SWI Prolog

Reference Manual
Updated for version 9.3.12, September 2024

SWI-Prolog developers
https://www.swi-prolog.org

SWI-Prolog is a comprehensive and portable implementation of the Prolog programming
language. SWI-Prolog aims to be a robust and scalable implementation supporting a wide
range of applications. In particular, it ships with a wide range of interface libraries, pro-
viding interfaces to other languages, databases, graphics and networking. It provides ex-
tensive support for managing HTML/SGML/XML, JSON, YAML and RDF documents.
The system is particularly suited for server applications due to robust support for multi-
threading and HTTP server libraries.

SWI-Prolog extends Prolog with tabling (SGL resolution). Tabling provides better ter-
mination properties and avoids repetitive recomputation. Following XSB, SWI-Prolog’s
tabling supports sound negation using the Well Founded Semantics. Incremental tabling
supports usage as a Deductive database.

SWI-Prolog is designed in the ‘Edinburgh tradition’. In addition to the ISO Prolog stan-
dard it is largely compatible to Quintus, SICStus and YAP Prolog. SWI-Prolog provides
a compatibility framework developed in cooperation with YAP and instantiated for YAP,
SICStus, IF/Prolog and XSB.

SWI-Prolog aims at providing a rich development environment, including extensive ed-
itor support, graphical source-level debugger, autoloading, a ‘make’ facility to reload
edited files and much more. GNU-Emacs, SWI-Prolog editor for Windows, the PDT plu-
gin for Eclipse or a Visual Studio Code plugin provide alternative environments. SWISH
provides a web based environment.

This document gives an overview of the features, system limits and built-in predicates.

https://www.swi-prolog.org
https://swish.swi-prolog.org

\ \
\ \

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

1 Introduction
Positioning SWI-Prolog
Status and releases

1.1
1.2
1.3
1.4
1.5
1.6

Support the SWI-Prolog project
Implementation history
Acknowledgements

2 Overview

2.1

2.2
2.3
2.4

2.5

2.6
2.7

2.8
2.9
2.10

Getting started quickly

2.1.1
2.1.2
2.1.3
2.14
2.1.5

2.4.1 Informational command line options
2.4.2 Command line options for running Prolog
2.4.3 Controlling the stack sizes

2.4.4 Running goals from the command line
2.4.5 Compilation options

2.4.6 Maintenance options

UI Themes

2.5.1 Status of theme support

GNU Emacs Interface
Online Help
library(help): Text based manual
library(explain): Describe Prolog Terms
Command line history

2.7.1
2772

Starting SWI-Prolog

Adding rules from the console
Executingaquery
Examining and modifying your program
Stopping Prolog
The user’s initialisation file
Initialisation files and goals
Command line options

Reuse of top-level bindings
Overview of the Debugger

2.10.1
2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7

The Byrd Box Model And Ports
Trace Mode Example
Trace Mode Options: 1eash/1 and visible/1
Trace Mode Commands When Paused
Trace Mode vs. Trace Point

Spy Points and Debug Mode
Breakpoints L.

SWI-Prolog 9.3 Reference Manual

2.10.8 Command Line Debugger Summary 47

2.11 Loading and running projects v v v it i e e e e e e e 48
2.11.1 Running anapplication L 49

2.12 Environment Control (Prolog flags) 53
2.13 Anoverview of hook predicates, 75
2.14 Automatic loading of libraries 76
2.15 The SWI-Prolog syntax i i vt ittt e e e e e e e 78
2.15.1 ISO Syntax Support i e e e 78

2.16 Rational trees (cyclicterms) o e e 85
2.17 Just-in-time clause indexingo o 86
2.17.1 Deepindexing i e e 87
2.17.2 Futuredirections e 88
2.17.3 Indexing forbodycode L. L o 88
2.17.4 Indexing and portability L. 89

2.18 Wide character support e 89
2.18.1 Wide character encodings on streams 90

2.19 System limits oL e e e e 91
2.19.1 Limits On MEMOTry areas « v v v v v v v et e e e e e e 91
2.19.2 Other Limits e 92
2.19.3 Reserved Names e 92

2.20 SWI-Prolog and 32-bit machines 94
2.21 Binary compatibility e e 94
3 Initialising and Managing a Prolog Project 96
3.1 Theprojectsourcefiles e 96
3.1.1 File Names and Locations 96

3.1.2 ProjectSpecial Files o 97

3.1.3 International sourcefileso 98

32 Usingmodules e 98
3.3 Thetest-edit-reloadcycle oL oL 99
3.3.1 Locating thingstoedit 99

3.3.2 Editing and incremental compilation 100

3.4 Using the PceEmacs built-ineditor 100
34.1 ActivatingPceEmacs 100

3.4.2 Bluffing through PceEmacs 101

343 PrologMode e 103

3.5 The Graphical Debugger 105
3.5.1 Invoking the window-based debugger 105

3.6 The Prolog Navigator 0 i e e 106
37 Cross-referencer. oo e e e e e e e 106
3.8 Accessing the IDE from your program oL 108
39 Summaryofthe IDE 109
4 Built-in Predicates 110
4.1 Notation of Predicate Descriptions 0. 110
4.1.1 The argument mode indicator 110
4.1.2 Predicateindicators e 111

SWI-Prolog 9.3 Reference Manual

Contents 3

4.2
4.3

4.4

4.5
4.6

4.7
4.8
4.9
4.10

4.11

4.12

4.13
4.14

4.15
4.16
4.17

4.18
4.19
4.20
4.21

4.22

4.1.3 Predicate behaviour and determinism L. 112
Character representation o ..t i e e e e e e 112
Loading Prolog source files, 113
4.3.1 Conditional compilation and program transformation 126
4.3.2 Reloading files, active code and threads 132
433 Quickloadfiles e e 135
Editor Interface 136
4.4.1 Customizing the editor interface L. 136
Verify TypeofaTerm e 138
Comparison and Unificationof Terms 139
4.6.1 Standard Orderof Terms 140
4.6.2 Special unification and comparison predicates 142
Control Predicates e 144
Meta-Call Predicates e 147
Delimited continuations L e e e 152
Exceptionhandling 154
4.10.1 Urgency of exceptions e 156
4.10.2 Debugging and eXceptions e e e e e e 157
4.10.3 Theexceptionterm ot vt vttt 157
Printing messages e e e e e 159
4.11.1 Printing from libraries L oL 163
Handling signals e 164
4.12.1 Notesonsignalhandling 166
DCG Grammarrules L e 166
Database L 168
4.14.1 Managing (dynamic) predicates oL 169
4.14.2 Therecorded database 176
4143 Flags o e e 177
4144 TTries . . . oo e e e e e 177
4.14.5 Update view Lo e e e e 179
4.14.6 Indexing databases 180
Declaring predicate properties Lol e e e e 181
Examining the program L. 184
Inputandoutput e 191
4.17.1 Predefined streamaliases 191
4.17.2 ISO Input and Output Streams v v vt vt et 191
4.17.3 Edinburgh-style I/O. o 200
4.17.4 Switching between Edinburgh and ISOI/O 202
4.17.5 AddingIRIschemas 202
4.17.6 Write onto atoms, code-lists, etc. oL 203
4177 Fastbinaryterm I/O Lo 204
Status of streams e e e e e e 205
Primitive character /O L 206
Term reading and writing e 210
Analysing and Constructing Terms L oL 220
4.21.1 Non-logical operations onterms« o o vt e e e 224
Analysing and Constructing Atoms oo e 225

SWI-Prolog 9.3 Reference Manual

423
4.24

4.25
4.26
4.27

4.28
4.29
4.30
4.31
4.32

4.33

4.34
4.35

4.36
4.37
4.38
4.39
4.40
4.41
4.42

4.43

4.44

4.45

Localization (locale) support e 230
Character properties v v v v v v v e e e e e e e e e e e e e e e e e e 231
4.24.1 CaseCONVErSION v v v v v vt e e e e e e e e e 233
4.24.2 White space normalization L oL 234
4.24.3 Language-specific comparisono 234
Operators e e e e e e 234
Character CONVErsion v v v vt v it et e e e e e 237
Arithmetic e 237
4.27.1 Special purpose integer arithmetic 237
4.27.2 General purpose arithmetic L. 238
Misc arithmetic support predicates o 252
Built-in list operations Lo 253
Finding all SolutionstoaGoal 256
Forall 258
Formatted Write 259
4321 Writef L e e e 259
4322 Format e e e 260
4.32.3 Programming Format L oL 264
Global variables L 264
4.33.1 Compatibility of SWI-Prolog Global Variables 266
Terminal Control e 266
Operating System Interaction Lo 267
4.35.1 Windows-specific Operating System Interaction 268
4.35.2 Apple specific Operating System Interaction 270
4.35.3 Dealing withtimeanddate 271
4.35.4 Controlling the swipl-win.exe console window 276
File System Interaction e 277
User Top-level Manipulation 284
Creating a Protocol of the User Interaction 286
Debugging and Tracing Programs 287
Debugging and declaring determinismo o L. 289
Obtaining Runtime Statistics 291
Execution profiling 291
4.42.1 library(prolog_profile): Execution profiler 294
4.42.2 Visualizing profilingdata L oo 295
4.42.3 Information gathering 296
Memory Management e e e e e 297
4.43.1 Garbagecollection 297
4432 Heapmemory (malloc) 299
Windows DDE interface 301
4.44.1 DDEclientinterface oL 301
4442 DDEservermode e e e e 302
Miscellaneous L. e e e e 303

SWI-Prolog 9.3 Reference Manual

Contents 5

5 SWI-Prolog extensions 305
5.1 Listsarespecial e e e e 305
5.1.1 Motivating ‘[|]”and [] forlists 306

5.2 The string type and its double quoted syntax 306
5.2.1 Representing text: strings, atoms and code lists 307

5.2.2 Predicates that operate on Strings oL 308

5.2.3 Why has the representation of double quoted text changed? 313

5.2.4 Adapting code for double quoted strings 313

5.2.5 Predicates to support adapting code for double quoted strings 314

5.3 Syntax changes since SWI-Prolog 7 315
5.3.1 Operators and quoted atomso 315

5.3.2 Compound terms with zero arguments 316

5.3.3 Blockoperators 317

5.4 Dicts: structures with named argumentso 317
54.1 Functionsondicts L 318

5.4.2 Predicates for managing dicts L oL 321

543 Whentousedicts? 324

5.4.4 A motivation for dicts as primary citizens 326

5.4.5 Implementation notes aboutdicts 326

5.5 Integration of strings and dicts in the libraries 0. 326
5.5.1 Dicts and option processing it e e e e e . 327

5.5.2 Dictsincore data Structurest u e it e 327

5.53 Dicts,stringsand XML oL oo 327

5.54 Dicts, stringsand JSON e 327

5.5.5 Dicts,stringsand HTTP 327

5.6 Single Sided Unificationrules oo 328
5.6.1 Single Sided Unification Guards 331

5.6.2 Consequenses of => single sided unificationrules 332

5.6.3 SSU: Future considerationso 332

5.7 Remainingissues L e e 332
6 Modules 334
6.1 Why UseModules? e 334
6.2 DefiningaModule e 334
6.3 Importing Predicates intoaModule 335
6.4 Controlled autoloading formodules 337
6.5 Defining ameta-predicate e e e 338
6.6 Overruling Module Boundaries 340
6.6.1 Explicit manipulation of the calling context 341

6.7 Interacting with modules from the toplevel 341
6.8 Composing modules from othermodules 341
6.9 Operatorsand modules e 342
6.10 Dynamic importing using import modules Lo, 343
6.11 Reserved Modules and using the ‘user’ module 344
6.12 An alternative import/export interface L oo 344
6.13 DynamicModules e 345
6.14 Transparent predicates: definition and context module 345

SWI-Prolog 9.3 Reference Manual

6.15 Module properties e e e e e e e e e e e e 347
6.16 Compatibility of the Module System 348
7 Tabled execution (SLG resolution) 350
7.1 Example 1: using tabling for memoizing oL 350
7.2 Example 2: avoiding non-terminationo Lo e e 352
7.3 Answer subsumption or mode directed tabling, 353
7.4 Tabling for impure programso e e 354
7.5 Variant and subsumptive tabling oo oo o 355
7.6 Well Founded Semantics e 356
7.6.1 Well founded semantics and the toplevel 358

