1, 601
built-in predicate, 780
Byte Order Mark, 92
byte count/2, 200, 208

call/1, 107, 140, 145, 147, 148, 156, 291, 300,
338, 383, 484, 769

call/2, 140, 146, 148
call/3, 215
call/4, 205
call cleanup/2, 151, 152, 157, 206, 414, 765, 776
call dcg/3, 169
call delays/2, 362
call in thread/2, 750
call nth/2, 743
call residual program/2, 361
call residue vars/2, 71, 382, 383
call shared object function/2, 435
call time/2, 734
call time/3, 734
call with depth limit/3, 149, 150
call with inference limit/3, 150
call with time limit/2, 150, 158, 402, 413
callable/1, 140, 223, 452
cancel halt/1, 125, 126, 289
catch/3, 155–159, 219, 282, 288, 401, 404, 413,

414, 426, 486, 765, 769, 770, 804
catch/4, 658
catch with backtrace/3, 156, 160
cd/0, 20
ceil/1, 251
ceiling/1, 251
chain/2, 633
char code/2, 114, 229, 249
char conversion/2, 57, 240
char type/2, 84, 233, 234, 236
character set, 79
character count/2, 200, 208
chat:inv map list/5, 299
chdir/1, 288
check library, 120
check/0, 264, 604
check:string predicate/1, 319
check:valid string goal/1, 319
check predicate option/3, 704
check predicate options/0, 705
checker/2, 606

choice point, 780
chr library, 391, 393
chr constraint/1, 388, 395
chr leash/1, 393
chr notrace/0, 392, 393
chr option/2, 387, 395
chr show store/1, 394
chr trace/0, 392, 393
chr type/1, 389
circuit/1, 631
clause, 781
clause/2, 67, 90, 191, 192, 336, 342, 565
clause/3, 173, 180, 192, 193, 567
clause/[2

3], 63
clause info/5, 771
clause property/2, 120, 123, 188–190, 192, 764
cli debug opt help/2, 680
cli debug opt meta/2, 680
cli debug opt type/3, 680
cli enable development system/0, 52, 680
cli parse debug options/2, 680
close(), 549
close/1, 193, 197, 200, 478
close/2, 197
close any/1, 666
close dde conversation/1, 305
close shared object/1, 435
CLP, 376
clpfd library, 346
clpqr library, 640
clumped/2, 672
cmp versions/3, 584, 714
cmpr/2, 247
code type/2, 233, 234, 236
collate, 237
collation key/2, 233, 237, 272
COM, 476
command line

arguments, 28
community

extensions, 573
compare

language-specific, 237
compare(), 479
compare/3, 86, 142, 259, 495, 777
compatibility

SWI-Prolog 9.3 Reference Manual

INDEX 839

binary, 95
compile aux clauses/1, 115, 130, 188
compile predicates/1, 184, 185
compiling/0, 127, 136
complement/2, 755
completion

TAB, 100
compose/3, 754
compound, 781
compound/1, 140, 223
compound name arguments/3, 140, 160, 224,

320, 323
compound name arity/3, 140, 223, 224, 320, 323
concat atom/3, 231
concurrent/3, 748
concurrent and/2, 749
concurrent and/3, 749
concurrent forall/2, 748
concurrent forall/3, 748
concurrent maplist/2, 413, 749
concurrent maplist/3, 749
concurrent maplist/4, 749
condition variable, 410
connect ugraph/3, 755
connected/2, 365
constraint programming, 376
constraint/3, 737
constraint/4, 738
constraint add/4, 738
consult/1, 20, 23, 76, 106, 114–116, 118–120,

135, 136, 185, 545
contains term/2, 682
contains var/2, 682
context module, 781
context module/1, 344, 350, 485
convert setting text/3, 733
convert time/[2

8], 284
convlist/3, 597
copy file/2, 271
copy predicate clauses/2, 171
copy stream data/2, 211, 212
copy stream data/3, 200, 211
copy term/2, 87, 144, 226–228, 268, 328, 377,

381
copy term/3, 207, 216, 377, 380, 381, 383
copy term/4, 226

copy term nat/2, 226, 381
copy term nat/4, 226
copysign/2, 247
cos/1, 252
cosh/1, 252
count atom results/3, 350
cov load data/2, 708
cov property/1, 708
cov reset/0, 708
cov save data/2, 708
coverage/1, 706
coverage/2, 706
cputime/0, 254
create/2, 559
create pool/1, 752
create prolog flag/3, 53, 73, 75, 76, 499
crypt library, 788
crypto library, 249
crypto n random bytes/2, 249
csv//1, 644
csv//2, 644
csv options/2, 645
csv read file/2, 258, 644
csv read file/3, 644
csv read file row/3, 645
csv read row/3, 645
csv read stream/3, 644
csv write file/2, 646
csv write file/3, 646
csv write stream/3, 646
csym//1, 648
ctypes library, 234
cumulative/1, 631
cumulative/2, 631
current arithmetic function/1, 256
current atom/1, 186
current blob/2, 186, 478
current char conversion/2, 240
current encoding/1, 657
current engine/1, 429
current flag/1, 186
current foreign library/2, 434, 564
current format predicate/2, 267
current functor/2, 186
current input/1, 125, 194, 204, 205
current key/1, 180, 186
current locale/1, 234

SWI-Prolog 9.3 Reference Manual

840 INDEX

current module/1, 187, 351
current op/3, 238
current option arg/2, 704
current output/1, 194, 204, 205
current persistent predicate/1, 696
current predicate/1, 148, 187, 342
current predicate/2, 187
current predicate option/3, 704
current predicate options/3, 705
current prolog flag/2, 26–28, 53, 76, 77, 82, 88,

116, 219, 306, 431, 500, 565, 590, 782
current setting/1, 733
current signal/3, 166, 167
current stream/3, 199, 288
current table/2, 373
current thread pool/1, 751
current transaction/1, 178
current trie/1, 181
current type/3, 658
cyclic terms, 86
cyclic term/1, 87, 140

daemon, 600
date time stamp/2, 276
date time value/3, 275, 276
day of the week/2, 280
db assert/1, 697
db attach/2, 696
db attached/1, 697
db detach/0, 697
db retract/1, 697
db retractall/1, 697
db sync/1, 697
db sync all/1, 698
DCG, 115, 168

indexing, 89
dcg, 781
dcg translate rule/2, 129, 130
dcg translate rule/4, 131
dde current connection/2, 307
dde current service/2, 307
dde execute/2, 305
dde poke/4, 306
dde register service/2, 306
dde request/3, 305
dde unregister service/1, 306
debug library, 109

debug/0, 71, 159, 291, 294, 302, 418, 501, 767,
769, 770

debug/1, 651
debug/3, 17, 69, 86, 162, 652
debug message context/1, 651
debugging

exceptions, 158
debugging/0, 77, 291, 709, 773
debugging/1, 650
debugging/2, 650
debugging hook/1, 709
declarative, 377
dedent lines/3, 736
default module/2, 129, 187, 188, 191, 347
del assoc/4, 599
del attr/2, 379, 381
del attrs/1, 381
del dict/4, 327
del edges/3, 754
del max assoc/4, 600
del min assoc/4, 600
del vertices/3, 753
delays residual program/2, 361, 362
delete/3, 670
delete directory/1, 287
delete file/1, 271, 283, 287
delete from heap/4, 661
delete import module/2, 347, 348, 353
denominator/1, 251
derive predicate options/0, 705
derived predicate options/1, 705
derived predicate options/3, 705
deserialize, 168
det, 781
det/1, 60, 188, 293, 294
determinism, 781
deterministic, 781
deterministic/1, 151, 765
Development environment, 97
dialect.pl library, 775
dialect/xsb/source library, 778
dict create/3, 326
dict fill/4, 653
dict keys/2, 653
dict options/2, 685
dict pairs/3, 326, 330
dict same keys/2, 326

SWI-Prolog 9.3 Reference Manual

INDEX 841

dict size/2, 653
dicts join/3, 653
dicts join/4, 654
dicts same keys/2, 653
dicts same tag/2, 653
dicts slice/3, 654
dicts to compounds/4, 654
dicts to same keys/3, 653
dif library, 383
dif/2, 87, 141, 145, 376, 382, 383
digit//1, 647
digits//1, 647
directory file path/3, 282
directory files/2, 286
discontiguous/1, 120, 162, 183–185, 188, 292
disjoint2/1, 631
display/1, 214, 263, 461, 462
distinct/1, 742
distinct/2, 742
div/2, 246
divmod/4, 240, 241
dld, 431
do not use/1, 345
document/1, 559
domain error/2, 161, 474, 655
downcase atom/2, 235, 236
dump/3, 642, 644
duplicate term/2, 87, 226–228, 268
dwim match/2, 191, 307
dwim match/3, 307
dwim predicate/2, 191
dynamic predicate, 781
dynamic/1, 66, 72, 113, 119, 170, 173, 183–185,

188, 350, 363, 414, 566
dynamic/2, 183, 184

e/0, 254
edge/2, 372
edges/2, 754
edit/0, 56, 137
edit/1, 22, 60, 76, 77, 100, 101, 106, 110, 120,

137, 138, 345, 800
editline library, 68
element/3, 630
elif/1, 132
else/0, 132
Emacs, 31

emacs/prolog colour library, 104
emacs/prolog mode library, 104
empty assoc/1, 599
empty fdset/1, 637
empty heap/1, 661
empty interval/2, 637
empty nb set/1, 681
encoding/1, 91, 120
endif/0, 132
Engine class, 549
Engine.call(), 549
engine create/3, 428
engine create/4, 428
engine destroy/1, 427, 428
engine fetch/1, 426, 428, 429
engine next/2, 423, 428
engine next reified/2, 428
engine post/2, 428, 429
engine post/3, 428, 429
engine self/1, 429
engine yield/1, 423, 426–428
ensure loaded/1, 48, 114–116, 119, 340
entailed/1, 641
env/2, 732
env/3, 732
eol/0, 648
eos/0, 648
epsilon/0, 254
erase/1, 171, 173, 178–180, 192, 411, 772
erf/1, 254
erfc/1, 254
error library, 139, 160, 728
error term/2, 659
errors

file, 281
eval/1, 254
event property/3, 560
exception/2, 659
exception/3, 77, 268, 269, 770
exception hook/5, 710
exception term/2, 659
exception type/2, 659
exceptions

debugging, 158
exclude/3, 596
existence error/2, 161, 475, 655
existence error/3, 161, 655