7.7 Incremental tabling 359
7.8 Monotonictabling 359
7.8.1 Eager and lazy monotonic tabling oL, 360

7.8.2 Tracking new answers to monotonic tables 361

7.8.3 Monotonic tabling with external data 362

7.9 Sharedtabling e e e 363
7.9.1 Abolishing sharedtables 363

7.9.2 Status and future of shared tabling 364

7.10 Tabling restraints: bounded rationality and tripwires 364
7.10.1 Restraint subgoalsize 365
7.10.2 Restraint ansSwer SizZ€« . v vttt e e e e e 366
7.10.3 Restraint answer Count o vt vt oo e e 366

7.11 Tabling predicate reference L L 367
7.12 About the tabling implementation oL oL 370
8 Constraint Logic Programming 372
8.1 Attributed variables L. Lo 373
8.1.1 Attribute manipulation predicates 375

8.1.2 Attributed variable hooks o o oo 375

8.1.3 Operations on terms with attributed variables 377

8.1.4 Special purpose predicates for attributeso 377

8.2 Coroutining v v i e e e e e e e e e e 378
9 CHR: Constraint Handling Rules 380
9.1 Introductionto CHR 380
9.2 CHR Syntax and Semantics 0 i i e e e e e 381
9.2.1 Syntaxof CHRrules 381

922 Semanticsof CHR o 382

9.3 CHR in SWI-Prolog Programs 383
9.3.1 Embedding CHR in Prolog Programs 383

9.3.2 CHR Constraint declaration 384

933 CHRCompilation 387

9.4 Debugging CHR programs e 387
9.4.1 CHRdebugports i e 388

942 TracingCHR programs 388

9.4.3 CHR Debugging Predicates 389

SWI-Prolog 9.3 Reference Manual

Contents 7

9.5 CHRExamples e 390
9.6 CHR compatibility 391
9.6.1 The OId SICStus CHR implementation 391

9.6.2 The Old ECLiPSe CHR implementation 392

9.7 CHR Programming Tipsand Tricks 392
9.8 CHR Compiler Errors and Warnings 393
9.8.1 CHR Compiler Errors o 393

10 Multithreaded applications 395
10.1 Creating and destroying Prologthreads 395
10.2 Monitoring threads L 399
10.3 Thread communication o 401
10.3.1 MesSage qUEULS . . v v v v v v e e e e e e e e e e e e e e e e 401
10.3.2 Waitingforevents oL e 406
10.3.3 Signalling threads L o 408
10.3.4 Threads and dynamic predicates 410

10.4 Thread synchronisation 411
10.5 Thread support library(threadutil) 413
10.5.1 Debugging threads 413
10.5.2 Profilingthreads L 414

10.6 Multithreaded mixed C and Prolog applications 414
10.6.1 A Prolog thread for each native thread (one-to-one) 415
10.6.2 Pooling Prolog engines (many-to-many) v . v v v oo ... 416

10.7 Multithreading and the XPCE graphics system 417
11 Coroutining using Prolog engines 419
11.1 Examples using engines o v vttt e e e e 419
11.1.1 Aggregation using engines« c v v v vt v i e 419
11.1.2 State accumulation using engines v vt ... 421
11.1.3 Scalable many-agent applications 423

11.2 Engine reSOUrce USage v v v v v v v v e e e e e e e e e e e e e 423
11.3 Engine predicate reference o e 423
12 Foreign Language Interface 426
12.1 Overview of the Interface 426
12.2 Linking Foreign Modules 426
12.2.1 What linking is provided? L. 427
12.2.2 What kind of loading should I be using? 427
12.2.3 library(shlib): Utility library for loading foreign objects (DLLs, shared objects) 427
12.2.4 Low-level operations on shared libraries 429
12.2.5 StaticLinking 430

12.3 Interface Data Types o o i e e e e e e 431
12.3.1 Type term_t: areference toaPrologterm 431
12.3.2 Other foreign interface types o 433

12.4 The Foreign Include File 436
12.4.1 Argument Passingand Control 436
1242 Atomsand functors Lo 442

SWI-Prolog 9.3 Reference Manual

1243 Inputandoutput e e e e e 444
12.4.4 Analysing Terms via the Foreign Interface 445
12.4.5 Constructing Terms o i e e e 456
12.4.6 Unifyingdata e 460
12.4.7 Convenient functions to generate Prolog exceptions 467
12.4.8 Foreign language wrapper support functions 469
12.4.9 Serializing and deserializing Prologterms 470
12.4.10 BLOBS: Using atoms to store arbitrary binary data 470
12.4.11 Exchanging GMP numbers 477
12.4.12 Calling Prolog from C 478
12.4.13 Discarding Data e 482
12.4.14 String buffering o 483
12.4.15 Foreign Code and Modules 484
12.4.16 Prolog exceptions in foreigncode 485
12.4.17 Catching Signals (Software Interrupts) 488
12.4.18 Miscellaneous L. 489
12.4.19 Errors and warnings oo i oo e 495
12.4.20 Environment Control from Foreign Code 495
12.421 Querying Prolog L 497
12.4.22 Registering Foreign Predicates, 497
12.4.23 Foreign Code Hooks 499
12.4.24 Storing foreigndata. oL L 501
12.4.25 Embedding SWI-Prolog in other applications 504
12.5 Linking embedded applications using swipl-1d 509
12.5.1 Asimpleexample e 511
12.6 The Prolog ‘home’ directory i 512
12.7 Example of Using the Foreign Interface 514
12.8 Notes on Using ForeignCode 516
12.8.1 Foreign debugging functions oL 516
12.8.2 Memory Allocation e 517
12.8.3 Compatibility between Prolog versions 518
12.8.4 Foreignhashtables 518
12.8.5 Debugging and profiling foreign code (valgrind, asan) 519
12.8.6 Name ConflictsinCmodules 520
12.8.7 Compatibility of the Foreign Interface 520
12.9 Foreign access to Prolog [O streams 520
129.1 GetlOstreamhandles 521
12.9.2 Creatingan IO stream vt 522
12.9.3 Interacting with foreign streams 525
12.9.4 Foreign stream error handling L. 532
12.9.5 Foreign streamencoding 533
12.9.6 Foreignstream lineendings 533
12.9.7 Foreign stream position information L. 534
12.9.8 Support functions for blobsave/load 534

SWI-Prolog 9.3 Reference Manual

Contents 9

13

14

15

Using SWI-Prolog in your browser (WASM) 536
13.1 Loading and initializing Prolog 536
13.1.1 Loading Prologfiles 538
13.2 Calling Prolog from JavaScript 538
13.2.1 TheJavaScriptclassQuery 540
13.2.2 Translating data between JavaScript and Prolog 540
13.3 Accessing JavaScript from Prolog oo o o oL 543
Deploying applications 547
14.1 Deployment options ottt e e e e e 547
14.2 Understanding saved states e e e 547
14.2.1 Creatingasavedstate v v v it e e e 548
14.2.2 Limitations of gsave_program vt vt 551
14.2.3 Runtimes and Foreign Code 552
14.3 State initialization L. L e 552
14.4 UsSIing program réSOUICES« « v v v v v v v e v e e e e e e e e e e e 553
14.4.1 Resourcesasfiles L e 553
14.4.2 Access resources using OpeN_TeSOUICe v v v v v v v v v v v v v v v 554
14.43 Declaring reSOurces ot it e e e e 555
14.4.4 Managingresource files oL Lo 555
14.5 Debugging and updating deployed systems 555
14.6 Protectingyourcode it e e e 556
14.6.1 Obfuscating codeinsavedstates 556
14.7 Finding Applicationfiles o 557
Packs: community add-ons 558
15.1 Installing packs o e e e 558
15.2 Built-in predicates for attaching packs L. 560
15.3 library(prolog_pack): A package manager for Prolog 561
15.4 Structureof apack L 566
15.5 Developingapack 567
15.5.1 Thepackmetadata 568
15.5.2 Packs with foreigncode 569
15.53 Updatingapackage e 574
The SWI-Prolog library 575
A.1 library(aggregate): Aggregation operators on backtrackable predicates 575
A.2 library(ansi_term): Print decorated text to ANSIconsoles 578
A.3 library(apply): Apply predicatesonalist., 580
A.4 library(assoc): Associationlists L. L 582
A4l Introduction L 583
A.4.2 Creatingassociation lists Lo 583
A.4.3 Querying association lists oL oo 583
A.4.4 Modifying association lists Lo oL 584
A.4.5 Conversion predicateS e e e e 584
A.4.6 Reasoning about association lists and their elements 585
A.5 library(broadcast): Broadcast and receive event notifications 585

SWI-Prolog 9.3 Reference Manual

10

A.6 library(charsio): I/O on Lists of Character Codes 587
A.7 library(check): Consistency checking 588
A.8 library(clpb): CLP(B): Constraint Logic Programming over Boolean Variables 591
A8.1 Introduction. e 591
A.8.2 Boolean expressions e e e e e e e e 592
A.83 Interface predicates L 593
A84 Examples e e e 593
A85 ObtainingBDDs L 594
A.8.6 Enabling monotonicCLP(B) 594
A.87 Example: Pigeons oL 595
A.8.8 Example: Booleancircuit, 596
A.8.9 Acknowledgments 596
A.8.10 CLP(B) predicate index vt 596
A.9 library(clpfd): CLP(FD): Constraint Logic Programming over Finite Domains 597
A9.1 Introduction. e e 597
A.9.2 Arithmetic constraintso 599
A.9.3 Declarative integer arithmetic L. 600
A.9.4 Example: Factorial relation. 601
A.9.5 Combinatorial constraints L Lo 603
A9.6 Domains e 603
A9.7 Example: Sudoku. o o 603
A9.8 Residualgoals 604
A99 Corerelationsandsearch o 605
A.9.10 Example: Eightqueenspuzzle 606
A9.11 Optimisation o v it e e e e e e e e e e e 607
A.9.12 Reification e 608
A.9.13 Enabling monotonicCLP(FD) 608
A.9.14 Custom CONStraints v vt v vt e e e e e e 609
A9.15 Applications e e e e 609
A9.16 Acknowledgments L e 610
A9.17 CLP(FD) predicate index v vt 610
A.9.18 Closing and opening words about CLP(FD) 625
A.10 library(clpqr): Constraint Logic Programming over Rationals and Reals 625
A.10.1 Solverpredicates e e e e 626
A.10.2 Syntax of the predicate argumentso 627
A.10.3 Useofunification L 627
A.10.4 Non-linear constraints vt 628
A.10.5 Status and known problems L. 628
A.11 library(csv): Process CSV (Comma-Separated Values)data 629
A.12 library(dcg/basics): Various general DCG utilities 631
A.13 library(dcg/high_order): High order grammar operations 633
A.14 library(debug): Print debug messages and test assertions 635
A.15 library(dicts): Dictutilities e 637
A.16 library(error): Error generating support..o 639
A.17 library(fastrw): Fast reading and writingof terms 642
A.18 library(gensym): Generate unique symbols. 643
A.19 library(heaps): heaps/priority queues v it 643

SWI-Prolog 9.3 Reference Manual

Contents 11

A.20 library(increval): Incremental dynamic predicate modification 645
A.21 library(intercept): Intercept and signal interface 646
A.22 library(iostream): Utilities to deal with streams 648
A.23 library(listing): List programs and pretty printclauses 649
A.24 library(lists): List Manipulation 651
A.25 library(macros): Macro expansiono 657

A.25.1 Defining and using macrosot 657

A.25.2 Implementationdetails Lo . 658

A253 Predicateso 658
A.26 library(main): Provide entry point forscripts oL 659
A.27 library(nb_set): Non-backtrackableset 663
A.28 library(www _browser): Open a URL in the users browser 664
A.29 library(occurs): Finding and counting sub-terms 665
A.30 library(option): Option list processing v v v v v v v v v ... 666
A.31 library(optparse): command line parsing 668

A31.1 Notesand tipS o v v i e e e e e e e e 672
A.32 library(ordsets): Ordered set manipulation 674
A.33 library(pairs): Operations on key-value lists 676
A.34 library(persistency): Provide persistent dynamic predicates 677
A.35 library(pio): Pure /O e 680

A.35.1 library(pure_input): Pure Input from files and streams 681
A.36 library(portray_text): Portray texto 682
A.37 library(predicate_options): Declare option-processing of predicates 684

A.37.1 The strength and weakness of predicate options 684

A.37.2 Options as arguments or environment? 685

A.37.3 Improving on the current situation oL 685
A.38 library(prolog_coverage): Coverage analysistool 688

A.38.1 Coverage collectionand threads 688

A.38.2 Combining coverage data from multipleruns 689

A.38.3 Predicatereference Lo 689
A.39 library(prolog_debug): User level debuggingtools 691
A.40 library(prolog_jiti): Just In Time Indexing (JITI) utilities 693
A.41 library(prolog_trace): Print access to predicates 693
A.42 library(prolog_versions): Demand specific (Prolog) versions 695
A.43 library(prolog_xref): Prolog cross-referencer data collection 696
A.44 library(quasi_quotations): Define Quasi Quotation syntax 700
A .45 library(random): Random numbers L oo 702
A.46 library(rbtrees): Red blacktrees 705
A 47 library(readutil): Read utilities L L oo 708
A.48 library(record): Access named fieldsinaterm 709
A.49 library(registry): Manipulating the Windows registry 711
A.50 library(rwlocks): Read/write locks oL o 712
A.51 library(settings): Setting managementot e e .. 713
A.52 library(statistics): Get information about resourceusage 715
A.53 library(strings): String utilities L Lo o 717
A.54 library(simplex): Solve linear programming problems 719

AS54.1 Introduction oL L e e e e 719

SWI-Prolog 9.3 Reference Manual

12

A.54.2 Delayed column generation

A.54.3 Solving LPs with special structure

AS544 Examples Lo e e e
A.55 library(solution_sequences): Modify solution sequences
A.56 library(tables): XSB interfacetotables
A.57 library(terms): Term manipulation L.
A.58 library(thread): High level thread primitives
A.59 library(thread_pool): Resource bounded thread management
A.60 library(ugraphs): Graph manipulation library
A.61 library(url): Analysing and constructing URL
A.62 library(varnumbers): Utilities for numberedterms
A.63 library(yall): Lambda expressions

B Hackers corner
B.1 Examining the Environment Stack oL oo
B.2 Ancestralcuts
B.3 Interceptingthe Tracer e
B.4 Simmulating a debugger interrupto oL
B.5 Breakpoint and watchpoint handling Lo,
B.6 Adding context to errors: prolog_exception_hook
B.7 Hooks using the exception predicate
B.8 Prologevents
B.9 Hooks for integrating libraries
B.10 Hooks for loading files e

C Compatibility with other Prolog dialects
C.1 Some considerations for writing portablecode
C.2 Notesonspecificdialects e
C.2.1 Notesonspecificdialects.
C.2.2 The XSB importdirectiveo

D Glossary of Terms

E SWI-Prolog License Conditions and Tools
E.1 Contributing to the SWI-Prolog project
E.2 Software support to keep track of license conditions
E.3 License conditions inherited fromusedcode
E.3.1 Cryptographicroutineso e

F Summary
F1 Predicates e
F2 Library predicates e
F2.1 library(aggregate) e e
F2.2 library(ansiterm) e e e e e e
F2.3 library(apply) o e e
F2.4 library(assoc) o e e e
F2.5 library(broadcast)

745
745
747
747
750
750
751
752
753
755
756

757
758
760
760
761

762

768
769
769
770
770

SWI-Prolog 9.3 Reference Manual

Contents 13
F.2.6 library(charsio) e 790
F2.7 library(check) 790
F2.8 library(clpb) e 791
F2.9 library(clpfd) e 791
F2.10 library(clpgr) o e e e 793
F2.11 library(csv)« o o o o o e e e 793
F2.12 library(dcgbasics) o v i i e e e e 793
F.2.13 library(dcghighorder) L o 794
F2.14 library(debug) e 794
F2.15 library(dicts) o . o e e e e e e e 794
F2.16 library(error) i i e e e e 795
F2.17 library(fastrw) o e e e e e 795
F2.18 library(explain) e 795
F2.19 library(help) e 795
F2.20 library(gensym) o o oo e e 796
F2.21 library(heaps) o o e e e e e 796
F2.22 library(increval) e 796
F2.23 library(intercept) o v i i e e e e e e 796
F2.24 library(iostream) e 797
F2.25 library(listing) o o e e e e e 797
F2.26 library(lists) o e e e e e e e 797
F2.27 library(macros) o o vt e e e e e e 798
F2.28 library(main) o e e e e e e e 798
F2.29 library(occurs) o o i e e 798
F2.30 library(option) e e e e e e e 798
F.2.31 library(optparse) o vt v it e e e e 799
F2.32 library(ordsets) i e e e e 799
F.2.33 library(persistency) o oo e 799
F2.34 library(portraytext) o v v vt e e e e e e e 800
F.2.35 library(predicate_options) 800
F.2.36 library(prologcoverage) v v v v v i i i e e e 800
F2.37 library(prologdebug) L 800
F.2.38 library(prologjiti) o o o e e e 801
F.2.39 library(prologpack) e 801
F.2.40 library(prologversions) o o v v vt i e 801
F2.41 library(prologtrace) o i i e e e e e 801
F.2.42 library(prologxref) Lo 801
F2.43 library(pairs) o o i i e e e e e e e e 802
F2.44 library(pio) o o e e 802
F2.45 library(random) e 802
F2.46 library(rbtrees) e 803
F2.47 library(readutil) 803
F2.48 library(record) e 804
F2.49 library(registry) o v v v i i e e e e e e e e 804
F2.50 library(rwlocks). e 804
F.2.51 library(settings)« o o o v it i e e 804
F2.52 library(simplexX) o e e e e e e 805

SWI-Prolog 9.3 Reference Manual

14

F.2.53 library(statisticS) v . o v i i e e e e e e e e e 805
F2.54 library(terms) o i e e e 805
F2.55 library(ugraphs). e 805
F2.56 library(url) 0 . 806
F2.57 library(Www_browser) v i v v i it 807
F.2.58 library(solution_sequences) 807
F2.59 library(thread) e 807
F.2.60 library(thread_pool). 807
F2.61 library(varnumbers) e 808
F2.62 library(yall) o e e 808
F3 Arithmetic Functions e 809
F4 Operators i e e e e e e e e e e e 811

SWI-Prolog 9.3 Reference Manual

Introduction

This document is a reference manual. That means that it documents the system, but it does not
explain the basics of the Prolog language and it leaves many details of the syntax, semantics and built-
in primitives undefined where SWI-Prolog follows the standards. This manual is intended for people
that are familiar with Prolog. For those not familiar with Prolog, we recommend to start with a Prolog
textbook such as [1,1 Jor|[]. For more
advanced Prolog usage we recommend [1.

1.1 Positioning SWI-Prolog

Most implementations of the Prolog language are designed to serve a limited set of use cases. SWI-
Prolog is no exception to this rule. SWI-Prolog positions itself primarily as a Prolog environment for
‘programming in the large’ and use cases where it plays a central role in an application, i.e., where
it acts as ‘glue’ between components. At the same time, SWI-Prolog aims at providing a productive
rapid prototyping environment. Its orientation towards programming in the large is backed up by scal-
ability, compiler speed, program structuring (modules), support for multithreading to accommodate
servers, Unicode and interfaces to a large number of document formats, protocols and programming
languages. Prototyping is facilitated by good development tools, both for command line usage and for
usage with graphical development tools. Demand loading of predicates from the library and a ‘make’
facility avoids the requirement for using declarations and reduces typing.

SWI-Prolog is traditionally strong in education because it is free and portable, but also because of
its compatibility with textbooks and its easy-to-use environment.

Note that these positions do not imply that the system cannot be used with other scenarios. SWI-
Prolog is used as an embedded language where it serves as a small rule subsystem in a large ap-
plication. It is also used as a deductive database. In some cases, this is the right choice because
SWI-Prolog has features that are required in the application, such as threading or Unicode support.
In general though, for example: GNU-Prolog is more suited for embedding because it is small and
can compile to native code; XSB is better for deductive databases because it provides a mature im-
plementation of tabling including support for incremental updates and Well Founded Semantics'; and
ECLiPSe is better at constraint handling.

The syntax and set of built-in predicates is based on the ISO standard []. Most
extensions follow the ‘Edinburgh tradition’ (DEC10 Prolog and C-Prolog) and Quintus Prolog
[]. The infrastructure for constraint programming is based on hProlog [].

Some libraries are copied from the YAP? system. Together with YAP, we developed a portability
framework (see section C). This framework has been filled for SICStus Prolog, YAP, IF/Prolog and

'Sponsored by Kyndi and with help from the XSB developers Theresa Swift and David S. Warren, SWI-Prolog now
supports many of the XSB features.
http://www.dcc.fc.up.pt/~{}vsc/Yap/

SWI-Prolog 9.3 Reference Manual

http://www.dcc.fc.up.pt/~{}vsc/Yap/

16 CHAPTER 1. INTRODUCTION

Ciao. SWI-Prolog version 7 introduces various extensions to the Prolog language (see section 5). The
string data type and its supporting set of built-in predicates is compatible with ECLiPSe.

1.2 Status and releases

This manual describes version 9.3 of SWI-Prolog. SWI-Prolog is widely considered to be a robust
and scalable implementation of the Prolog language. It is widely used in education and research.
In addition, it is in use for 24 X 7 mission critical commercial server processes. The site http:
//www.swi-prolog.org is hosted using the SWI-Prolog HTTP server infrastructure. It receives
approximately 2.3 million hits and serves approximately 300 Gbytes on manual data and downloads
each month. SWI-Prolog applications range from student assignments to commercial applications
that count more than one million lines of Prolog code.

SWI-Prolog has two development tracks. Stable releases have an even minor version number
(e.g., 6.2.1) and are released as a branch from the development version when the development version
is considered stable and there is sufficient new functionality to justify a stable release. Stable releases
often get a few patch updates to deal with installation issues or major flaws. A new Development
version is typically released every couple of weeks as a snapshot of the public git repository. ‘Extra
editions’ of the development version may be released after problems that severely hindered the user
in their progress have been fixed.

Known bugs that are not likely to be fixed soon are described as footnotes in this manual.

1.3 Should I be using SWI-Prolog?

There are a number of reasons why it might be better to choose a commercial, or another free, Prolog
system:

» SWI-Prolog comes with no warranties
Although the developers or the community often provide a work-around or a fix for a bug, there
is no place you can go to for guaranteed support. However, the full source archive is available
and can be used to compile and debug SWI-Prolog using free tools on all major platforms.
Users requiring more support should ensure access to knowledgeable developers.

* Performance is your first concern
Various free and commercial systems have better performance. But, ‘standard’ Prolog bench-
marks disregard many factors that are often critical to the performance of large applications.
SWI-Prolog is not good at fast calling of simple predicates, but it is fast with dynamic code,
meta-calling and predicates that contain large numbers of clauses or require more advanced
clauses indexing. Many of SWI-Prolog’s built-in predicates are written in C and have excellent
performance.

On the other hand, SWI-Prolog offers some facilities that are widely appreciated by users:

» Comprehensive support of Prolog extensions
Many modern Prolog implementations extend the standard SLD resolution mechanism with
which Prolog started and that is described in the ISO standard. SWI-Prolog offers most popular
extensions.

SWI-Prolog 9.3 Reference Manual

http://www.swi-prolog.org
http://www.swi-prolog.org

1.3. SHOULD I BE USING SWI-PROLOG? 17

Attributed variables provide Constraint Logic Programming and delayed execution based on
instantiation (coroutining). Tabling or SGL resolution provides characteristics normally associ-
ated with bottom up evaluation: better termination, better predictable performance by avoiding
recomputation and Well Founded Semantics for negation. Delimited continuations can be used
to implement high level new control structures and Engines can be used to control multiple
Prolog goals, achieving different control structures such as massive numbers of cooperating
agents.