SWI-Prolog 9.3 Reference Manual

842 INDEX

exists directory/1, 205, 282, 283, 568
exists file/1, 61, 205, 282, 568
exists source/1, 52, 124, 775
exists source/2, 124
exp/1, 253
expand answer/2, 290
expand file name/2, 61, 116, 271, 284–286
expand file search path/2, 122
expand goal/2, 66, 127–129, 132
expand goal/4, 131
expand macros/5, 676
expand term/2, 125, 127–130, 168, 729
expand term/4, 131
expand url path/2, 682
expects dialect/1, 116, 118, 125, 775
explain library, 794
explain/1, 33
explain/2, 34
export/1, 133, 186, 348, 349, 778
export list/2, 348
exported predicate, 781

fact, 781
fail/0, 129, 145, 155, 335
false/0, 145
fast read/1, 660
fast read/2, 207
fast term serialized/2, 207
fast write/1, 660
fast write/2, 96, 207, 503
fast write to string/3, 660
fastrw library, 207, 496
fd degree/2, 636
fd dom/2, 636
fd inf/2, 636
fd set/2, 637
fd size/2, 636
fd sup/2, 636
fd var/1, 636
fdset add element/3, 638
fdset complement/2, 639
fdset del element/3, 638
fdset disjoint/2, 638
fdset eq/2, 638
fdset intersect/2, 638
fdset intersection/3, 638
fdset interval/3, 637

fdset max/2, 637
fdset member/2, 638
fdset min/2, 637
fdset parts/4, 637
fdset singleton/2, 637
fdset size/2, 638
fdset subset/2, 638
fdset subtract/3, 638
fdset to list/2, 638
fdset to range/2, 638
fdset union/2, 639
fdset union/3, 639
fetch/3, 553, 556
fields/4, 729
file base name/2, 283
file directory name/2, 282, 283
file name extension/3, 286
file name to url/2, 758
file of label/2, 345
file search path/2, 21, 23, 28, 53, 56, 62, 68, 73,

76–79, 98, 107, 116, 121, 122, 125, 205,
284, 285, 499, 520, 569, 570, 572, 575,
582, 779

filesex library, 271, 282
fill buffer/1, 212
find chr constraint/1, 394
findall/3, 87, 144, 145, 170, 259, 261, 330, 358,

359, 377, 380, 423, 424, 428, 795
findall/4, 259
findnsols/4, 259, 795
findnsols/5, 259
first solution/3, 749
flag/3, 171, 180, 186, 227
flag:abi version, 54
flag:access level, 54
flag:address bits, 54
flag:agc close streams, 54
flag:agc margin, 55
flag:allow dot in atom, 55
flag:allow variable name as functor, 55
flag:android, 55
flag:android api, 55
flag:answer write options, 55
flag:apple, 55
flag:apple universal binary, 55
flag:arch, 56
flag:argv, 56

SWI-Prolog 9.3 Reference Manual

INDEX 843

flag:associated file, 56
flag:autoload, 56
flag:back quotes, 56
flag:backtrace, 56
flag:backtrace depth, 56
flag:backtrace goal depth, 57
flag:backtrace show lines, 57
flag:bounded, 57
flag:break level, 57
flag:bundle, 57
flag:c cc, 57
flag:c cflags, 57
flag:c cxx, 57
flag:c ldflags, 57
flag:c libplso, 57
flag:c libs, 57
flag:char conversion, 57
flag:character escapes, 57
flag:character escapes unicode, 58
flag:ci max lookahead, 58
flag:ci max var fraction, 58
flag:ci min clauses, 58
flag:ci min speedup ratio, 58
flag:ci speedup, 58
flag:cmake build type, 58
flag:colon sets calling context, 58
flag:color term, 58
flag:compile meta arguments, 58
flag:compiled at, 59
flag:conda, 59
flag:console menu, 59
flag:cpu count, 59
flag:dde, 59
flag:debug, 59
flag:debug on error, 59
flag:debug on interrupt, 59
flag:debugger show context, 59
flag:debugger write options, 59
flag:determinism error, 60
flag:dialect, 60
flag:dir sep, 60
flag:double quotes, 60
flag:editor, 60
flag:emacs inferior process, 60
flag:encoding, 60
flag:engines, 60
flag:executable, 60

flag:executable format, 60
flag:exit status, 60
flag:file name case handling, 60
flag:file name variables, 61
flag:file search cache time, 61
flag:float max, 61
flag:float max integer, 61
flag:float min, 61
flag:float overflow, 61
flag:float rounding, 61
flag:float undefined, 61
flag:float underflow, 61
flag:float zero div, 61
flag:gc, 62
flag:gc thread, 62
flag:generate debug info, 62
flag:gmp version, 62
flag:gui, 62
flag:halt grace time, 62
flag:heartbeat, 62
flag:history, 62
flag:home, 62
flag:hwnd, 62
flag:integer rounding function, 62
flag:iso, 63
flag:large files, 63
flag:last call optimisation, 63
flag:libswipl, 63
flag:malloc, 63
flag:max answers for subgoal, 63
flag:max answers for subgoal action, 64
flag:max arity, 64
flag:max char code, 64
flag:max integer, 64
flag:max integer size, 64
flag:max procedure arity, 64
flag:max rational size, 64
flag:max rational size action, 64
flag:max table answer size, 64
flag:max table answer size action, 64
flag:max table subgoal size, 64
flag:max table subgoal size action, 65
flag:max tagged integer, 65
flag:message context, 65
flag:min integer, 65
flag:min tagged integer, 65
flag:mitigate spectre, 65

SWI-Prolog 9.3 Reference Manual

844 INDEX

flag:msys2, 65
flag:occurs check, 65
flag:on error, 65
flag:on warning, 66
flag:open shared object, 66
flag:optimise, 66
flag:optimise unify, 66
flag:os argv, 66
flag:packs, 66
flag:path max, 66
flag:path sep, 66
flag:pid, 66
flag:pipe, 66
flag:portable vmi, 67
flag:posix shell, 67
flag:prefer rationals, 67
flag:print write options, 67
flag:prompt alternatives on, 67
flag:protect static code, 67
flag:qcompile, 67
flag:rational syntax, 67
flag:rationals, 68
flag:readline, 68
flag:report error, 68
flag:resource database, 68
flag:runtime, 68
flag:sandboxed load, 68
flag:saved program, 68
flag:shared home, 68
flag:shared object extension, 68
flag:shared object search path, 69
flag:shared table space, 69
flag:shift check, 69
flag:signals, 69
flag:source, 69
flag:source search working directory, 69
flag:stack limit, 69
flag:stream type check, 69
flag:string stack tripwire, 69
flag:system thread id, 69
flag:table incremental, 70
flag:table shared, 70
flag:table space, 70
flag:table subsumptive, 70
flag:threads, 70
flag:timezone, 70
flag:tmp dir, 70

flag:toplevel goal, 70
flag:toplevel list wfs residual program, 70
flag:toplevel mode, 70
flag:toplevel name variables, 71
flag:toplevel print anon, 71
flag:toplevel print factorized, 71
flag:toplevel prompt, 71
flag:toplevel residue vars, 71
flag:toplevel var size, 72
flag:trace gc, 72
flag:traditional, 72
flag:tty control, 72
flag:unix, 72
flag:unknown, 72
flag:unknown option, 72
flag:unload foreign libraries, 73
flag:user flags, 73
flag:var prefix, 73
flag:verbose, 73
flag:verbose autoload, 73
flag:verbose file search, 73
flag:verbose load, 73
flag:version, 73
flag:version data, 73
flag:version git, 73
flag:vmi builtin, 73
flag:warn autoload, 74
flag:warn override implicit import, 74
flag:win file access check, 74
flag:windows, 74
flag:wine version, 74
flag:write attributes, 74
flag:write help with overstrike, 74
flag:xdg, 74
flag:xpce, 75
flag:xpce version, 75
flag:xref, 75
flatten/2, 340, 671
float//1, 648
float/1, 139, 140, 250
float class/2, 244
float fractional part/1, 251
float integer part/1, 251
float parts/4, 244
floor/1, 251
flounder, 382
flush output/0, 209

SWI-Prolog 9.3 Reference Manual

INDEX 845

flush output/1, 163, 210, 212, 530
flush output/[0

1], 195, 210
foldall/4, 228, 592
foldl/4, 597
foldl/5, 597
foldl/6, 597
foldl/7, 597
foldsubterms/4, 747
foldsubterms/5, 747
forall/2, 261
forEach(), 549
foreach//2, 650
foreach//3, 650
foreach/2, 261, 592
fork/1, 301
format/1, 163, 262, 263
format/2, 82, 196, 213, 214, 217, 233, 262–264,

267
format/3, 161, 163–165, 194, 206, 212, 229, 230,

233, 237, 243, 262, 266, 267, 311, 319
format/[1

2], 212, 795
format/[2

3], 82
format predicate/2, 264, 267
format time/3, 65, 70, 233, 267, 272, 277
format time/4, 277, 279
format to chars/3, 603
format to chars/4, 603
free of term/2, 682
free of var/2, 682
free variables/4, 593
freeze/2, 382, 383
frozen/2, 380, 383
functor, 782
functor/3, 140, 187, 223, 224, 270, 320, 323, 373
functor/4, 223, 224

garbage collect/0, 300, 304, 427
garbage collect atoms/0, 55, 174, 301, 303, 427,

438, 477, 506
garbage collect clauses/0, 88, 133, 134, 170, 173,

190, 301, 303, 771
gcd/2, 247
gdebug/0, 106
gen assoc/3, 599

gen nb set/2, 681
gen state/1, 737
gensym/2, 660
get/1, 210, 324
get/2, 210, 324
get0/1, 196, 210
get0/2, 210
get assoc/3, 330, 599
get assoc/5, 599
get attr/3, 379, 381, 559
get attribute/3, 559
get attrs/2, 381
get by class/2, 559
get by class/3, 559
get by id/2, 559
get by name/2, 559
get by tag/2, 559
get byte/1, 210
get byte/2, 210
get byte/[1

2], 114
get call/3, 744
get calls/3, 744
get char/1, 210
get char/2, 210
get char/[1

2], 114
get code/1, 114, 194, 210, 211
get code/2, 91, 200, 210–212
get code/[1

2], 114
get dict/3, 325
get dict/5, 325
get flag/2, 180
get from heap/4, 661
get html/2, 559
get residual/2, 744
get returns/2, 744
get returns/3, 744
get returns and dls/3, 744
get returns and tvs/3, 744
get returns for call/2, 745
get single char/1, 27, 72, 211
get string code/3, 314
get style/3, 559
get time/1, 65, 275, 284, 297, 406, 408
getbit/2, 255

SWI-Prolog 9.3 Reference Manual

846 INDEX

getenv/2, 271
getrand/1, 721
global cardinality/2, 630
global cardinality/3, 630
global url/3, 756
GMP, 242
GNU-Emacs, 31
goal, 782
goal expansion/2, 75, 76, 90, 115, 124, 127–131,

134, 347, 776, 777, 792
goal expansion/4, 115, 131
gpp

XSB proprocessor, 779
ground/1, 87, 140, 174, 225, 451
group by/4, 743
group pairs by key/2, 694
gspy/1, 106
gtrace/0, 106, 417
gtrap/1, 293, 294
guitracer/0, 106, 110, 290
gxref/0, 107, 341, 566

halt/0, 23, 66, 70, 125, 127, 288, 563, 791
halt/1, 60, 62, 158, 288, 289, 502, 515, 790
halt/[0