* Nice environment
SWI-Prolog provides a good command line environment, including ‘Do What I Mean’, auto-
completion, history and a tracer that operates on single key strokes. The system automatically
recompiles modified parts of the source code using the make/0 command. The system can
be instructed to open an arbitrary editor on the right file and line based on its source database.
It ships with various graphical tools and can be combined with the SWI-Prolog editor, PDT
(Eclipse plugin for Prolog), VScode or GNU-Emacs.

» Fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is the Quick Load Format. See gcompile/1 and gsave_program/2.

 Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not, and the performance of debugged code is close to that of normal operation.

* Source level debugger
The source level debugger provides a good overview of your current location in the search tree,
variable bindings, your source code and open choice points. Choice point inspection provides
meaningful insight to both novices and experienced users. Avoiding unintended choice points
often provides a huge increase in performance and a huge saving in memory usage.

* Profiling
SWI-Prolog offers an execution profiler with either textual output or graphical output. Finding
and improving hotspots in a Prolog program may result in huge speedups.

* Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C
as well as C calling Prolog (see section 12). It can also be embedded in external programs (see
section 12.5). System predicates can be redefined locally to provide compatibility with other
Prolog systems.

* Threads

Robust support for multiple threads may improve performance and is a key enabling factor for
deploying Prolog in server applications. Threads also facilitates debugging and maintenance of
long running processes and embedded Prolog engines. The native IDE tools run in a separate
thread The prolog_server library provides telnet access and the pack 1ibssh provides
SSH login. With some restrictions regarding the compatibility of old and new code, code can
be replaced while it is being executed in another thread. This allows for injecting debug/ 3
statements as well as fixing bugs without downtime.

SWI-Prolog 9.3 Reference Manual

18 CHAPTER 1. INTRODUCTION

* Interfaces
SWI-Prolog ships with many extension packages that provide robust interfaces to processes,

encryption, TCP/IP, TIPC, ODBC, SGML/XML/HTML, RDF, JSON, YAML, HTTP, graphics
and much more.

1.4 Support the SWI-Prolog project

You can support the SWI-Prolog project in several ways. Academics are invited to cite one of the
publications® on SWI-Prolog. Users can help by identifying and/or fixing problems with the code or
its documentation*. Users can contribute new features or, more lightweight, contribute packs’. Com-
mercial users may consider contacting the developers® to sponsor the development of new features or
seek for opportunities to cooperate with the developers or other commercial users.

1.5 Implementation history

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. In those days, Prolog
systems were not very aware of their environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focusing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a simple Prolog virtual machine called ZIP [,

] which defines only 7 instructions. Prolog can easily be compiled into this lan-
guage, and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the virtual machine, there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself, this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required, and the system only runs slightly slower in
debug mode compared to normal execution. The price we have to pay is some performance degra-
dation (taking out the debugger from the VM interpreter improves performance by about 20%) and
somewhat additional memory usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [] to improve
performance. While extending this set, care has been taken to maintain the advantages of decompi-
lation and tracing of compiled code. The extensions include specialised instructions for unification,
predicate invocation, some frequently used built-in predicates, arithmetic, and control (; /2, | /2),
if-then (->/2) and negation-by-failure (\+/1).

SWI-Prolog implements attributed variables (constraints) and delimited continuations following
the design in hProlog by Bart Demoen. The engine implementation follows the design proposed by
Paul Tarau. Tabling was implemented by Benoit Desouter based on delimited continuations. Tabling
has been extended with answer subsumption by Fabrizio Riguzzi. The implementation of well founded
semantics and incremental tabling follows XSB and has been sponsored by Kyndi and mode possible
by technical support from notably Theresa Swift and David S. Warren.

*https://www.swi-prolog.org/Publications.html
4https ://www.swi-prolog.org/howto/SubmitPatch.html
Shttps://www.swi-prolog.org/pack/list
®mailto:info@ swi-prolog.org

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/Publications.html
https://www.swi-prolog.org/howto/SubmitPatch.html
https://www.swi-prolog.org/pack/list
mailto:info@swi-prolog.org

1.6. ACKNOWLEDGEMENTS 19

1.6 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Edin-
burgh C-Prolog code: grammar rule compilation and writef /2. Also some of the C-code originates
from C-Prolog: finding the path of the currently running executable and some of the code underlying
absolute_file_name/2. Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

Our special thanks go to those who had the fate of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novelll.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual. Horst von Brand has been so kind to fix many
typos in the 2.7.14 manual. Thanks! Randy Sharp fixed many issues in the 6.0.x version of the manual.

Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables
and support for cyclic terms to the kernel. Tom Schrijvers has provided a first clp(fd) constraint solver,
the CHR compiler and some of the coroutining predicates. Markus Triska contributed the current
clp(fd) implementation as well as the clp(b) implementation.

Tom Schrijvers and Bart Demoen initiated the implementation of delimited continuations (sec-
tion 4.9), which was used by Benoit Desouter and Tom Schrijvers to implement fabling (section 7) as
a library. Fabrizio Riguzzi added a first implementation for mode directed tabling (section 7.3).

The SWI-Prolog 7 extensions (section 5) are the result of a long heated discussion on the mail-
inglist. Nicos Angelopoulos’ wish for a smooth integration with the R language triggered the overall
intend of these extensions to enable a smoother integration of Prolog with other languages. Michael
Hendrix suggested and helped shaping SWI-Prolog quasi quotations.

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

Scientific Software and Systems Limited, www . sss.co.nz has sponsored the development of
the SSL library, unbounded integer and rational number arithmetic and many enhancements to the
memory management of the system.

Leslie de Koninck has made clp(QR) available to SWI-Prolog.

Jeff Rosenwald contributed the TIPC networking library and Google’s protocol buffer handling.

Paulo Moura’s great experience in maintaining Logtalk for many Prolog systems including SWI-
Prolog has helped in many places fixing compatibility issues. He also worked on the MacOS port and
fixed many typos in the 5.6.9 release of the documentation.

Kyndi (https://kyndi.com/) sponsored the development of the engines interface (chap-
ter 11). The final API was established after discussion with the founding father of engines, Paul Tarau
and Paulo Moura. Kyndi also sponsored JIT indexing on multiple arguments as well as deep index-
ing. Kyndi currently supports the implementation of XSB compatible tabling, including well founded
semantics and incremental tabling. Theresa Swift, David S. Warren and Fabrizio Riguzzi provided
input to realise advanced tabling.

SWI-Prolog 9.3 Reference Manual

www.sss.co.nz
https://kyndi.com/

Overview

2.1 Getting started quickly

2.1.1 Starting SWI-Prolog
Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘swipl’. The command line arguments of SWI-Prolog itself
and its utility programs are documented using standard Unix man pages. SWI-Prolog is normally
operated as an interactive application simply by starting the program:

$ swipl
Welcome to SWI-Prolog

After starting Prolog, one normally loads a program into it using consult /1, which may be abbre-
viated by putting the name of the program file between square brackets. The following goal loads the
file likes.pl containing clauses for the predicates 1ikes/2:

' ?2- [likes]. |
‘true. ‘
| |
i 1

Alternatively, the source file may be given as command line arguments:

$ swipl likes.pl
Welcome to SWI-Prolog

Both the above assume 1ikes.pl is in your working directory. If you use the command
line version swipl the working directory is the same as the shell from which you started
SWI-Prolog. If you started the GUI version (swipl-win) this depends largely on the
OS. You can use pwd/0 and cd/ 0 to find and change the working directory. The utility
1s/0 lists the contents of the working directory.

SWI-Prolog 9.3 Reference Manual

https://raw.githubusercontent.com/SWI-Prolog/swipl-devel/master/demo/likes.pl

2.1. GETTING STARTED QUICKLY 21

?— pwd.

% /home/janw/src/swipl-devel/linux/
true.

?— cd (' " /tmp’) .

true.

?— pwd.
% /home/janw/tmp/
true.

The file 1ikes.pl is also installed in a subdirectory demo insides SWI-Prolog’s instal-
lation directory and may be loaded regardless of the working directory using the com-
mand below. See absolute_file name/3 and file_search _path/2 for details
on how SWI-Prolog specifies file locations.

?— [swi(demo/likes)].

true.

After this point, Unix and Windows users unite, so if you are using Unix please continue at
section 2.1.2.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

* A folder (called directory in the remainder of this document) called swipl containing the
executables, libraries, etc., of the system. No files are installed outside this directory.

* A program swipl-win.exe, providing a window for interaction with Prolog. The program
swipl.exe is a version of SWI-Prolog that runs in a console window.

* The file extension .pl is associated with the program swipl-win.exe. Opening a .pl
file will cause swipl-win.exe to start, change directory to the directory in which the file to
open resides, and load this file.

The normal way to start the 1ikes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Adding rules from the console

Although we strongly advice to put your program in a file, optionally edit it and use make /0 to reload
it (see section 2.1.4), it is possible to manage facts and rules from the terminal. The most convenient
way to add a few clauses is by consulting the pseudo file user. The input is ended using the system
end-of-file character.

SWI-Prolog 9.3 Reference Manual

22 CHAPTER 2. OVERVIEW

?— [user].

| : hello :- format (’Hello world™n’).
|+ "D

true.

?— hello.
Hello world
true.

The predicates assertz/1 and retract /1 are alternatives to add and remove rules and facts.

2.1.3 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds with X = (value) if it can prove the goal for a certain X.
The user can type the semi-colon (;) or spacebar! if (s)he wants another solution. Use the RETURN key
if you do not want to see more answers. Prolog completes the output with a full stop (.) if the user uses
the RETURN key or Prolog knows there are no more answers. If Prolog cannot find (more) answers, it
writes false. Finally, Prolog answers using an error message to indicate the query or program contains
an error.

?— likes (sam, X).
X = dahl ;
X = tandoori ;

X

chips.

Note that the answer written by Prolog is a valid Prolog program that, when executed, produces the
same set of answers as the original program.’

2.1.4 Examining and modifying your program

If properly configured, the predicate edit /1 starts the built-in or user configured editor on the ar-
gument. The argument can be anything that can be linked to a location: a file name, predicate name,
module name, etc. If the argument resolves to only one location the editor is started on this location,
otherwise the user is presented a choice.

If a graphical user interface is available, the editor normally creates a new window and the system
prompts for the next command. The user may edit the source file, save it and run make/0 to update
any modified source file. If the editor cannot be opened in a window, it opens in the same console and
leaving the editor runs make /0 to reload any source files that have been modified.

On most installations, single-character commands are executed without waiting for the RETURN key.
2The SWI-Prolog top level differs in several ways from traditional Prolog top level. The current top level was designed
in cooperation with Ulrich Neumerkel.

SWI-Prolog 9.3 Reference Manual

2.2. THE USER’S INITIALISATION FILE 23

?— edit (likes).
true.
?— make.

% /home/jan/src/pl-devel/linux/likes compiled 0.00 sec, 0 clauses

?— likes (sam, X).

The program can also be decompiled using 1isting/1 as below. The argument of 1isting/1 is
just a predicate name, a predicate indicator of the form Name/Arity,e.g., 2— listing(mild/1) .
or a head, e.g., ?— listing(likes (sam, _)) ., listing all matching clauses. The predicate
listing/0, i.e., without arguments lists the entire program.’

?— listing(mild) .
mild(dahl) .

mild (tandoori) .
mild (kurma) .

true.

2.1.5 Stopping Prolog

The interactive toplevel can be stopped in two ways: enter the system end-of-file character (typically
Control-D) or by executing the halt /0 predicate:

?—- halt.
$

2.2 The user’s initialisation file

After the system initialisation, the system consults (see consult /1) the user’s init file. This file
is searched using absolute_file_name/3 using the path alias (see file_search_path/2)
app-config. This is a directory named swi-prolog below the OS default name for placing
application configuration data:

* On Windows, the CSIDL folder CSIDL_APPDATA, typically
C:\Documents and Settings\usernamel\Application Data.

* If the environment variable XDG_DATA_HOME is set, use this. This follows the free desktop
standard.

3This lists several hook predicates that are defined by default and is typically not very informative.

SWI-Prolog 9.3 Reference Manual

https://standards.freedesktop.org

24 CHAPTER 2. OVERVIEW

* The expansion of ~/.config.

The directory can be found using this call:

?— absolute_file_name (app_config(.), Dir, [file_type (directory)]).
Dir = '’ /home/jan/.config/swi-prolog’.

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘~f f£ile’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none, no file is loaded.

The installation provides a file customize/init.pl with (commented) commands that are
often used to customize the behaviour of Prolog, such as interfacing to the editor, color selection or
history parameters. Many of the development tools provide menu entries for editing the startup file
and starting a fresh startup file from the system skeleton.

See also the —s (script) and —F (system-wide initialisation) in section 2.4 and section 2.3.

2.3 Initialisation files and goals

Using command line arguments (see section 2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options
are -f fileor —s file to make Prolog load a file, —-g goal to define initialisation goals and
-t goal to define the fop-level goal. The following is a typical example for starting an application
directly from the command line.

machine% swipl -s load.pl -g go -t halt

It tells SWI-Prolog to load 1o0ad. pl, start the application using the entry point go/0 and —instead
of entering the interactive top level— exit after completing go/0.

The command line may have multiple —~g goal occurrences. The goals are executed in order.
Possible choice points of individual goals are pruned. If a goal fails execution stops with exit status
1. If a goal raises an exception, the exception is printed and the process stops with exit code 2.

The —g may be used to suppress all informational messages as well as the error message that is
normally printed if an initialisation goal fails.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined command
line arguments. A typically seen alternative is to write a file run . p1 with content as illustrated below.
Double-clicking run . pl will start the application.

:— [load]. % load program
:— go. % run it
:— halt. % and exit

Section 2.11.1 discusses further scripting options, and chapter 14 discusses the generation of runtime
executables. Runtime executables are a means to deliver executables that do not require the Prolog
system.

SWI-Prolog 9.3 Reference Manual

2.4. COMMAND LINE OPTIONS 25

2.4 Command line options
SWI-Prolog can be executed in one of the following modes:

swipl —--help

swipl —--version
swipl —-—-arch
swipl —-—dump-runtime-variables

These options must appear as only option. They cause Prolog to print an informational message
and exit. See section 2.4.1.

swipl [option ...] script-file [arg ...]
These arguments are passed on Unix systems if file that starts with
#!/path/to/executable [option ...] is executed. = Arguments after the script file
are made available in the Prolog flag argv.

swipl [option ...] prolog-file ... [[--] arg ...]
This is the normal way to start Prolog. The options are described in section 2.4.2, section 2.4.3
and section 2.4.4. The Prolog flag argv provides access to arg ... If the options are followed
by one or more Prolog file names (i.e., names with extension .p1l, .prolog or (on Windows)
the user preferred extension registered during installation), these files are loaded. The first file
is registered in the Prolog flag associated_file. In addition, pl-win[.exe] switches
to the directory in which this primary source file is located using working_directory/2.

swipl -0 output -c prolog-file ...
The —c option is used to compile a set of Prolog files into an executable. See section 2.4.5.

swipl -0 output -b bootfile prolog-file ...
Bootstrap compilation. See section 2.4.6.

2.4.1 Informational command line options

——arch
When given as the only option, it prints the architecture identifier (see Prolog flag arch) and
exits. See also ——dump-runtime-variables.

——dump-runtime—-variables [=format]
When given as the only option, it prints a sequence of variable settings that can be used in
shell scripts to deal with Prolog parameters. This feature is also used by swipl-1d (see
section 12.5). Below is a typical example of using this feature.

eval ‘swipl ——dump-runtime-variables®
cc —-ISPLBASE/include -LS$SPLBASE/lib/S$PLARCH

The option can be followed by =sh to dump in POSIX shell format (default) or =cmd to dump
in MS-Windows cmd . exe compatible format.

—-help
When given as the only option, it summarises the most important options.

SWI-Prolog 9.3 Reference Manual

26 CHAPTER 2. OVERVIEW

—-version
When given as the only option, it summarises the version and the architecture identifier.

——abi-version
Print a key (string) that represents the binary compatibility on a number of aspects. See sec-
tion 2.21.

2.4.2 Command line options for running Prolog

Note that boolean options may be written as ——name (true), ——noname or ——no-name (false).
They are written as ——no-name below as the default is ‘true’.

-D name[=value]
Set the Prolog flag name to value. The flags are set immediately after loading the initial saved
state. If the flag is already defined, value is converted to the type of the flag. If the flag is
undefined it is set to a number of value represents a number and an atom otherwise. If no
=value is given, a Boolean value is used. If name is no-flag, flag is set to false. Otherwise,
the flag name is set to t rue. The name [=value] may follow the —D immediately or appear
as the next commandline argument.

Note that many of the commandline options are reflected by a Prolog flag. We intend to handle
these as synonyms. Currently, some of the commandline flags affect the Prolog initilization
before loading the saved state has completed, while other may not be changed after Prolog
initialization. For example, future versions will support —-Dhome=dir to change the notion of
the Prolog installation directory.

——debug-on-interrupt
Enable debugging on an interrupt signal (Control-C, SIGINT) immediately. Normally debug-
ging on interrupt is enabled when entering the interactive toplevel. This flag can be used to start
the debugger on an interrupt while executing goals from —g or initialization/[1,2].
See also the Prolog flag debug_on_interrupt.

——home [=DIR]
Use DIR as home directory. See section 12.6 for details. If DIR is omitted, the found location is
printed and the process exits. If the location cannot be found an error is printed and the process
exits with status 1.

——quiet
Set the Prolog flag verbose to silent, suppressing informational and banner messages.
Also available as —q.

——no—-debug
Disable debugging. See the current prolog_flag/2 flag generate_debug_info for
details.

——no-signals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flag signals to false. See section 12.4.25 for details.
Note that the handler to unblock system calls is still installed. This can be prevented using
—-—-sigalert=0 additionally. See ——sigalert.

SWI-Prolog 9.3 Reference Manual

2.4. COMMAND LINE OPTIONS 27

—--no—threads
Disable threading for the multi-threaded version at runtime. See also the flags threads and
gc_thread.

——no—-packs
Do not attach extension packages (add-ons). See also attach_packs/0 and the Prolog flag
packs.

——-no-pce
Enable/disable the xpce GUI subsystem. The default is to make it available as autoload com-
ponent if it is installed and the system can access the graphics. Using ——pce load the xpce
system in user space and ——no-pce makes it unavailable in the session.

——on—error =style
How to handle on errors. See the Prolog flag on_error for details.

——on-warning =style
How to handle on warnings. See the Prolog flag on_warning for details.

——pldoc [=port]
Start the PIDoc documentation system on a free network port and launch the user’s browser on
http://localhost :port. If port is specified, the server is started at the given port and the
browser is not launched.

——sigalert=NUM
Use signal NUM (1...31) for alerting a thread. This is needed to make thread_signal/2,
and derived Prolog signal handling act immediately when the target thread is blocked on an
interruptible system call (e.g., sleep/1, read/write to most devices). The default is to use
SIGUSR2. If NUM is O (zero), this handler is not installed. See prolog_alert_signal/2
to query or modify this value at runtime.

——no-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer and get_single_char/1. By default, manipulating the terminal is enabled unless
the system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior
process. See also tty_control.

——win-app
This option is available only in swipl-win.exe and is used for the start-menu item. If
causes plwin to start in the folder ...\My Documents\Prolog or local equivalent

thereof (see win_folder/2). The Prolog subdirectory is created if it does not exist.

-0
Optimised compilation. See current _prolog_flag/2 flag opt imise for details.

-1 file
Load file. This flag provides compatibility with some other Prolog systems.* It is used in SWI-
Prolog to skip the program initialization specified using initialization/2 directives.
See also section 2.11.1, and initialize/O0.

4YAP, SICStus

SWI-Prolog 9.3 Reference Manual

28 CHAPTER 2. OVERVIEW

-s file
Use file as a script file. The script file is loaded after the initialisation file specified with the
—f fileoption. Unlike -f file, using —s does not stop Prolog from loading the personal
initialisation file.

—f file
Use file as initialisation file instead of the default init.pl. ‘~f none’ stops SWI-Prolog
from searching for a startup file. This option can be used as an alternative to —s file that
stops Prolog from loading the personal initialisation file. See also section 2.2.

=F script
Select a startup script from the SWI-Prolog home directory. The script file is named
(script) .rc. The default script name is deduced from the executable, taking the leading
alphanumerical characters (letters, digits and underscore) from the program name. —-F none
stops looking for a script. Intended for simple management of slightly different versions. One
could, for example, write a script iso.rc and then select ISO compatibility mode using
pl —-F iso or make alink from iso-pl topl.

-x bootfile
Boot from bootfile instead of the system’s default boot file. A boot file is a file re-
sulting from a Prolog compilation using the —b or —c option or a program saved using
gsave_program/[1, 2].

—-p alias=pathl[:path? ...]
Define a path alias for file_search_path. alias is the name of the alias, and argpathl ... is a
list of values for the alias. On Windows the list separator is ;. On other systems it is :. A
value is either a term of the form alias(value) or pathname. The computed aliases are added to
file_search path/2 using asserta/1, so they precede predefined values for the alias.
See file_search_path/2 for details on using this file location mechanism.

——traditional
This flag disables the most important extensions of SWI-Prolog version 7 (see section 5) that
introduce incompatibilities with earlier versions. In particular, lists are represented in the
traditional way, double quoted text is represented by a list of character codes and the functional
notation on dicts is not supported. Dicts as a syntactic entity, and the predicates that act on
them, are still supported if this flag is present.

Stops scanning for more arguments, so you can pass arguments for your application after this
one. See current_prolog_flag/2 using the flag argv for obtaining the command line
arguments.

2.4.3 Controlling the stack sizes

As of version 7.7.14 the stacks are no longer limited individually. Instead, only the combined size is
limited. Note that 32 bit systems still pose a 128Mb limit. See section 2.19.1. The combined limit is
by default 1Gb on 64 bit machines and 512Mb on 32 bit machines.

For example, to limit the stacks to 32Gb use the command below. Note that the stack limits
apply per thread. Individual threads may be controlled using the stack_1imit(+Bytes) option of

SWI-Prolog 9.3 Reference Manual

2.4. COMMAND LINE OPTIONS 29

thread_create. Any thread can call set _prolog_flag(stack_limit, Limit) (see stack_limit) to
adjust the stack limit. This limit is inherited by threads created from this thread.

$ swipl —--stack-1limit=32g

—-—-stack-1limit=size/bkmg]
Limit the combined size of the Prolog stacks to the indicated size. The suffix specifies the value
as bytes, Kbytes, Mbytes or Gbytes.

—--table-space=size/bkmg]
Limit for the table space. This is where tries holding memoized® answers for tabling are
stored. The default is 1Gb on 64 bit machines and 512Mb on 32 bit machines. See the Prolog
flag table_space.

—--shared—-table-space=size/bkmg]
Limit for the table space for shared tables. See section 7.9.

2.4.4 Running goals from the command line

-g goal
Goal is executed just before entering the top level. This option may appear multiple times. See

section 2.3 for details. If no initialization goal is present the system calls version/0 to print
the welcome message. The welcome message can be suppressed with ——quiet, but also with
—-g true. goal can be a complex term. In this case quotes are normally needed to protect it
from being expanded by the shell. A safe way to run a goal non-interactively is below. If go/0
succeeds —g halt causes the process to stop with exit code 0. If it fails, the exit code is 1;
and if it raises an exception, the exit code is 2.

% swipl <options> -g go —-g halt

-t goal
Use goal as interactive top level instead of the default goal prolog/0. The goal can be a
complex term. If the top-level goal succeeds SWI-Prolog exits with status 0. If it fails the exit
status is 1. If the top level raises an exception, this is printed as an uncaught error and the
top level is restarted. This flag also determines the goal started by break /0 and abort /0.
If you want to prevent the user from entering interactive mode, start the application with
‘~g goal -t halt’.