1], 125
has class/2, 560
has type/2, 657
hashing, 782
head, 782
head/1, 560
heap size/2, 661
heap to list/2, 661
heaps library, 426
help/0, 32, 77, 773, 774
help/1, 32, 74, 77, 773, 774
Herbrand term, 376
hide/1, 561
hooks, 76
hotswap library, 570
html/1, 557
html/2, 560
html dom/2, 558
http/http error library, 159
http/http header library, 279
http/http load library, 118, 774
http location/2, 756

http open/3, 165
http timestamp/2, 279

IDE, 97
IF

prolog, 775
if

directive, 131
if/1, 124, 132, 562
ignore/1, 148, 149, 152, 401
immediate

update view, 173
import/1, 348, 349
import module/2, 187, 347, 348
imported predicate, 782
in/2, 626
in pce thread/1, 422
in pce thread sync/1, 422
in set/2, 637
include/1, 114, 116, 119, 123, 193
include/3, 596
include macros/3, 675
incr directly depends/2, 662
incr invalid subgoals/1, 662
incr invalidate call/1, 663
incr invalidate calls/1, 366, 662
incr is invalid/1, 662
incr propagate calls/1, 366, 663
incr table update/0, 663
incr trans depends/2, 662
increval library, 366
indent lines/3, 736
indent lines/4, 737
indexing, 782

DCG, 89
deep, 88
jiti, 87
term-hashes, 174

indomain/1, 627
inf/0, 254
inf/2, 641
infinite trees, 86
initialization/1, 48, 115, 126, 134, 268, 285, 403,

431, 511, 566, 567
initialization/2, 27, 48–50, 52, 70, 126, 134, 563,

566, 567
initialization/[1

SWI-Prolog 9.3 Reference Manual

INDEX 847

2], 26
initialize/0, 27, 127
ins/2, 627
insert after/2, 560
insert before/2, 560
instance/2, 180
instantiation, 782
instantiation error/1, 160, 474, 655
integer, 782

unbounded, 242
integer//1, 647
integer/1, 139, 140, 242, 249
interactor/0, 201, 417
intercept/3, 664
intercept/4, 664
intercept all/4, 664
internationalization, 90
interpolate string/4, 736
interpreted, 782
intersection/3, 673
is/2, 242, 250, 395
is absolute file name/1, 286
is absolute url/1, 756
is assoc/1, 600
is async/0, 554, 555
is dict/1, 325
is dict/2, 325, 326
is engine/1, 429
is fdset/1, 637
is heap/1, 661
is incremental subgoal/1, 662
is lambda/1, 762
is list/1, 256
is message queue/1, 408
is most general term/1, 173, 226
is object/1, 553, 555
is object/2, 553, 555
is of type/2, 657
is ordset/1, 691
is rbtree/1, 726
is set/1, 673
is stream/1, 199
is text code/1, 701
is thread/1, 404
is trie/1, 181
ISO Latin 1, 79
isolation, 175

Java, 476
jiti list/0, 88, 189, 710
jiti list/1, 189, 710
jiti suggest modes/0, 711
jiti suggest modes/1, 711
jitindex, 87
join threads/0, 417
js script/2, 553, 556

keysort/2, 258, 259
known browser/2, 682
known licenses/0, 787, 788

label/1, 627
labeling/1, 612
labeling/2, 627
lambda calls/2, 762
lambda calls/3, 762
last/2, 670
lazy list character count/1, 699
lazy list location//1, 699
lcm/2, 247
leash/1, 291, 393, 766
length/2, 257, 323
lex chain/1, 629
lgamma/1, 254
library(apply macros) library, 115
library(dcg/basics) library, 169
library(prolog stack) library, 486
library/dialect/xsb/gpp library, 779
library directory/1, 76–79, 120
license/0, 787
license/1, 787, 788
license/2, 787, 788
limit/2, 743
line count/2, 200, 202, 208, 270
line position/2, 200–202, 208, 270
list autoload/0, 605
list cross module calls/0, 605
list debug topics/0, 651
list debug topics/1, 651
list format errors/0, 606
list format errors/1, 606
list rationals/0, 83, 606
list rationals/1, 606
list redefined/0, 605
list settings/0, 733

SWI-Prolog 9.3 Reference Manual

848 INDEX

list settings/1, 733
list strings/0, 309, 318, 319, 605
list strings/1, 605
list to assoc/2, 330, 599
list to fdset/2, 638
list to heap/2, 662
list to ord set/2, 692
list to rbtree/2, 726
list to set/2, 673
list tracing/0, 712
list trivial fails/0, 605
list trivial fails/1, 605
list undefined/0, 120, 191, 571, 605
list undefined/1, 605
list void declarations/0, 605
listen/2, 601, 602
listen/3, 602
listening/3, 602
listing/0, 23, 667
listing/1, 23, 56, 148, 667
listing/2, 667
lists library, 256
load(), 480
load files/1, 116, 545
load files/2, 67, 68, 73, 76, 91, 115–119, 123,

124, 135, 136, 292, 340, 774, 800
load foreign library/1, 126, 433, 434, 517
load foreign library/2, 433
load settings/1, 732
load settings/2, 732
locale, 237
locale create/3, 233, 234
locale destroy/1, 234
locale property/2, 234
locale sort/2, 233, 237, 272
log/1, 253
log10/1, 253
logical

update view, 173
ls/0, 20
lsb/1, 255

MacOS, 55
macro position/1, 676
main library, 48, 50, 51, 157
main/0, 48, 50, 157, 677
main/1, 48, 50

make/0, 17, 21, 22, 78, 79, 101, 106, 110, 116,
118–120, 124, 133, 134

make directory/1, 271, 281, 287
make library index/1, 78
make library index/2, 78
make library index/[1

2], 79
malloc property/1, 303, 304
map assoc/2, 600
map assoc/3, 600
map list to pairs/3, 695
mapargs/3, 746
mapdict/2, 652
mapdict/3, 653
mapdict/4, 653
maplist/2, 261, 337, 596
maplist/3, 330, 342, 349, 596
maplist/4, 596
maplist/5, 596
mapsubterms/3, 746
mapsubterms var/3, 746
max/2, 248
max assoc/3, 599
max list/2, 673
max member/2, 672
max member/3, 672
max var number/3, 759
maximize/1, 641
maximize/3, 738
maxr/2, 248
maybe/0, 721
maybe/1, 721
maybe/2, 721
member/2, 151, 256, 285, 340, 669, 797
memberchk/2, 144, 256, 318
memory

layout, 93
merge heaps/3, 662
merge options/3, 684
message

service, 600
message hook/3, 76, 135, 161–163, 165, 302, 804
message prefix hook/2, 76
message property/2, 58, 76, 164
message queue create/1, 405, 407, 408
message queue create/2, 401, 407, 409, 415
message queue destroy/1, 408

SWI-Prolog 9.3 Reference Manual

INDEX 849

message queue property/2, 405, 409
message queue set/2, 409
message to string/2, 162–164
meta-predicate, 783
meta options/3, 340, 684
meta predicate/1, 58, 129, 140, 189, 191, 342–

344, 349, 352, 485, 504, 565, 566
mild/1, 23
min/2, 248
min assoc/3, 599
min list/2, 673
min member/2, 672
min member/3, 672
min of heap/3, 662
min of heap/5, 662
minimize/1, 641
minimize/3, 738
minr/2, 249
mod/2, 246
mode, 783
mode/1, 87, 185, 189
module, 783

contex, 781
module transparent, 783
module/1, 71, 114, 186, 222, 238, 345, 401
module/2, 127, 237, 238, 338, 339, 341, 346–348,

352
module/3, 339
module property/2, 348, 351, 352
module transparent/1, 191, 344, 345, 350, 352,

485, 781
msb/1, 255
msort/2, 258
multi, 783
multifile/1, 72, 119, 120, 183–185, 189, 773, 783
must be/2, 583, 656, 728
must be async/1, 555
mutex create/1, 416
mutex create/2, 416, 417
mutex destroy/1, 416
mutex lock/1, 416
mutex property/2, 417
mutex statistics/0, 405
mutex trylock/1, 416
mutex unlock/1, 416
mutex unlock all/0, 417
my compare/3, 777

mypred/1, 345

name/1, 342
name/2, 228, 230
name of/2, 602
nan/0, 254
nb current/2, 268, 269, 771
nb delete/1, 268, 269
nb getval/2, 269
nb intercept all/4, 665
nb link dict/3, 328
nb linkarg/3, 228, 328
nb linkval/2, 228, 269, 270, 328
nb set library, 680
nb set dict/3, 328
nb set to list/2, 681
nb setarg/3, 112, 171, 227, 228, 260, 328, 680,

729
nb setval/2, 171, 227, 228, 268–270, 328, 426,

771
neck, 783
neighbors/3, 755
neighbours/3, 755
nextto/3, 670
nexttoward/2, 248
nl/0, 209
nl/1, 209
nl/[0

1], 262
nodebug/0, 291, 767
nodebug/1, 651
noguitracer/0, 106, 110
non deterministic, 783
non-terminal indicator, 113
non terminal/1, 186, 190
nonblank//1, 647
nonblanks//1, 647
nondet, 783
nonground/2, 140, 225
nonvar/1, 139, 185, 334
noprotocol/0, 290
normalize space/2, 237
nospy/1, 77, 291, 418, 709, 773
nospyall/0, 77, 291, 709, 773
not/1, 148, 149, 789
not exists/1, 373, 803
notrace/0, 291, 393

SWI-Prolog 9.3 Reference Manual

850 INDEX

notrace/1, 291
notraceall/0, 712
notrap/1, 709
nth0/3, 670
nth0/4, 670
nth1/3, 670
nth1/4, 670
nth clause/3, 188, 192, 764
nth integer root and remainder/4, 241
number

rational, 242
number//1, 648
number/1, 139, 242
number chars/2, 114, 229, 230
number codes/2, 114, 228, 230
number string/2, 312
number to chars/2, 603
number to chars/3, 603
numbervars/1, 759
numbervars/3, 87, 215, 224, 225
numbervars/4, 87, 217, 224, 225
numerator/1, 250
numlist/3, 673

obfuscate library, 571
objective/2, 738
occurrences of term/3, 682
occurrences of var/3, 683
occurs check, 143
offset/2, 743
on signal/3, 166, 167, 414
once/1, 147, 149, 150, 176, 206, 260, 288, 291,

294, 304, 414–416, 488, 771
online help library, 790
op/3, 183, 214, 238, 346
open/3, 61, 112, 193–195, 197, 205, 474, 568,