2.4.5 Compilation options

—cfile...
Compile files into an ‘intermediate code file’. See section 2.11.

—o output
Used in combination with —c or —b to determine output file for compilation.

5The letter M is used because the T was already in use. It is a memnonic for Memoizing.

SWI-Prolog 9.3 Reference Manual

30 CHAPTER 2. OVERVIEW

2.4.6 Maintenance options

The following options are for system maintenance. They are given for reference only.

=b initfile ... —c file ...
Boot compilation. initfile ... are compiled by the C-written bootstrap compiler, file ... by the
normal Prolog compiler. System maintenance only.

—d rokenl,token2,...
Print debug messages for DEBUG statements tagged with one of the indicated tokens. Only
has effect if the system is compiled with the ~-DO_DEBUG flag. System maintenance only.

2.5 UI Themes

UI (colour) themes play a role in two parts: when writing to the console and for the xpce-based
development tools such as PceEmacs or the graphical debugger. Coloured console output is based
on ansi_format/3. The central message infra structure based on print _message/2 labels
message (components) with a Prolog term that specifies the role. This is mapped to concrete colours
by means of the hook prolog:console_color/2. Theming the IDE uses xpce class variables
that are initialised from Prolog when xpce is loaded.

Themes are implemented as a Prolog file in the file search path library/theme. A theme can be
loaded using (for example) the directive below in the user’s initialization file (see section 2.2).

:— use_module (library (theme/dark)) . ‘

The theme file 1ibrary (theme/auto) is provided to automatically choose a reasonable theme
based on the environment. The current version detects the background color on xterm compatible
terminal emulators (found on most Unix systems) and loads the dark theme if the background is
‘darkish’.

The following notes apply to the different platforms on which SWI-Prolog is supported:

Unix/Linux If an xterm compatible terminal emulator is used to run Prolog you may wish to load
either an explicit theme or 1ibrary (theme/auto).

Windows The swipl-win.exe graphical application can be themed by loading a theme file. The
theme file also sets the foreground and background colours for the console.

2.5.1 Status of theme support

Theme support was added in SWI-Prolog 8.1.11. Only part of the IDE tools are covered and the only
additional theme (dark) is not net well balanced. The interfaces between the theme file and notably
the IDE components is not very well established. Please contribute by improving the dark theme.
Once that is complete and properly functioning we can start adding new themes.

SWI-Prolog 9.3 Reference Manual

2.6. GNU EMACS INTERFACE 31

2.6 GNU Emacs Interface

SWI-Prolog provides tight integration with GNU Emacs through the sweep package. This package
embeds SWI-Prolog as a dynamic Emacs module, allowing for Prolog queries to be executed directly
from Emacs Lisp. The accompanying Emacs package sweeprolog.el, available for installation
with the standard Emacs package manager package . el, builds on top of this embedding to provide
a fully integrated development environment for SWI-Prolog in GNU Emacs.

GNU Emacs ships with by default with a Prolog mode called prolog.el. Compared to
sweeprolog.el, this mode suffers from some problems that arise due to the lack of a proper
Prolog parser. The original prolog.el by Masanobu Umeda has been included in GNU Emacs
since 1989, in 2006 Stefan Monnier added explicit support for SWI-Prolog to prolog.el. In 2011,
most of the original implementation has been replaced with a new Prolog mode written by initially
for the XEmacs port by Stefan Bruda. Bruda’s mode was adapted to GNU Emacs by Stefan Monnier,
who has been maintaining it along with other GNU Emacs contributor since. Users of this mode may
find useful configuration suggestions at https://www.metalevel.at/pceprolog/.

Other Emacs package that can be useful for working with SWI-Prolog are:

* https://www.metalevel.at/ediprolog/
Interact with SWI-Prolog directly in Emacs buffers.

* https://www.metalevel.at/etrace/
Trace Prolog code with Emacs.

* https://emacs—-1lsp.github.io/dap-mode/page/configuration/
#swi-prolog
Debug Adapter Protocol (DAP) support for SWI-Prolog in Emacs via dap-mode and the
debug_adapter pack from https://github.com/eshelyaron/debug_adapter

* https://emacs-1lsp.github.io/lsp-mode/page/lsp-prolog/
Language Server Protocol (LSP) support for SWI-Prolog in Emacs via 1sp-mode and the
lsp_server pack from https://github.com/jamesnvc/lsp_server

2.7 Online Help

2.7.1 library(help): Text based manual

This module provides help/1 and apropos/1 that give help on a topic or searches the manual for
relevant topics.

By default the result of help/1 is sent through a pager such as 1ess. This behaviour is con-
trolled by the following:

* The Prolog flag help_pager, which can be set to one of the following values:

false
Never use a pager.

default
Use default behaviour. This tries to determine whether Prolog is running interactively in
an environment that allows for a pager. If so it examines the environment variable PAGER
or otherwise tries to find the 1ess program.

SWI-Prolog 9.3 Reference Manual

https://www.metalevel.at/pceprolog/
https://www.metalevel.at/ediprolog/
https://www.metalevel.at/etrace/
https://emacs-lsp.github.io/dap-mode/page/configuration/#swi-prolog
https://emacs-lsp.github.io/dap-mode/page/configuration/#swi-prolog
https://github.com/eshelyaron/debug_adapter
https://emacs-lsp.github.io/lsp-mode/page/lsp-prolog/
https://github.com/jamesnvc/lsp_server

32 CHAPTER 2. OVERVIEW

Callable
A Callable term is interpreted as program_name (Arg, ...). For example,
less (' —r’) would be the default. Note that the program name can be an absolute path
if single quotes are used.

help [det]

help(+What) [det]
Show help for What. What is a term that describes the topics (s) to give help for. Notations
for What are:

Atom
This ambiguous form is most commonly used and shows all matching documents. For
example:

‘ ?— help (append) .

Name [Arity
Give help on predicates with matching Name/Arity. Arity may be unbound.

Name [/ Arity
Give help on the matching DCG rule (non-terminal)

Module : Name
Give help on predicates with Name in Module and any arity. Used for loaded code only.

Module : Name / Arity
Give help on predicates with Name in Module and Arity. Used for loaded code only.

f(Name/Arity)
Give help on the matching Prolog arithmetic functions.

c(Name)
Give help on the matching C interface function

section(Label)
Show the section from the manual with matching Label.

help/1 shows documentation from the manual as well as from loaded user code if the code
is documented using PIDoc. To show only the documentatoion of the loaded predicate we may
prefix predicate indicator with the module in which it is defined.

If an exact match fails this predicates attempts fuzzy matching and, when successful, display
the results headed by a warning that the matches are based on fuzzy matching.

If possible, the results are sent through a pager such as the 1ess program. This behaviour is

controlled by the Prolog flag help_pager. See section level documentation.

See also apropos/1 for searching the manual names and summaries.

show_html_hook(+HTML:string) [semidet,multifile]
Hook called to display the extracted HTML document. If this hook fails the HTML is rendered
to the console as plain text using html _text /2.

SWI-Prolog 9.3 Reference Manual

2.7. ONLINE HELP 33

apropos(+Query) [det]
Print objects from the manual whose name or summary match with Query. Query takes one of
the following forms:

Type : Text
Find objects matching Text and filter the results by Type. Type matching is a case in-
tensitive prefix match. Defined types are section, cfunction, function,
iso_predicate, swi_builtin_predicate, library_predicate, dcg and
aliases chapter, arithmetic, c_function, predicate, nonterminal and
non_terminal. For example:

?— apropos (c:close).
?— apropos (f:min).

Text
Text is broken into tokens. A topic matches if all tokens appear in the name or summary
of the topic. Matching is case insensitive. Results are ordered depending on the quality of
the match.

2.7.2 library(explain): Describe Prolog Terms

The library (explain) describes prolog-terms. The most useful functionality is its cross-
referencing function.

?— explain(subset (_,_)) .
"subset (_, _)" is a compound term
from 2-th clause of lists:subset/2
Referenced from 46-th clause of prolog_xref:imported/3
Referenced from 68-th clause of prolog_xref:imported/3
lists:subset/2 is a predicate defined in
/staff/jan/lib/pl-5.6.17/1library/lists.pl:307
Referenced from 2-th clause of lists:subset/2
Possibly referenced from 2-th clause of lists:subset/2

Note that PceEmacs can jump to definitions and gxref /0 can be used for an overview of depen-
dencies.

explain(@ Term) [det]
Give an explanation on 7erm. The argument may be any Prolog data object. If the argument
is an atom, a term of the form Name /Arity or a term of the form Module:Name/Arity,
explain/1 describes the predicate as well as possible references to it. See also gxref /0.

explain(@ Term, -Explanation) [nondet]
True when Explanation is an explanation of Term. The explaination is a list of elements that is
printed using print_message (information, explain (Explanation)).

SWI-Prolog 9.3 Reference Manual

34 CHAPTER 2. OVERVIEW

(I Repeat last query

'nr. Repeat query numbered (nr)
!'str. | Repeat last query starting with (str)
h. Show history of commands

'h. Show this list

Table 2.1: History commands

1 ?- maplist(plus(l), ‘hello', X).
X = [105,102,109,109,1127.

2 ?- format ('’ "s"n’, [$X]).
ifmmp
true.

Figure 2.1: Reusing top-level bindings

2.8 Command line history

SWI-Prolog offers a query substitution mechanism similar to what is seen in Unix shells. The avail-
ability of this feature is controlled by set_prolog_flag/2, using the history Prolog flag. By
default, history is available if no interactive command line editor is available. To enable history,
remembering the last 50 commands, put the following into your startup file (see section 2.2):

:— set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. The available history commands are shown in table 2.1. History expansion is not done
if these sequences appear in quoted atoms or strings.

2.9 Reuse of top-level bindings

Bindings resulting from the successful execution of a top-level goal are asserted in a database if they
are not too large (as defined by the Prolog flag toplevel var_size). These values may be reused
in further top-level queries as $Var. If the same variable name is used in a subsequent query the system
associates the variable with the latest binding. Example:

Note that variables may be set by executing =/2:

6 ?- X = statistics.
X = statistics.

7 ?- $X.

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 35

Started at Fri Aug 24 16:42:53 2018
0.118 seconds cpu time for 456,902 inferences
7,574 atoms, 4,058 functors, 2,912 predicates, 56 modules, 109,79

Limit Allocated In use

Local stack: - 20 Kb 1,888 Db
Global stack: - 60 Kb 36 Kb
Trail stack: - 30 Kb 4,112 Db
Total: 1,024 Mb 110 Kb 42 Kb

3 garbage collections gained 178,400 bytes in 0.000 seconds.

2 clause garbage collections gained 134 clauses in 0.000 seconds.
Stack shifts: 2 local, 2 global, 2 trail in 0.000 seconds

2 threads, 0 finished threads used 0.000 seconds

true.

o0 A o o 0 o A A A O° o o o o°

2.10 Overview of the Debugger

Imperative languages like C++, Python or JavaScript execute mostly linear code with some branching
and subroutine calls. Their debuggers support stepping through the code and pausing on each line,
or running the program until it hits a breakpoint and pauses. When paused, the user can inspect the
current program state or give the debugger commands.

Prolog has a logical execution model that involves attempting to prove logical predicates and needs
a different debugging approach. SWI-Prolog uses the traditional Prolog "Byrd Box Model” or "4 Port
Model” debugging approach described by [,] with a couple of
extensions to implement its command line debugger. There are two other debuggers available that
build on this infrastructure: a graphical debugger and remote debugging in the web interface provided
by SWISH.

Reference information to all predicates available for manipulating the debugger is in the debugger
section (section 4.39).

2.10.1 The Byrd Box Model And Ports

Standard Prolog debugging tools are built around the so-called ”"Byrd Box Model” or 4 Port Model”
which models each predicate in a Prolog program as a state machine ("box”) that transitions through
states (ports”) as a program is evaluated. The developer can ask the engine to pause for program
inspection when it reaches specific ports or predicates.

As we go through this overview, remember that a “’port” is just another word for a “’state” in the
state machine that each predicate transitions through during evaluation. The state machine is called a
”box” because it is drawn like this:

————————— > + descendant (X,Y) :- offspring(X,Y). + ————————-

SWI-Prolog 9.3 Reference Manual

1 VM-codes

https://www.swi-prolog.org/gtrace.html
https://swish.swi-prolog.org/

36 CHAPTER 2. OVERVIEW

| descendant (X,Z2) :-— |
<= + offspring(X,Y), descendant(Y,Z). + <-——————-

The standard ports are: call, redo, exit and fail. SWI-Prolog extends this with two more:
unify and exception. Each trace happens at a particular phase of predicate resolution. Recall
that when resolving or proving” a predicate, the Prolog engine:

1. Collects all rules that might match by having a head with the same name and number of argu-
ments

* call is traced, once, if any rules might match.

* redo is also traced when the engine backtracks to find the next matching rule.
2. Finds the next matching rule whose head can be unified with the predicate

e unify is traced with the results of unification if one is found.

e fail istraced if no rule heads can be unified.

3. Applies variable assignments from unification to clauses in the rule body and continues at #1
with the updated clauses

4. After all of the body clauses of the matched rule have either succeeded, failed, or thrown an
exception:

* exit is traced if all of them succeeded (meaning this rule is true).
e fail is traced if any of them failed (meaning this rule is false).

* exception is traced if any of them threw an exception.

This means there can be a lot of traces between the initial call and the end of tracing for a
particular predicate.

2.10.2 Trace Mode Example

The trace/0 predicate turns on “trace mode”, which, by default, produces a trace and pauses at
every port of every predicate to allow inspection of the state of the program. This is normally done
from the Prolog console window, but for embedded Prolog systems or when Prolog runs as a daemon
it can also be done by getting a prompt via the libssh package.

Note: If the native graphics plugin (XPCE) is available, the commands gt race/0 and
gspy/1 activate the graphical debugger while tdebug/0 and tspy/1 allow debug-
ging of arbitrary threads.

Each goal is printed using the Prolog predicate write_term/2. The style is defined by the
Prolog flag debugger_write_options and can be modified using this flag or using the w, p and
d commands of the tracer (section 2.10.4).

Here’s an example debugging session that shows the basic flow. The uni £y port is off by default
since it doesn’t add a lot of information in most cases for the command line debugger.

SWI-Prolog 9.3 Reference Manual

https://www.swi-prolog.org/pack/list?p=libssh

2.10. OVERVIEW OF THE DEBUGGER 37

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— 1is_a(X, Type).
adjective (X, color, Value) :— color (X, Value).

?— trace.
true.

[trace] ?—- noun (X, rock), adjective (X, color, red).
Call: (11) noun(_9774, rock) ? creep

The trace/0 predicate turned on trace mode, which is now indicated at ev-
ery prompt by [trace] ?-. The initial query provided by the user was
noun (X, rock), adjective (X, color, red) which is asking to find a “red rock”.
Finally: the first port triggered was a Call to the first predicate in the initial query, indicating the
engine is about to look for the first rule that matches noun (_9774, rock).

Pressing spacebar, c, or enter caused the tracer to print creep followed by the next trace.
There are many additional commands available that are described later in the overview.

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— is_a (X, Type).
adjective (X, color, Value) :— color (X, Value).

[trace] ?— noun (X, rock), adjective (X, color, red).

Call: (12) is_a(_9774, rock) ? creep
Exit: (12) is_a(rockl, rock) ? creep
Exit: (11) noun(rockl, rock) ? creep

Next, the first clause of noun/2 gets a call trace since the engine is trying to find the next rule
that matches is_a (_9774, rock). Since there is a fact that can unify: is_a (rockl, rock),
the trace shows exit (i.e. succeeded) along with that value. Since that was the final predicate in
the body of noun/2, noun/2 also gets an exit trace that shows the unified value of its head:
noun (rockl, rock).

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

SWI-Prolog 9.3 Reference Manual

38 CHAPTER 2. OVERVIEW

noun (X, Type) :— is_a(X, Type).
adjective (X, color, Value) :— color (X, Value).
[trace] ?— noun (X, rock), adjective (X, color, red).
Call: (11) adjective(rockl, color, red) ? creep
Call: (12) color(rockl, red) ? creep
Exit: (12) color(rockl, red) ? creep
Exit: (11) adjective(rockl, color, red) ? creep
X = rockl ;

Prolog then moved to the next predicate in the initial query: adjective/3 and solved it in
a similar way. Since that was the last predicate in the query, an answer was returned. Pressing ;
requested the next answer and began Prolog backtracking.

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).
noun (X, Type) :— 1is_a(X, Type).
adjective (X, color, Value) :— color (X, Value).
[trace] ?—- noun (X, rock), adjective (X, color, red).
Redo: (12) is_a(_9774, rock) ? creep
Exit: (12) is_a(rock2, rock) ? creep
Exit: (11) noun(rock2, rock) ? creep
Call: (11) adjective(rock2, color, red) ? creep
Call: (12) color(rock2, red) ? creep
Fail: (12) color(rock2, red) ? creep
Fail: (11) adjective(rock2, color, red) ? creep
false.

The only choice point to redo (i.e. backtrack over) was the is_a/2 clause of noun/2 since
there was one potential match left to attempt to unify: is_a (rock2, rock). This succeeds with
an exit trace since it does unify with the redo predicate and causes noun (rock2, rock) to
also succeed with exit just as above.

As the traces continue, you can see the fail port get activated for color (rock2, red) since
there is no way to prove that predicate and thus the whole query returns false.

Tracing will continue for every query you pose until you enter not race. to turn off trace mode.

2.10.3 Trace Mode Options: 1eash/1 and visible/1

When you enable trace mode with trace/ 0, the tracer will, by default, pause and wait for a com-
mand at every port it hits on every predicate. The 1leash/1 predicate can be used to modify the

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 39

ports to pause at. This is a global setting, so changes will remain until they are changed again or
SWI-Prolog is restarted. Disabling the tracer via not race/0 doesn’t affect which ports are leashed.
The 1eash/1 argument must start with + to add, or — to remove, followed by the name of a port
such as call, exit, etc. There are special terms like a1l which can be used instead of manually
adding or removing every port.
To stop only at the fail port, use 1leash/1 like this:

?— leash(-all).
true.
?— leash (+fail).
true.
?— trace.
true.
[trace] ?— noun (X, rock), adjective(X, color, red).
Call: (11) noun(_3794, rock)
Call: (12) is_a(_3794, rock)
Exit: (12) is_a(rockl, rock)
Exit: (11) noun(rockl, rock)
Call: (11) adjective(rockl, color, red)
Call: (12) color(rockl, red)
Exit: (12) color(rockl, red)
Exit: (11) adjective(rockl, color, red)
X = rockl ;
Redo: (12) is_a (3794, rock)
Exit: (12) is_a(rock2, rock)
Exit: (11) noun (rock2, rock)
Call: (11) adjective(rock2, color, red)
Call: (12) color(rock2, red)
Fail: (12) color(rock2, red) ? creep
Fail: (11) adjective(rock2, color, red) ? creep
false.

Now, only the lines that start with ”Fail:” have “’creep” after them because that was the only time
the tracer paused for a command. To never pause and just see all the traces, use leash (-all) and
don’t turn any ports back on.

The default ports are still printed out because a different setting, visible/1, controls which
ports are printed. visible/1 takes the same form of argument as 1eash/1. To only stop and
show the fail port, use leash/1 and visible/1 like this:

?— leash(-all).
true.

?—- leash(+fail).
true.

SWI-Prolog 9.3 Reference Manual

40 CHAPTER 2. OVERVIEW

?- visible (-all).
true.

?— visible (+fail).
true.

?— trace.
true.

[trace] ?— noun (X, rock), adjective (X, color, red).
X = rockl ;

Fail: (12) color(rock2, red) ? creep
Fail: (11) adjective(rock2, color, red) ? creep
false.

2.10.4 Trace Mode Commands When Paused

You can do way more than just press spacebar when the tracer is paused at a port. All actions are
single-character commands which are executed without waiting for a return (unless the command line
option ——no-tty is active). Pressing ? or h when paused will print out a list of these commands as
well.

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 41

Control Flow Commands

Abort a | Abort Prolog execution (see abort /0)

Break b | Enter a Prolog break environment (see break/0)

Creep ¢ | Continue execution, stop at next port. (Also return, space)

Exit e | Terminate Prolog (see halt/0)

Fail f | Force failure of the current goal

Find /| Search for a port (see below for the description of this command
(section 2.10.4))

Ignore i | Ignore the current goal, pretending it succeeded

Leap 1 | Continue execution, stop at next spy point

No debug n | Continue execution in 'no debug’ mode

Repeat find | . | Repeat the last find command (see 'Find’ (section 2.10.4))

Retry r | Undo all actions (except for database and I/O actions) back to the
call port of the current goal and resume execution at the call
port

Skip s | Continue execution, stop at the next port of this goal (thus skipping
all calls to children of this goal)

Spy + | Set a spy point (see spy/1) on the current predicate. Spy points are
described later in the overview (section 2.10.6).

No spy - | Remove the spy point (see nospy /1) from the current predicate.
Spy points are described later in the overview (section 2.10.6).

Up u | Continue execution, stop at the next port of the parent goal (thus
skipping this goal and all calls to children of this goal). This option
is useful to stop tracing a failure driven loop.

Find (/) Description and Examples The Find (/) command continues execution until a port match-
ing a find pattern is found. After the /, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should unify
with the goal run by the port. If no term is specified it is taken as a variable, searching for any port of
the specified type. If an atom is given, any goal whose functor has a name equal to that atom matches.
Examples:

If Search for any fail port

/fe solve Search fora fail or exit port of any goal with name solve

/c solve(a, _) Search for a call to solve/2 whose first argument is a variable
or the atom a

/famember (_, _) | Search for any port on member/2. This is equivalent to setting
a spy point on member/2.

Informational Commands

Alternatives | A | Show all goals that have alternatives

Goals g | Show the list of parent goals (the execution stack). Note that due to
tail recursion optimization a number of parent goals might not exist
any more.

Help h | Show available options (also ?)

Listing L | List the current predicate with 1isting/1

SWI-Prolog 9.3 Reference Manual

42 CHAPTER 2. OVERVIEW

Formatting Commands

Context | C | Toggle *’Show Context’. If on, the context module of the goal is
displayed between square brackets (see modules section (section 0)).
Defaultis of £.

Display | d | Setthe max_depth (Depth) option of debugger_write_options
(section 2.12), limiting the depth to which terms are printed. See also
the w and p options.

Print p | Setthe Prolog flag debugger_write_options to

This is the default.

Write w | Set the Prolog flag debugger_ write_options to

[quoted (true), attributes (write), priority(699)1],
bypassing portray/1, etc.

2.10.5 Trace Mode vs. Trace Point

A slight detour is useful to describe some related predicates that can be confusing: To only trace a sin-
gle or select set of predicates, the trace/1 or trace/2 predicates can be used to set a trace point.
Even though they use the same base predicate name trace, these predicates ignore the leash/1
and visible/1 global settings and don’t pause when they trace a port. They really are a different
feature that also happens to do tracing.

A trace point is set on a particular predicate and traces the ports of that predicate whether or not
you are in t race/0 trace mode. Each trace point can trace different ports if the t race/2 variant
is used.

?— trace(is_a/2).
% is_a/2: [all]
true.

?— noun (X, rock), adjective (X, color, red).
T Call: is_a(_25702, rock)
T Exit: is_a(rockl, rock)
X = rockl ;
T Redo: is_a(rockl, rock)
T Exit: is_a(rock2, rock)
false.

Notice that trace mode did not have to be turned on using t race /0 and that this only traced out
the ports hit while executing is_a/2 and that the program was not ever paused.

In fact, if trace mode is turned on while using a trace point, things get very confusing because the
trace point infrastructure itself will be traced!