774
open/4, 72, 91–93, 113, 194, 195, 197, 198, 200–

202, 211, 234, 282, 316, 330, 527, 568,
569

open any/5, 665
open chars stream/2, 603
open dde conversation/3, 305
open hook/6, 666
open null stream/1, 197, 200
open resource/2, 563, 569
open resource/3, 512, 564, 568, 569

open shared object/2, 66, 273, 431, 434
open shared object/3, 434, 568
open string/2, 316
operand, 783
operator, 783

and modules, 237
opt arguments/3, 690
opt help/2, 691
opt parse/4, 690
opt parse/5, 690
option library, 330, 332, 728
option/2, 684
option/3, 684
optional//2, 650
options library, 331
ord add element/3, 692
ord del element/3, 692
ord disjoint/2, 692
ord empty/1, 692
ord intersect/2, 692
ord intersect/3, 692
ord intersection/2, 692
ord intersection/3, 692
ord intersection/4, 692
ord list to assoc/2, 599
ord list to rbtree/2, 726
ord memberchk/2, 693
ord selectchk/3, 693
ord seteq/2, 692
ord subset/2, 693
ord subtract/3, 693
ord symdiff/3, 693
ord union/2, 693
ord union/3, 693
ord union/4, 693
order by/2, 258, 743
ordsets library, 141

p/1, 184, 411
pack attach/2, 575, 576
pack info/1, 576
pack install/1, 577
pack install/2, 573, 574, 577
pack install local/2, 574
pack install local/3, 574, 579
pack list/1, 576
pack list/2, 576

SWI-Prolog 9.3 Reference Manual

INDEX 851

pack list installed/0, 576
pack property/2, 580
pack publish/2, 579, 587
pack rebuild/0, 579
pack rebuild/1, 579, 586
pack remove/1, 579
pack remove/2, 579
pack search/1, 576
pack upgrade/1, 579
pack url file/2, 579
pairs library, 259, 330
pairs keys/2, 694
pairs keys values/3, 694
pairs values/2, 694
parent of/2, 560
parse time/2, 279
parse time/3, 279
parse type/3, 691
parse url/2, 757
parse url/3, 758
parse url search/2, 758
partition/4, 596
partition/5, 596
pce dispatch/1, 422
pce xref library, 107
peek byte/1, 210
peek byte/2, 210
peek byte/[1

2], 114
peek char/1, 210
peek char/2, 210
peek char/[1

2], 114
peek code/1, 210
peek code/2, 210
peek code/[1

2], 114
peek string/3, 211
pengines library, 260, 423
permission error/3, 161, 475, 655
permutation/2, 671
persistency library, 170
persistent/1, 696
person:name/1, 342
phrase/2, 168
phrase/3, 168, 169, 311, 343, 791
phrase from file/2, 698

phrase from file/3, 699
phrase from quasi quotation/2, 720
phrase from stream/2, 442, 699
pi/0, 254
PL abort hook(), 506
PL abort unhook(), 506
PL acquire stream(), 528
PL action(), 501
PL add hash table(), 525
PL advance hash table enum(), 526
PL agc hook(), 506
PL api error(), 501
PL assert(), 497
PL atom chars(), 448
PL atom from index(), 449
PL atom index(), 449
PL atom mbchars(), 448
PL atom nchars(), 457
PL atom wchars(), 457
PL backtrace(), 523
PL backtrace string(), 523
PL blob data(), 482
PL BLOB NOCOPY, 478
PL BLOB TEXT, 477
PL BLOB UNIQUE, 477
PL BLOB WCHAR, 478
PL call(), 488
PL call predicate(), 488
PL can yield(), 446
PL chars to term(), 471
PL check data(), 523
PL check stacks(), 523
PL cleanup(), 514
PL cleanup fork(), 514
PL clear exception(), 493
PL clear hash table(), 525
PL close foreign frame(), 489
PL close query(), 487
PL compare(), 495
PL cons functor(), 464
PL cons functor v(), 464
PL cons list(), 464
PL context(), 490
PL copy term ref(), 437
PL create engine(), 421
PL current engine(), 421
PL current prolog flag(), 500

SWI-Prolog 9.3 Reference Manual

852 INDEX

PL current query(), 488
PL cut query(), 487
PL cvt i bool(), 475
PL cvt i char(), 475
PL cvt i int(), 475
PL cvt i int32(), 475
PL cvt i int64(), 475
PL cvt i llong(), 475
PL cvt i long(), 475
PL cvt i schar(), 475
PL cvt i short(), 475
PL cvt i size t(), 475
PL cvt i uchar(), 475
PL cvt i uint(), 475
PL cvt i uint32(), 475
PL cvt i uint64(), 475
PL cvt i ullong(), 475
PL cvt i ulong(), 475
PL cvt i ushort(), 475
PL CYCLIC TERM, 459
PL del hash table(), 525
PL destroy engine(), 421
PL discard foreign frame(), 489
PL dispatch hook(), 506
PL domain error(), 474
PL duplicate record(), 495
PL erase(), 496
PL erase external(), 497
PL exception(), 493
PL existence error(), 475
PL exit hook(), 506
PL fatal error(), 501
PL for dict(), 472
PL foreign context(), 442
PL foreign context address(), 442
PL foreign context predicate(), 442
PL foreign control(), 441
PL free(), 525
PL free blob(), 482
PL free hash table(), 525
PL free hash table enum(), 526
PL free term ref(), 437
PL functor arity(), 449
PL functor name(), 449
PL get arg(), 456
PL get atom(), 453
PL get atom chars(), 453

PL get atom ex(), 473
PL get atom nchars(), 456
PL get blob(), 482
PL get bool(), 455
PL get bool ex(), 473
PL get char ex(), 474
PL get chars(), 453
PL get compound name arity(), 456
PL get delay list(), 500
PL get dict key(), 456
PL get file name(), 499
PL get file nameW(), 499
PL get float(), 455
PL get float ex(), 474
PL get functor(), 456
PL get head(), 459
PL get int64(), 455
PL get int64 ex(), 473
PL get integer(), 455
PL get integer ex(), 473
PL get intptr(), 455
PL get intptr ex(), 473
PL get list(), 459
PL get list chars(), 455
PL get list ex(), 474
PL get list nchars(), 456
PL get long(), 455
PL get long ex(), 473
PL get module(), 456
PL get mpq(), 483
PL get mpz(), 483
PL get name arity(), 456
PL get nchars(), 456
PL get nil(), 459
PL get nil ex(), 474
PL get pointer(), 455
PL get pointer ex(), 474
PL get signum ex(), 495
PL get size ex(), 473
PL get stream(), 528
PL get stream from blob(), 528
PL get string chars(), 453
PL get tail(), 459
PL get trace context(), 447
PL get uint64(), 455
PL get uint64 ex(), 473
PL get wchars(), 458

SWI-Prolog 9.3 Reference Manual

INDEX 853

PL halt(), 515
PL handle signals(), 495
PL initialise(), 511
PL instantiation error(), 474
PL is acyclic(), 452
PL is atom(), 451
PL is atomic(), 452
PL is blob(), 481
PL is callable(), 452
PL is compound(), 452
PL is dict(), 452
PL is float(), 452
PL is functor(), 452
PL is ground(), 451
PL is initialised(), 512
PL is integer(), 451
PL is list(), 452
PL is number(), 452
PL is pair(), 452
PL is rational(), 452
PL is string(), 451
PL is variable(), 451
PL license(), 788
PL LIST, 459
PL lookup hash table(), 525
PL malloc(), 524
PL module name(), 491
PL new atom(), 448
PL new atom mbchars(), 448
PL new atom nchars(), 457
PL new atom wchars(), 457
PL new blob(), 481
PL new functor(), 449
PL new hash table(), 525
PL new hash table enum(), 526
PL new module(), 491
PL new term ref(), 437
PL new term refs(), 437
PL next solution(), 487
PL NOT A LIST, 460
PL on halt(), 506
PL open foreign frame(), 488
PL open query(), 485
PL PARTIAL LIST, 459
PL permission error(), 475
PL pred(), 484
PL predicate(), 484

PL predicate info(), 484
PL print message(), 501
PL prolog debug(), 524
PL prolog nodebug(), 524
PL put atom(), 463
PL put atom chars(), 463
PL put atom nchars(), 456
PL put blob(), 481
PL put bool(), 463
PL put chars(), 463
PL put dict(), 465
PL put float(), 463
PL put functor(), 463
PL put int64(), 463
PL put integer(), 463
PL put list(), 464
PL put list chars(), 463
PL put list nchars(), 457
PL put list ncodes(), 457
PL put nil(), 464
PL put pointer(), 463
PL put string chars(), 463
PL put string nchars(), 457, 463
PL put term(), 464
PL put term from chars(), 476
PL put uint64(), 463
PL put variable(), 461
PL put wchars(), 458
PL qlf get atom(), 542
PL qlf get double(), 542
PL qlf get int32(), 542
PL qlf get int64(), 542
PL qlf get uint32(), 542
PL qlf put atom(), 542
PL qlf put double(), 542
PL qlf put int32(), 542
PL qlf put int64(), 542
PL qlf put uint32(), 542
PL query(), 503
PL query arguments(), 488
PL query data(), 488
PL query engine(), 488
PL quote(), 472
PL raise(), 494
PL raise exception(), 492
PL realloc(), 524
PL record(), 495

SWI-Prolog 9.3 Reference Manual

854 INDEX

PL record external(), 496
PL recorded(), 496
PL recorded external(), 497
PL register atom(), 449
PL register blob type(), 481
PL register extensions(), 506
PL register extensions in module(), 505
PL register foreign(), 505
PL register foreign in module(), 504
PL release stream(), 529
PL representation error(), 474
PL reset term refs(), 437
PL resource error(), 475
PL retry(), 441
PL retry address(), 441
PL rewind foreign frame(), 489
PL same compound(), 495
PL scan options(), 460
PL set engine(), 421
PL set prolog flag(), 499
PL set query data(), 488
PL set resource db mem(), 512
PL set trace action

term t +action(), 448
PL sigaction(), 494
PL signal(), 494
PL skip list(), 459
PL STRINGS MARK(), 489
PL STRINGS RELEASE(), 489
PL strip module(), 490
PL syntax error(), 475
PL system error(), 501
PL term type(), 450
PL thread at exit(), 420
PL thread attach engine(), 419
PL thread destroy engine(), 420
PL thread self(), 419
PL throw(), 493
PL toplevel(), 513
PL type error(), 474
PL unify(), 466
PL unify arg(), 469
PL unify atom(), 467
PL unify atom chars(), 467
PL unify atom nchars(), 457
PL unify blob(), 481
PL unify bool(), 467

PL unify bool ex(), 474
PL unify chars(), 467
PL unify compound(), 468
PL unify float(), 468
PL unify functor(), 468
PL unify int64(), 467
PL unify integer(), 467
PL unify list(), 468
PL unify list chars(), 467
PL unify list ex(), 474
PL unify list nchars(), 457
PL unify list ncodes(), 457
PL unify mpq(), 484
PL unify mpz(), 483
PL unify nil(), 469
PL unify nil ex(), 474
PL unify pointer(), 468
PL unify stream(), 532
PL unify string chars(), 467
PL unify string nchars(), 457
PL unify term(), 469
PL unify thread id(), 419
PL unify uint64(), 467
PL unify wchars(), 458
PL unify wchars diff(), 458
PL uninstantiation error(), 474
PL unregister atom(), 449
PL unregister blob type(), 481
PL version info(), 502
PL warning(), 501
PL wchars to term(), 472
PL winitialise(), 512
PL WITH ENGINE(), 421
PL write term(), 538
PL yield address(), 446
plus/3, 240
PLVERSION, 525
popcount/1, 255
portable

prolog code, 775
portray/1, 76, 99, 213, 215, 218, 485, 508, 773
portray clause/1, 668
portray clause/2, 225, 668
portray clause/3, 668
portray text library, 218
portray text/1, 169, 317, 701
powm/3, 253

SWI-Prolog 9.3 Reference Manual

INDEX 855

precedence, 783
pred/1, 345
predicate, 783

dynamic, 781
exported, 781
imported, 782

predicate behaviour and determinism, 113
predicate indicator, 112, 783
predicate options/3, 703
predicate property/2, 117, 120, 130, 149, 178,

186, 187, 342, 351, 352, 412
predsort/3, 258, 259
prefix/2, 669
prepend child/2, 560
prevent default/1, 560
print/1, 67, 215, 217, 218, 263, 265, 485, 799
print/2, 67, 218
print message/2, 30, 58, 65, 73, 76, 116, 125,

134, 135, 158, 161–163, 165, 217, 220,
272, 302, 401, 402, 448, 492, 493, 501,
797

print message lines/3, 162–165, 797
priority, 784
process library, 195, 271
process create/3, 195, 271, 272
profile file, 23
profile/1, 295, 418, 514
profile/2, 295
profile data/1, 298
profile procedure data/2, 299
profiling

foreign code, 526
program, 784
project attributes/2, 380
Prolog class, 549
Prolog.call(), 546
Prolog.consult(), 545
Prolog.Engine(), 549
Prolog.forEach(), 547
Prolog.load scripts(), 545
Prolog.load string(), 545
Prolog.query(), 546
prolog/0, 29, 202, 222, 288–290, 345, 513, 563,

765
prolog/assertion failed, 652
prolog/called by, 714
prolog/console color, 595

prolog/debug control hook, 709
prolog/debug print hook, 652
prolog/hook, 714
prolog/message line element, 595
prolog/meta goal, 714
prolog:break hook/7, 768, 769
prolog:called by/2, 566
prolog:comment hook/3, 218, 774
prolog:console color/2, 30
prolog:debug control hook/1, 77, 773
prolog:expand answer/3, 290
prolog:heartbeat/0, 62
prolog:help hook/1, 77, 773
prolog:message line element/2, 163, 164
prolog:message prefix hook/2, 164
prolog:open source hook/3, 774
prolog:prolog exception hook/5, 769, 770
prolog:tripwire/2, 369
prolog alert signal/2, 27, 167
prolog breakpoints library, 768, 771
prolog choice attribute/3, 763, 764, 766
prolog current choice/1, 763, 765
prolog current frame/1, 763, 772
prolog cut to/1, 765
prolog debug/1, 524
prolog edit:edit command/2, 77, 138
prolog edit:edit source/1, 77, 100, 110, 138
prolog edit:load/0, 138
prolog edit:locate/2, 138
prolog edit:locate/3, 76, 137, 138
prolog event hook/1, 158
prolog exception hook/5, 156, 158, 159, 302
prolog file type/2, 115, 122, 285
prolog frame attribute/3, 192, 413, 763, 766,

769, 772
prolog ide/1, 109
prolog interrupt/0, 768
prolog jiti library, 88
prolog list goal/1, 77, 773
prolog listen/2, 177, 365, 771
prolog listen/3, 771, 773
prolog load context/2, 124, 125, 128, 129, 219,

775
prolog load file/2, 76, 118, 774
prolog nodebug/1, 524
prolog pack library, 53, 575
prolog server library, 17, 194, 202, 570

SWI-Prolog 9.3 Reference Manual

856 INDEX

prolog skip frame/1, 768
prolog skip level/2, 768
prolog source library, 75
prolog stack library, 156, 160, 764, 769, 770
prolog stack property/2, 302
prolog to os filename/2, 98, 273, 282, 284, 286
prolog trace interception/4, 77, 106, 302, 447,

448, 763, 765
prolog unlisten/2, 773
prolog var name//1, 648
prolog xref library, 75, 107, 338
prompt

alternatives, 67
prompt/2, 222, 401
prompt1/1, 222
propagation, 376
proper length/2, 671
property, 784
protocol/1, 290
protocola/1, 290
protocolling/1, 290
prove, 784
ptmalloc, 302
public list, 784
public/1, 183, 186, 190, 566, 571
pure input library, 212, 218
put/1, 209, 324
put/2, 209, 325
put assoc/4, 599
put attr/3, 227, 379–381
put attrs/2, 381
put byte/1, 209
put byte/2, 209
put byte/[1

2], 114
put char/1, 209
put char/2, 209
put char/[1

2], 114
put code/1, 209
put code/2, 91, 209, 211, 212
put code/[1

2], 114
put dict/3, 324, 326
put dict/4, 325, 326
pwd/0, 20

qcompile/1, 17, 96, 115, 117, 118, 127, 136, 397
qcompile/2, 136, 480, 545
qpforeign library, 475
qsave/compat arch, 433
qsave program/1, 59, 126, 565
qsave program/2, 17, 52, 60, 67, 79, 96, 99, 109,

126, 136, 274, 512, 562–564, 567, 568,
571

qsave program/[1
2], 28, 51, 68, 191, 431, 511, 520, 565, 566

quasi quotation syntax/1, 190, 720
quasi quotation syntax error/1, 720
query, 782
query(), 549
Query.close(), 548
Query.next(), 547
Query.once(), 548
quiet, 26

radial restraint/0, 370
random library, 255
random/1, 249, 720
random/3, 721
random between/3, 721
random float/0, 249
random labeling/2, 613
random member/2, 721
random numlist/4, 723
random perm2/4, 721
random permutation/2, 722
random property/1, 255
random select/3, 722
random subseq/3, 722
randseq/3, 722
randset/3, 722
range to fdset/2, 638
rational

number, 242
rational trees, 86
rational/1, 139, 140, 242, 250
rational/3, 139
rationalize/1, 250
rb apply/4, 724
rb clone/3, 725
rb del max/4, 725
rb del min/4, 725
rb delete/3, 724

SWI-Prolog 9.3 Reference Manual

INDEX 857

rb delete/4, 725
rb empty/1, 723
rb fold/4, 725
rb in/3, 724
rb insert/4, 724
rb insert new/4, 724
rb keys/2, 725
rb lookup/3, 723
rb map/2, 725
rb map/3, 725
rb max/3, 724
rb min/3, 723
rb new/1, 723
rb next/4, 724
rb partial map/4, 725
rb previous/4, 724
rb size/2, 726
rb update/4, 724
rb update/5, 724
rb visit/2, 725
rbtrees library, 71
rdiv/2, 247
reachable/3, 756
read/1, 55, 57, 93, 194, 196, 209, 215, 217–219,

234, 238, 243, 265, 270, 800
read/2, 208, 218
read clause/3, 86, 218, 292
read file to codes/3, 727
read file to string/3, 727
read file to terms/3, 727
read from chars/2, 229, 603
read line to codes/2, 311, 726
read line to codes/3, 726
read line to string/2, 727
read link/3, 286
read pending chars/3, 212
read pending codes/3, 212, 535
read stream to codes/2, 727
read stream to codes/3, 727
read string/3, 316
read string/5, 315, 316
read term/2, 55, 125, 131, 213, 214, 216, 218,

219, 221, 222, 230, 310, 313, 774
read term/3, 61, 72, 86, 128, 216, 218, 219, 221,

238, 240, 290, 330, 774
read term/[2

3], 220

read term from atom/3, 221, 230
read term from chars/3, 603
read term with history/2, 221, 222
readline library, 68
readutil library, 100, 218
reconsult, 115
record library, 328–330, 727
record/1, 728, 729
recorda/2, 179, 180
recorda/3, 87, 171, 179, 180, 186, 268, 495
recorded/2, 180
recorded/3, 171, 179, 180, 567
recordz/2, 179, 180
recordz/3, 87, 171, 179, 180
redefine system predicate/1, 172, 780
reduced/1, 742
reduced/3, 742
reexport/1, 115, 116, 118, 346, 775
reexport/2, 116–118, 346, 775
register iri scheme/3, 195, 205, 568
registry library, 729
registry delete key/1, 730
registry get key/2, 729
registry get key/3, 729
registry set key/2, 729
registry set key/3, 729
release(), 478
reload foreign libraries/0, 434
reload library index/0, 77–79
rem/2, 246
remainder/1, 648
remove/1, 560
remove class/2, 560
rename file/2, 271, 283
repeat/0, 145, 149, 151, 177
report hook/2, 708
representation error/1, 161, 474, 656
require/1, 120, 342, 775
require prolog version/2, 584, 713
require version/3, 713
reset/3, 153, 155, 802
reset gensym/0, 660
reset gensym/1, 660
residual, 382

WFS, 361
resource/2, 563, 568–570
resource/3, 68, 77, 568–570

SWI-Prolog 9.3 Reference Manual

858 INDEX

resource error/1, 161, 475, 656
restore setting/1, 732
retract, 784
retract/1, 22, 115, 121, 170–173, 175, 178, 184,

185, 188, 363, 364, 377, 410–412, 414,
425, 772

retractall/1, 170, 171, 173, 178, 363, 772
retractall predicate options/0, 705
rev/3, 339
reverse/2, 170, 339, 671
round/1, 249
roundtoward/2, 248
rule/2, 336
rule/3, 336

same file/2, 282, 283
same functor/2, 747
same functor/3, 747
same functor/4, 747
same length/2, 671
same term/2, 228
sandbox/safe meta, 594
sat/1, 612
sat count/2, 612
save(), 480
save program/2, 479
save settings/0, 733
save settings/1, 733
scalar product/4, 629
scanl/4, 597
scanl/5, 598
scanl/6, 598
scanl/7, 598
Scanrepresent(), 540
ScheckBOM(), 540
Sclearerr(), 539
Sclose(), 534
Sclosehook(), 537
Sdprintf(), 537
SdprintfX(), 537
see/1, 193, 194, 203, 204
seeing/1, 203, 204, 288
seek/4, 199, 200
seen/0, 204
select/3, 669
select/4, 669
select dict/3, 327

select option/3, 684
select option/4, 684
selectchk/3, 669
selectchk/4, 670
semi deterministic, 784
semidet, 784
send signal/1, 665
send silent signal/1, 665
sequence//2, 649
sequence//3, 649
sequence//5, 649
serialize, 168
serialized/2, 630
set attr/3, 560
set breakpoint/4, 768
set end of stream/1, 211
set flag/2, 180
set html/2, 560
set input/1, 194, 201, 204, 205
set locale/1, 234, 401
set malloc/1, 304
set module/1, 173, 347, 352, 484
set output/1, 194, 204, 205
set pil off/0, 744
set pil on/0, 744
set portray text/2, 701
set portray text/3, 701
set prolog flag/2, 34, 53, 73, 75, 115, 241, 499
set prolog gc thread/1, 62, 301
set prolog IO/3, 193, 202
set prolog stack/2, 291, 302, 311
set random/1, 249, 255, 256
set setting/2, 732
set setting default/2, 732
set stream/2, 91, 92, 193, 195, 196, 199, 200,

202, 206, 208, 211, 222, 234, 316, 540,
541

set stream position/2, 199, 200
set style/3, 560
set system IO/3, 202
set url encoding/2, 758
setarg/3, 112, 171, 226–228, 270, 328, 379, 729
setenv/2, 271
setlocale/3, 234, 237, 272, 274
setof/3, 87, 261, 343, 789
setrand/1, 721
setting/2, 732

SWI-Prolog 9.3 Reference Manual

INDEX 859

setting/4, 731
setting property/2, 733
settings library, 53
setup call catcher cleanup/4, 151
setup call cleanup/3, 54, 150–152, 158, 413–417,

478, 479, 487
setup prolog integer grouping/0, 265
Sfeof(), 534
Sferror(), 539
Sfgetc(), 533
Sfgets(), 535
Sfileno(), 537
Sflush(), 534
Sfpasteof(), 534
Sfprintf(), 535
SfprintfX(), 536
Sfputs(), 535
Sfread(), 533
Sfree(), 532
Sfwrite(), 533
Sgcclose(), 535
Sgetc(), 533
Sgetcode(), 533
Sgets(), 535
Sgetw(), 533
shadow price/3, 738
shared, 784
shell/1, 67, 98, 138, 271
shell/2, 271, 272
shell/[1

2], 271
shell register dde/6, 730
shell register file type/4, 730
shell register prolog/1, 730
shift/1, 153, 155
shift for copy/1, 69, 155
shlib library, 273, 792, 797, 805
show/1, 561
show coverage/1, 571, 707
show html hook/1, 32
show profile/1, 298
sibling/2, 560
SICStus

prolog, 775
sig atomic/1, 412–414
sig block/1, 413
sig pending/1, 413

sig remove/2, 413
sig unblock/1, 413, 414
sign/1, 247
sin/1, 252
single sided unification, 332
singleton, 784

variable, 85
singleton heap/3, 661
sinh/1, 252
size abstract term/3, 369
size file/2, 205, 284, 568
size nb set/2, 681
skip/1, 211
skip/2, 211
sleep/1, 27, 308, 553, 555
SLG

resolution, 354
Slock(), 537
snapshot/1, 153, 175, 176, 178, 773
Snew(), 531
socket library, 271
Solaris, 403
solution, 784
Sopen pipe(), 531
Sopenmem(), 532
sort/2, 141, 150, 257–259, 261, 438, 479
sort/4, 257
source exports/2, 775, 776
source file/1, 123
source file/2, 120, 123, 136, 188, 189
source file property/2, 118, 120, 123
source location/2, 124, 125
Speekcode(), 533
Spending(), 535
split string/4, 231, 314, 316
Sprintf(), 536
Sputc(), 533
Sputcode(), 533
Sputs(), 535
Sputw(), 533
spy/1, 59, 62, 77, 106, 110, 113, 291, 345, 418,

709, 773, 793
sqrt/1, 252
Sread pending(), 535
Sseek(), 534
Sseek64(), 534
Sset exception(), 539

SWI-Prolog 9.3 Reference Manual

860 INDEX

Sset filter(), 537
Sset timeout(), 532
Ssetbuffer(), 537
Ssetenc(), 540
Sseterr(), 539
Ssetlocale(), 534
Ssize(), 534
Ssnprintf(), 537
SsnprintfX(), 537
Ssprintf(), 536
SSU, 332
stack

memory management, 93
stamp date time/3, 275, 276
startup file, 23
statistics library, 294, 295
statistics/0, 162, 734
statistics/1, 734
statistics/2, 65, 162, 254, 294–297, 405
Stell(), 534
Stell64(), 534
stream pair/3, 194, 197, 200, 201, 528
stream position/3, 196
stream position data/3, 125, 199, 200, 219, 774
stream property/2, 93, 125, 195, 197, 199–202,

221, 222, 316, 531, 541
stream to lazy list/2, 699
string//1, 646
string/1, 139, 140, 266, 312
string/4, 735
string bytes/3, 313
string chars/2, 313
string code/3, 314, 318
string codes/2, 311, 313
string concat/3, 311, 314
string length/2, 314
string lines/2, 736
string lower/2, 316
string predicate/1, 606
string upper/2, 316
string without//2, 646
strip module/3, 344, 350, 352
structure, 784
StryLock(), 537
style/3, 560
style check/1, 85, 86, 118, 185, 291
sub atom/5, 231, 232, 315

sub atom icasechk/3, 232
sub string/5, 232, 311, 314, 315
sub term/2, 683
sub term shared variables/3, 683
sub var/2, 683
subseq/3, 672
subset/2, 674
subsumes/2, 746
subsumes chk/2, 144, 175, 746
subsumes term/2, 87, 143, 144, 226, 334, 414
subtract/3, 674
succ/2, 240
succeed, 785
sum/3, 629
sum list/2, 332, 335, 673
Sungetc(), 533
Sunit size(), 532
Sunlock(), 537
sup/2, 641
Svdprintf(), 537
Svprintf(), 536
Svsnprintf(), 537
Svsprintf(), 537
swi/pce profile library, 295
swi edit library, 138
Swinsock(), 537
SwriteBOM(), 540
swritef/2, 263
swritef/3, 206, 262, 263
syntax error/1, 161, 656, 699
system:format/3, 319

t not/1, 743
TAB

completion, 100
tab/1, 209
tab/2, 209
table/1, 70, 191, 354, 356, 360, 363, 372, 373,

375, 497
tabled call/1, 373
tabling library, 182
tan/1, 252
tanh/1, 252
taut/2, 612
tbacktrace/1, 413
tcmalloc, 302
tcp setopt/2, 207

SWI-Prolog 9.3 Reference Manual

INDEX 861

tdebug/0, 400, 418
tdebug/1, 418
tell/1, 193, 194, 203, 204
telling/1, 203, 204, 288
term, 785
term subsumption, 332
term attvars/2, 381, 383
term expansion/2, 75, 76, 115, 124, 127–129,

131, 134, 136, 290, 347, 391, 777, 778
term expansion/4, 115, 131
term factorized/3, 207, 746
term hash/2, 87–90, 174, 175
term hash/4, 88–90, 174
term singletons/2, 225
term size/2, 745
term string/2, 230, 313
term string/3, 313
term subsumer/3, 144, 746
term to atom/2, 206, 230, 471
term variables/2, 87, 140, 221, 225
term variables/3, 225
terms

cyclic, 86
text to string/2, 314
tfindall/3, 744
thread library, 59, 413
thread affinity/3, 403
thread alias/1, 402
thread at exit/1, 289, 400, 403, 420
thread create/2, 399
thread create/3, 399, 402, 403, 420, 422, 428, 772
thread create in pool/4, 401, 752
thread detach/1, 400–402
thread exit/1, 157, 158, 402, 404, 417
thread get message/1, 406, 408, 427
thread get message/2, 408
thread get message/3, 406–408, 411
thread idle/2, 301, 304
thread initialization/1, 268, 403
thread join/1, 401
thread join/2, 400–402, 404
thread local/1, 163, 170, 184, 185, 191, 288, 405,

414, 426, 497
thread message hook/3, 163
thread peek message/1, 407, 409
thread peek message/2, 408, 409
thread pool create/3, 751

thread pool destroy/1, 751
thread pool property/2, 751
thread property/2, 400, 402–404
thread self/1, 401–403, 406
thread send message/2, 405, 406, 408, 427
thread send message/3, 406
thread send message/[2

3], 409
thread setconcurrency/2, 59, 403
thread signal/2, 27, 150, 167, 402, 406, 409, 411–

414, 418, 494, 515, 768
thread statistics/2, 734
thread statistics/3, 405
thread update/2, 410–412
thread wait/2, 179, 410–412
thread wait on goal/2, 412
threads/0, 417
throw/1, 87, 155, 156, 159, 165, 167, 404, 492,

493, 769, 770
time/1, 254, 734
time file/2, 205, 284, 568
tmp file/2, 287
tmp file stream/3, 287
tnodebug/0, 418
tnodebug/1, 418
tnot/1, 360–362, 373
toggle/1, 561
told/0, 204
top sort/2, 755
tprofile/1, 418
trace/0, 62, 71, 106, 110, 290, 393, 501, 769, 770
trace/1, 711
trace/2, 711
tracing/0, 290
tracing/2, 712
transaction, 175
transaction/1, 153, 176–178, 773
transaction/2, 176, 177
transaction/3, 176, 177
transaction updates/1, 178
transformation

of program, 127
transitive closure/2, 754
transparent, 783
transportation/4, 738
transpose/2, 639
transpose pairs/2, 695

SWI-Prolog 9.3 Reference Manual

862 INDEX

transpose ugraph/2, 754
trap/1, 293, 294, 709, 770
trap alias/2, 710
trie delete/3, 182
trie destroy/1, 181
trie gen/2, 182, 359, 368
trie gen/3, 181–183
trie gen compiled/2, 181, 182
trie gen compiled/3, 181, 182
trie insert/2, 181
trie insert/3, 181, 182
trie insert/4, 182
trie insert new/3, 182
trie lookup/3, 182
trie new/1, 181
trie property/2, 182
trie term/2, 182
trie update/3, 181
trim heap/0, 301, 303
trim stacks/0, 300–304, 427
trivial fail goal/1, 605
true/0, 66, 73, 90, 129, 145, 149, 155
truncate/1, 251
tspy/1, 400, 413, 417, 418
tspy/2, 418
tty get capability/3, 270
tty goto/2, 270
tty put/2, 270
tty size/2, 270
ttyflush/0, 210, 263
tuples in/2, 629
type error/2, 160, 165, 474, 655

UCS, 90
ugraph layers/2, 755
ugraph union/3, 754
unbind/2, 558, 561
undefined/0, 70, 113, 360–362, 370, 371
undo/1, 152, 153
Unicode, 90
unifiable/3, 87, 143, 144
unify, 785
unify with occurs check/2, 65, 87, 143
uninstantiation error/1, 160, 656
union/3, 674
unix, 72
unix library, 271

unknown/2, 291, 590
unlisten/1, 602
unlisten/2, 602
unlisten/3, 602
unload file/1, 118, 124
unload foreign library/1, 433
unload foreign library/2, 433
unsetenv/1, 271
untable/1, 372, 373
upcase atom/2, 235, 236
update view, 173, 785
URL, 272
url iri/2, 758
use foreign library/1, 121, 126, 273, 432, 434,

435, 564, 567, 568
use foreign library/2, 432
use module/1, 74, 76, 98, 115–117, 119, 135,

339–341, 346, 348, 545, 566, 775, 779
use module/2, 77, 115–117, 120, 339–342, 346,

775
use module/[1

2], 48, 56, 106, 114, 117, 119, 341, 342, 348,
566, 781

user library, 800
user profile file, 23
user:exception/3, 77
user:expand answer/2, 290
user:expand query/4, 289
user:file search path/2, 78
UTF-16, 90
UTF-8, 90
utf-8, 113

valgrind, 526
valid string goal/1, 606
var/1, 139, 185, 334, 379, 450
var number/2, 225
var property/2, 130
variable, 785

anonymous, 780
variable value/3, 738
variant, 143
variant/2, 746
variant hash/2, 175
variant sha1/2, 175, 788
varnumbers/2, 759
varnumbers/3, 759

SWI-Prolog 9.3 Reference Manual

INDEX 863

varnumbers names/3, 759
verbose, 26
version/0, 29, 164, 165
version/1, 164, 165
vertices/2, 752
vertices edges to ugraph/3, 753
view

update, 785
visible/1, 291, 766
volatile/1, 184, 185, 191, 414, 566, 567

wait/3, 558
wait for input/3, 202, 207, 208, 442
weighted maximum/3, 612
when library, 383
when/2, 87, 145, 225, 383
white//0, 647
whites//0, 647
wildcard match/2, 307
wildcard match/3, 307
win add dll directory/1, 273
win add dll directory/2, 273
win exec/2, 271, 272
win folder/2, 27, 122, 273
win get user preferred ui languages/2, 272, 274
win has menu/0, 281
win insert menu/2, 281
win insert menu item/4, 281
win process modules/1, 274
win process modules/2, 565
win registry get value/3, 272
win remove dll directory/1, 273
win shell/2, 271, 272
win shell/3, 272
win window color/2, 280
win window pos/1, 280
window title/2, 280
Windows

file names, 281
windows, 74
with(), 549
with frame(), 549
with mutex/2, 175, 176, 415–417, 419, 567
with output to/2, 194, 205, 206, 212, 230, 237,

267, 277, 405, 450
with output to/3, 206, 528
with output to chars/2, 604

with output to chars/3, 604
with output to chars/4, 604
with quasi quotation input/3, 720
with rwlock/3, 730
with rwlock/4, 730
with tty raw/1, 211
worker exitted/3, 752
working directory/2, 25, 285, 288
write(), 479
write/1, 58, 74, 86, 87, 93, 194, 217, 238, 263,

265, 266, 454, 461, 480, 538
write/2, 217
write canonical/1, 83, 216, 217, 219, 265, 310
write canonical/2, 207, 217, 225, 454
write length/3, 216, 231, 314
write term/2, 55, 59, 67, 74, 212, 213, 216, 217,

219, 225, 230, 263, 266, 310, 313, 381,
460, 538

write term/3, 76, 215, 216, 224, 231, 238
write to chars/2, 603
write to chars/3, 603
writef/1, 262
writef/2, 19, 82, 212, 262, 263
writeln/1, 217, 414
writeln/2, 217
writeq/1, 85, 217, 263, 265
writeq/2, 217, 454
www form encode/2, 758
www open url/1, 682

XDG
directories, 122

xdigit//1, 648
xdigits//1, 648
xinteger//1, 648
xor/2, 252
xref called/3, 715
xref called/4, 715
xref called/5, 715
xref clean/1, 715
xref comment/3, 717
xref comment/4, 717
xref current source/1, 715
xref defined/3, 716
xref definition line/2, 716
xref done/2, 715
xref exported/2, 716

SWI-Prolog 9.3 Reference Manual

864 INDEX

xref hook/1, 717
xref meta/2, 717
xref meta/3, 717
xref meta src/3, 717
xref mode/3, 717
xref module/2, 716
xref op/2, 716
xref option/2, 717
xref prolog flag/4, 717
xref public list/3, 717
xref public list/4, 718
xref public list/6, 718
xref public list/7, 718
xref source/1, 715
xref source/2, 715
xref source file/3, 718
xref source file/4, 718
xref uses file/3, 716
XSB

prolog, 775

YAP
prolog, 775

zcompare/3, 377, 635

SWI-Prolog 9.3 Reference Manual

	Introduction
	Positioning SWI-Prolog
	Status and releases
	Should I be using SWI-Prolog?
	Support the SWI-Prolog project
	Implementation history
	Acknowledgements

	Overview
	Getting started quickly
	Starting SWI-Prolog
	Adding rules from the console
	Executing a query
	Examining and modifying your program
	Stopping Prolog

	The user's initialisation file
	Initialisation files and goals
	Command line options
	Informational command line options
	Command line options for running Prolog
	Controlling the stack sizes
	Running goals from the command line
	Compilation options
	Maintenance options

	UI Themes
	Status of theme support

	GNU Emacs Interface
	Online Help
	library(help): Text based manual
	library(explain): Describe Prolog Terms

	Command line history
	Reuse of top-level bindings
	Overview of the Debugger
	The Byrd Box Model And Ports
	Trace Mode Example
	Trace Mode Options: leash/1 and visible/1
	Trace Mode Commands When Paused
	Trace Mode vs. Trace Point
	Spy Points and Debug Mode
	Breakpoints
	Command Line Debugger Summary

	Loading and running projects
	Running an application

	Environment Control (Prolog flags)
	An overview of hook predicates
	Automatic loading of libraries
	The SWI-Prolog syntax
	ISO Syntax Support

	Rational trees (cyclic terms)
	Just-in-time clause indexing
	Deep indexing
	Future directions
	Indexing for body code
	Indexing and portability

	Wide character support
	Wide character encodings on streams

	System limits
	Limits on memory areas
	Other Limits
	Reserved Names

	SWI-Prolog and 32-bit machines
	Binary compatibility

	Initialising and Managing a Prolog Project
	The project source files
	File Names and Locations
	Project Special Files
	International source files

	Using modules
	The test-edit-reload cycle
	Locating things to edit
	Editing and incremental compilation

	Using the PceEmacs built-in editor
	Activating PceEmacs
	Bluffing through PceEmacs
	Prolog Mode

	The Graphical Debugger
	Invoking the window-based debugger

	The Prolog Navigator
	Cross-referencer
	Accessing the IDE from your program
	Summary of the IDE

	Built-in Predicates
	Notation of Predicate Descriptions
	The argument mode indicator
	Predicate indicators
	Predicate behaviour and determinism

	Character representation
	Loading Prolog source files
	Conditional compilation and program transformation
	Reloading files, active code and threads
	Quick load files

	Editor Interface
	Customizing the editor interface

	Verify Type of a Term
	Comparison and Unification of Terms
	Standard Order of Terms
	Special unification and comparison predicates

	Control Predicates
	Meta-Call Predicates
	Delimited continuations
	Exception handling
	Unwind exceptions
	Urgency of exceptions
	Debugging and exceptions
	The exception term

	Printing messages
	Printing from libraries

	Handling signals
	Notes on signal handling

	DCG Grammar rules
	Database
	Managing (dynamic) predicates
	The recorded database
	Flags
	Tries

	Declaring predicate properties
	Examining the program
	Input and output
	Predefined stream aliases
	ISO Input and Output Streams
	Edinburgh-style I/O
	Switching between Edinburgh and ISO I/O
	Adding IRI schemas
	Write onto atoms, code-lists, etc.
	Fast binary term I/O

	Status of streams
	Primitive character I/O
	Term reading and writing
	Analysing and Constructing Terms
	Non-logical operations on terms

	Analysing and Constructing Atoms
	Localization (locale) support
	Character properties
	Case conversion
	White space normalization
	Language-specific comparison

	Operators
	Character Conversion
	Arithmetic
	Special purpose integer arithmetic
	General purpose arithmetic

	Misc arithmetic support predicates
	Built-in list operations
	Finding all Solutions to a Goal
	Forall
	Formatted Write
	Writef
	Format
	Programming Format

	Global variables
	Compatibility of SWI-Prolog Global Variables

	Terminal Control
	Operating System Interaction
	Windows-specific Operating System Interaction
	Apple specific Operating System Interaction
	Dealing with time and date
	Controlling the swipl-win.exe console window

	File System Interaction
	User Top-level Manipulation
	Creating a Protocol of the User Interaction
	Debugging and Tracing Programs
	Debugging and declaring determinism
	Obtaining Runtime Statistics
	Execution profiling
	library(prolog_profile): Execution profiler
	Visualizing profiling data
	Information gathering

	Memory Management
	Garbage collection
	Heap memory (malloc)

	Windows DDE interface
	DDE client interface
	DDE server mode

	Miscellaneous

	SWI-Prolog extensions
	Lists are special
	Motivating `[|]' and [] for lists

	The string type and its double quoted syntax
	Representing text: strings, atoms and code lists
	Predicates that operate on strings
	Why has the representation of double quoted text changed?
	Adapting code for double quoted strings
	Predicates to support adapting code for double quoted strings

	Syntax changes since SWI-Prolog 7
	Operators and quoted atoms
	Compound terms with zero arguments
	Block operators

	Dicts: structures with named arguments
	Functions on dicts
	Predicates for managing dicts
	When to use dicts?
	A motivation for dicts as primary citizens
	Implementation notes about dicts

	Integration of strings and dicts in the libraries
	Dicts and option processing
	Dicts in core data structures
	Dicts, strings and XML
	Dicts, strings and JSON
	Dicts, strings and HTTP

	Single Sided Unification rules
	Single Sided Unification Guards
	Consequences of => single sided unification rules
	Single sided unification for Definite Clause Grammars
	SSU: Future considerations

	Remaining issues

	Modules
	Why Use Modules?
	Defining a Module
	Importing Predicates into a Module
	Controlled autoloading for modules
	Defining a meta-predicate
	Overruling Module Boundaries
	Explicit manipulation of the calling context

	Interacting with modules from the top level
	Composing modules from other modules
	Operators and modules
	Dynamic importing using import modules
	Reserved Modules and using the `user' module
	An alternative import/export interface
	Dynamic Modules
	Transparent predicates: definition and context module
	Module properties
	Compatibility of the Module System

	Tabled execution (SLG resolution)
	Example 1: using tabling for memoizing
	Example 2: avoiding non-termination
	Answer subsumption or mode directed tabling
	Tabling for impure programs
	Variant and subsumptive tabling
	Well Founded Semantics
	Well founded semantics and the toplevel

	Incremental tabling
	Monotonic tabling
	Eager and lazy monotonic tabling
	Tracking new answers to monotonic tables
	Monotonic tabling with external data

	Shared tabling
	Abolishing shared tables
	Status and future of shared tabling

	Tabling and constraints
	Tabling restraints: bounded rationality and tripwires
	Restraint subgoal size
	Restraint answer size
	Restraint answer count

	Tabling predicate reference
	About the tabling implementation

	Constraint Logic Programming
	Attributed variables
	Attribute manipulation predicates
	Attributed variable hooks
	Operations on terms with attributed variables
	Special purpose predicates for attributes

	Coroutining

	CHR: Constraint Handling Rules
	Introduction to CHR
	CHR Syntax and Semantics
	Syntax of CHR rules
	Semantics of CHR

	CHR in SWI-Prolog Programs
	Embedding CHR in Prolog Programs
	CHR Constraint declaration
	CHR Compilation

	Debugging CHR programs
	CHR debug ports
	Tracing CHR programs
	CHR Debugging Predicates

	CHR Examples
	CHR compatibility
	The Old SICStus CHR implementation
	The Old ECLiPSe CHR implementation

	CHR Programming Tips and Tricks
	CHR Compiler Errors and Warnings
	CHR Compiler Errors

	Multithreaded applications
	Creating and destroying Prolog threads
	Monitoring threads
	Thread communication
	Message queues
	Waiting for events
	Signalling threads
	Threads and dynamic predicates

	Thread synchronisation
	Thread support library(threadutil)
	Debugging threads
	Profiling threads

	Multithreaded mixed C and Prolog applications
	A Prolog thread for each native thread (one-to-one)
	Using Prolog engines from C

	Multithreading and the XPCE graphics system

	Coroutining using Prolog engines
	Examples using engines
	Aggregation using engines
	State accumulation using engines
	Scalable many-agent applications

	Engine resource usage
	Engine predicate reference

	Foreign Language Interface
	Overview of the Interface
	Linking Foreign Modules
	What linking is provided?
	What kind of loading should I be using?
	library(shlib): Utility library for loading foreign objects (DLLs, shared objects)
	Low-level operations on shared libraries
	Static Linking

	Interface Data Types
	Type term_t: a reference to a Prolog term
	Other foreign interface types

	The Foreign Include File
	Argument Passing and Control
	Atoms and functors
	Input and output
	Analysing Terms via the Foreign Interface
	Constructing Terms
	Unifying data
	Convenient functions to generate Prolog exceptions
	Foreign language wrapper support functions
	Serializing and deserializing Prolog terms
	BLOBS: Using atoms to store arbitrary binary data
	Exchanging GMP numbers
	Calling Prolog from C
	Discarding Data
	String buffering
	Foreign Code and Modules
	Prolog exceptions in foreign code
	Catching Signals (Software Interrupts)
	Miscellaneous
	Errors and warnings
	Environment Control from Foreign Code
	Querying Prolog
	Registering Foreign Predicates
	Foreign Code Hooks
	Storing foreign data
	Embedding SWI-Prolog in other applications

	Linking embedded applications using swipl-ld
	A simple example

	The Prolog `home' directory
	Example of Using the Foreign Interface
	Notes on Using Foreign Code
	Foreign debugging functions
	Memory Allocation
	Compatibility between Prolog versions
	Foreign hash tables
	Debugging and profiling foreign code (valgrind, asan)
	Name Conflicts in C modules
	Compatibility of the Foreign Interface

	Foreign access to Prolog IO streams
	Get IO stream handles
	Creating an IO stream
	Interacting with foreign streams
	Foreign stream error handling
	Foreign stream encoding
	Foreign stream line endings
	Foreign stream position information
	Support functions for blob save/load

	Using SWI-Prolog in your browser (WASM)
	Loading and initializing Prolog
	Loading Prolog files

	Calling Prolog from JavaScript
	The JavaScript class Query
	Using engines
	Translating data between JavaScript and Prolog

	Accessing JavaScript from Prolog
	library(wasm): WASM version support
	library(dom): Browser DOM manipulation
	library(dialect/tau/dom): Tau-Prolog compatible DOM manipulation

	Deploying applications
	Deployment options
	Understanding saved states
	Creating a saved state
	Limitations of qsave_program
	Runtimes and Foreign Code

	State initialization
	Using program resources
	Resources as files
	Access resources using open_resource
	Declaring resources
	Managing resource files

	Debugging and updating deployed systems
	Protecting your code
	Obfuscating code in saved states

	Finding Application files

	Packs: community add-ons
	Installing packs
	Built-in predicates for attaching packs
	library(prolog_pack): A package manager for Prolog
	Structure of a pack
	Developing a pack
	The pack meta data
	Packs with foreign code
	Updating a package

	The SWI-Prolog library
	library(aggregate): Aggregation operators on backtrackable predicates
	library(ansi_term): Print decorated text to ANSI consoles
	library(apply): Apply predicates on a list
	library(assoc): Association lists
	Introduction
	Creating association lists
	Querying association lists
	Modifying association lists
	Conversion predicates
	Reasoning about association lists and their elements

	library(broadcast): Broadcast and receive event notifications
	library(charsio): I/O on Lists of Character Codes
	library(check): Consistency checking
	library(clpb): CLP(B): Constraint Logic Programming over Boolean Variables
	Introduction
	Boolean expressions
	Interface predicates
	Examples
	Obtaining BDDs
	Enabling monotonic CLP(B)
	Example: Pigeons
	Example: Boolean circuit
	Acknowledgments
	CLP(B) predicate index

	library(clpfd): CLP(FD): Constraint Logic Programming over Finite Domains
	Introduction
	Arithmetic constraints
	Declarative integer arithmetic
	Example: Factorial relation
	Combinatorial constraints
	Domains
	Example: Sudoku
	Residual goals
	Core relations and search
	Example: Eight queens puzzle
	Optimisation
	Reification
	Enabling monotonic CLP(FD)
	Custom constraints
	Applications
	Acknowledgments
	CLP(FD) predicate index
	Closing and opening words about CLP(FD)

	library(clpqr): Constraint Logic Programming over Rationals and Reals
	Solver predicates
	Syntax of the predicate arguments
	Use of unification
	Non-linear constraints
	Status and known problems

	library(csv): Process CSV (Comma-Separated Values) data
	library(dcg/basics): Various general DCG utilities
	library(dcg/high_order): High order grammar operations
	library(debug): Print debug messages and test assertions
	library(dicts): Dict utilities
	library(error): Error generating support
	library(exceptions): Exception classification
	library(fastrw): Fast reading and writing of terms
	library(gensym): Generate unique symbols
	library(heaps): heaps/priority queues
	library(increval): Incremental dynamic predicate modification
	library(intercept): Intercept and signal interface
	library(iostream): Utilities to deal with streams
	library(listing): List programs and pretty print clauses
	library(lists): List Manipulation
	library(macros): Macro expansion
	Defining and using macros
	Implementation details
	Predicates

	library(main): Provide entry point for scripts
	library(nb_set): Non-backtrackable set
	library(www_browser): Open a URL in the users browser
	library(occurs): Finding and counting sub-terms
	library(option): Option list processing
	library(optparse): command line parsing
	Notes and tips

	library(ordsets): Ordered set manipulation
	library(pairs): Operations on key-value lists
	library(persistency): Provide persistent dynamic predicates
	library(pio): Pure I/O
	library(pure_input): Pure Input from files and streams

	library(portray_text): Portray text
	library(predicate_options): Declare option-processing of predicates
	The strength and weakness of predicate options
	Options as arguments or environment?
	Improving on the current situation

	library(prolog_coverage): Coverage analysis tool
	Coverage collection and threads
	Combining coverage data from multiple runs
	Predicate reference

	library(prolog_debug): User level debugging tools
	library(prolog_jiti): Just In Time Indexing (JITI) utilities
	library(prolog_trace): Print access to predicates
	library(prolog_versions): Demand specific (Prolog) versions
	library(prolog_xref): Prolog cross-referencer data collection
	library(quasi_quotations): Define Quasi Quotation syntax
	library(random): Random numbers
	library(rbtrees): Red black trees
	library(readutil): Read utilities
	library(record): Access named fields in a term
	library(registry): Manipulating the Windows registry
	library(rwlocks): Read/write locks
	library(settings): Setting management
	library(statistics): Get information about resource usage
	library(strings): String utilities
	library(simplex): Solve linear programming problems
	Introduction
	Delayed column generation
	Solving LPs with special structure
	Examples

	library(solution_sequences): Modify solution sequences
	library(tables): XSB interface to tables
	library(terms): Term manipulation
	library(thread): High level thread primitives
	library(thread_pool): Resource bounded thread management
	library(ugraphs): Graph manipulation library
	library(url): Analysing and constructing URL
	library(varnumbers): Utilities for numbered terms
	library(yall): Lambda expressions

	Hackers corner
	Examining the Environment Stack
	Ancestral cuts
	Intercepting the Tracer
	Simulating a debugger interrupt
	Breakpoint and watchpoint handling
	Adding context to errors: prolog_exception_hook
	Hooks using the exception predicate
	Prolog events
	Hooks for integrating libraries
	Hooks for loading files

	Compatibility with other Prolog dialects
	Some considerations for writing portable code
	Notes on specific dialects
	Notes on specific dialects
	The XSB import directive

	Glossary of Terms
	SWI-Prolog License Conditions and Tools
	Contributing to the SWI-Prolog project
	Software support to keep track of license conditions
	License conditions inherited from used code
	Cryptographic routines

	Summary
	Predicates
	Library predicates
	library(aggregate)
	library(ansi_term)
	library(apply)
	library(assoc)
	library(broadcast)
	library(charsio)
	library(check)
	library(clpb)
	library(clpfd)
	library(clpqr)
	library(csv)
	library(dcgbasics)
	library(dcghighorder)
	library(debug)
	library(dicts)
	library(dom)
	library(error)
	library(exceptions)
	library(fastrw)
	library(explain)
	library(help)
	library(gensym)
	library(heaps)
	library(increval)
	library(intercept)
	library(iostream)
	library(listing)
	library(lists)
	library(macros)
	library(main)
	library(occurs)
	library(option)
	library(optparse)
	library(ordsets)
	library(persistency)
	library(portraytext)
	library(predicate_options)
	library(prologcoverage)
	library(prologdebug)
	library(prologjiti)
	library(prologpack)
	library(prologversions)
	library(prologtrace)
	library(prologxref)
	library(pairs)
	library(pio)
	library(random)
	library(rbtrees)
	library(readutil)
	library(record)
	library(registry)
	library(rwlocks)
	library(settings)
	library(simplex)
	library(statistics)
	library(terms)
	library(ugraphs)
	library(url)
	library(wasm)
	library(www_browser)
	library(solution_sequences)
	library(thread)
	library(thread_pool)
	library(varnumbers)
	library(yall)

	Arithmetic Functions
	Operators