?— trace(is_a/2).
% is_a/2: [all]
true.

SWI-Prolog 9.3 Reference Manual

[quoted (true), portray(true), max_depth(10), prigrity(699)].

2.10. OVERVIEW OF THE DEBUGGER 43

?— trace.

true.

[trace] ?— noun (X, rock), adjective (X, color, red).
Call: (11) noun(_29318, rock) ? creep
Call: (12) is_a(_29318, rock) ? creep
Call: (13) print_message (debug, frame (user:is_a(_29318, rock), t
Call: (18) push_msg(frame (user:is_a(_29318, rock), trace(call)))
Call: (21) exception(undefined_global_variable, ’S$inprint_messag
Fail: (21) exception(undefined_global_variable, ’S$inprint_messag
Exit: (18) push_msg(frame(user:is_a(_29318, rock), trace(call)))
Call: (19) prolog:message (frame (user:is_a(_29318, rock), trace(c
Fail: (19) prolog:message (frame(user:is_a(_29318, rock), trace(c
Call: (19) message_property (debug, stream(_30192)) ? creep
Fail: (19) message_property (debug, stream(_30192)) ? creep
Call: (20) message_property (debug, prefix(_30200)) ? creep
Fail: (20) message_property (debug, prefix(_30200)) ? creep

T Call: is_a(_29318, rock)
Call: (17) pop_msg ? creep
Exit: (17) pop_msg ? creep
...Lots more after this...

So, trace points are a confusingly named and separate feature from trace mode.

2.10.6 Spy Points and Debug Mode

Back to trace mode features: Because the tracing output of a Prolog program can often be quite large,
sometimes it is useful to start trace mode at a particular point deep in the program. This is what a spy
point is for. It specifies a predicate that should turn on trace mode.

A spy point is enabled like this: spy (mypredicate/2). After that command, the first time
mypredicate/2 is encountered, trace mode will turn on and work just like it does normally. This
includes paying attention to the global 1eash/1 and visible/1 settings. The spy point can be
removed using nospy/1 or nospyall/0

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— is_a (X, Type).
adjective (X, color, Value) :— color (X, Value).

?- spy(is_a/2).
% Spy point on is_a/2

[debug] ?— noun (X, rock), adjective (X, color, red).

SWI-Prolog 9.3 Reference Manual

race (call)))

-

? creep
e’, _30046)
e’”, _30090) ?
? creep
all)), _30140,
all)), _30140,

44 CHAPTER 2. OVERVIEW

* Call: (12) is_a(_ 1858, rock) ? creep
* Exit: (12) is_a(rockl, rock) ? creep
Exit: (11) noun(rockl, rock) ? creep
Call: (11) adjective(rockl, color, red) ? creep
Call: (12) color(rockl, red) ? creep
Exit: (12) color(rockl, red) ? creep
Exit: (11) adjective(rockl, color, red) ? creep
X = rockl ;
* Redo: (12) is_a(_1858, rock) ? creep
* Exit: (12) is_a(rock2, rock) ? creep
Exit: (11) noun(rock2, rock) ? creep
Call: (11) adjective(rock2, color, red) ? creep
Call: (12) color(rock2, red) ? creep
Fail: (12) color(rock2, red) ? creep
Fail: (11) adjective(rock2, color, red) ? creep
false.

After the spy point is hit, the output above is identical to the traces generated by running t race/0
with the initial query, but is obviously missing all of the traces before the spy point.
Note that after spy /1 is called, there is a new tag in front of ?—, the [debug] tag:

?— spy(is_a/2).
% Spy point on is_a/?2

This means the system is in “debug mode”. Debug mode does two things: it tells the system to
watch for spy points and it turns off some optimizations that would make the traces confusing. The
ideal 4-port model ([1) as described in many Prolog books ([Dis
not visible in many Prolog implementations because code optimisation removes part of the choice
and exit points. Backtrack points are not shown if either the goal succeeded deterministically or
its alternatives were removed using the cut. When running in debug mode, choice points are only
destroyed when removed by the cut and last call optimisation is switched off. [Note: This implies
the system can run out of stack in debug mode, while no problems arise when running in non-debug
mode.]

Debug mode can be turned off again using nodebug/0, but then the spy point will be ignored
(but remembered). Turning debug mode back on via debug/0 will hit the spy point again.

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— is_a (X, Type).
adjective (X, color, Value) :- color (X, Value).

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 45

?- spyl(is_a/2).
% Spy point on is_a/?2
true.

[debug] ?— nodebug.
true.

?— noun (X, rock).
X = rockl ;

X = rock2.
?— debug.
true.

[debug] ?—- noun (X, rock).
* Call: (11) is_a(_47826, rock) ? creep
+ Exit: (11) is_a(rockl, rock) ? creep
Exit: (10) noun(rockl, rock) ? creep
X = rockl ;
* Redo: (11) is_a(_47826, rock) ? creep

* Exit: (11) is_a(rock2, rock) ? creep
Exit: (10) noun(rock2, rock) ? creep
X = rock2.

So, debug mode allows Prolog to watch for spy points and enable trace mode when it hits one.
The tracing/0 and debugging/0 predicates will report if the system is in either of those modes.

2.10.7 Breakpoints

Sometimes even spy points aren’t enough. There may be a predicate that is used in many different
places and it would be helpful to turn on tracing mode only when one particular call to it is made.
Breakpoints allow for turning on trace mode when a specific source file, line number, and character
in that line are hit. The predicates used are set breakpoint/4 and set breakpoint/5. Many
breakpoints can be active at a time.

Note that the interface provided by these predicates is not intended for end-users. The built-in
PceEmacs editor that is also embedded in the graphical debugger allow setting break points based on
the cursor position.

Example.pl has now been modified to have multiple calls to noun/2:

is_a(rockl, rock).
is_a(rock2, rock).
color (rockl, red).

noun (X, Type) :— 1is_a(X, Type).
adjective (X, color, Value) :- color (X, Value).

SWI-Prolog 9.3 Reference Manual

46 CHAPTER 2. OVERVIEW

test_nounl (X, Type) :— noun(X, Type).
test_noun2 (X, Type) :— noun (X, Type).

To enable tracing just when noun/ 2 is called from test _noun2/2, set _breakpoint/4 can
be used like this:

?— set_breakpoint (’/...path.../Example.pl’, 8, 24, ID).
% Breakpoint 1 in 1-st clause of test_noun2/2 at Example.pl:8
ID = 1.

?— debug.

true.

[debug] ?- noun (X, rock).

X = rockl

[debug] ?—- test_nounl (X, rock).
X = rockl

[debug] ?— test_noun2 (X, rock).

Call: (11) noun(_44982, rock) ? creep

Call: (12) is_a(_44982, rock) ? creep

Exit: (12) is_a(rockl, rock) ? creep

Exit: (11) noun(rockl, rock) ? creep

Exit: (10) test_noun2(rockl, rock) ? creep
X = rockl

[trace] ?— notrace.
true.

[debug] ?-

The call to set breakpoint /4 had to specify the source file "Example.pl”), the line num-
ber (8), and the character within that line (24) to precisely specify what clause should turn on trace
mode (this is much easier using the graphical debugger because it shows source code).

The breakpoint won’t get triggered if the system isn’t in debug mode but, unlike setting a spy
point, set breakpoint/4 does not do this automatically. So, it was turned on manually using
debug/0.

The output shows that only the call to test_noun2/2 (where the breakpoint was set) actually
turned on trace mode. Note that the [Trace] ?- at the end shows that trace mode is left on after
being triggered. It can be turned off again via notrace/0, which will leave the system in debug
mode. All debugging modes can be shut off at once by calling nodebug/ 0 since shutting off debug
mode automatically turns off trace mode.

In addition, SWI-Prolog supports attaching an arbitrary goal to each breakpoint via
set breakpoint_condition/2, which yields Conditional Breakpoints. A conditional break-
point is the same as the regular breakpoints discussed thus far, except that whenever the breakpoint is
triggered, the given goal is invoked and trace mode is only turned on in case it succeeds.

SWI-Prolog 9.3 Reference Manual

2.10. OVERVIEW OF THE DEBUGGER 47

To enable tracing just when noun/2 is called from test_noun2/2 with rock?2 as the first
argument, set _breakpoint_condition/2 can be used like below. Note that the condition is a
Prolog string that is parsed to obtain the goal as well as the variable names. The resulting goal is called
in the module in which the clause body is executed (see clause_property/2, property module).

?—- set_breakpoint (’/...path.../Example.pl’, 8, 24, 1ID).
ID = 1.

?— set_breakpoint_condition(l, "X == rock2").
true.

?— debug.
true.

[debug] ?—- test_noun2 (X, rock).
X = rockl ;
X = rock2.

[debug] ?—- test_noun2 (rock2, rock).

Call: (11) noun(rock2, rock) ? creep

Call: (12) is_a(rock2, rock) ? creep

Exit: (12) is_a(rock2, rock) ? creep

Exit: (11) noun(rock2, rock) ? creep

Exit: (10) test_noun2 (rock2, rock) ? creep
true.
[trace] 7

2.10.8 Command Line Debugger Summary

In summary, there are really two distinct “tracing” features: trace mode and trace points. Both write
traces to the console using the "Byrd Box Model” but that’s where similarity ends.

Trace Mode

Trace mode is the main Prolog command line debugger that allows for tracing the transitions through
the resolution states of predicates represented by ports in the "Byrd Box Model” and optionally paus-
ing for a command when certain ports are hit.

It can be turned on manually via t race/ 0, or (when put into debug mode using debug/0) when
a specific predicate is encountered via spy/1, or when a specific call to a predicate is encountered
via set _breakpoint/4 or set_breakpoint/5

When in trace mode, visible/1 controls which ports are written to the console, and 1eash/1
controls which ports cause execution to pause to allow program inspection.

When execution is paused, there are many commands that can be used to inspect the state of the
program, cause goals to fail or succeed, etc.

Trace mode is turned off via notrace/0 and debug mode is turned off via nodebug/0.

SWI-Prolog 9.3 Reference Manual

48 CHAPTER 2. OVERVIEW

Trace Points

Trace points are a separate feature from trace mode that allow writing specified ports to the console
when a predicate is being evaluated. It does not ever pause program execution and does not need to
be in trace or debug mode to work.

They are turned on via trace/1 and trace/2.

They don’t pay attention to visible/1 (because the ports shown are set in trace/2) or
leash/1 (because they don’t pause execution).

They can be turned off via t race/ 2.

2.11 Loading and running projects

Most Prolog programs are split over multiple files organized in a directory and optionally multiple
subdirectories. Typically all files are Prolog module files. See section 6. Typically, the directory con-
tains a file, often called 1oad.pl, that loads all other files (modules) using use module/[1, 2]
or, for projects that do not use modules, using ensure_loaded/1.

If the project is an application (rather than a library), there are several ways to start it. One
option is by using the commandline option —g goal. The classical Prolog way is by using an
initialization/1 directive. Th problem with the latter is that such directives are both used
for runtime initialization in modules and starting the application while it is hard to control the order in
which they are executed. For this reason, SWI-Prolog introduced initialization/2, adding an
argument that specifies the role and (indirectly) the order of initialization. The application entry point
is now declared using

:— initialization(start, main).

start :-—-

Using these conventions we may run the application using this command line, where option ... are
Prolog options to control e.g., memory limits. Typically, none are required. arg ... are made available
to the program using the Prolog flag argv.

o

% swipl [option ...] load.pl [arg ...]

To merely load the code without running the application, provided the entry point is started using the
initialization/2 directive described above, we can use the —1. After loading we can debug
and/or edit the application.

Q

% swipl [option ...] -1 load.pl [arg ...]

Rather than just using start /0 as above, applications typically use main/0 from the library main.
The main/0 predicate prepares for non-development usage and calls main/1 with the application
argv (command line arguments). These are normally processed into positional arguments and options
using argv_options/2 from the same library.

SWI-Prolog 9.3 Reference Manual

2.11. LOADING AND RUNNING PROJECTS 49

While the above works fine when using Prolog from the commandline, it is less suitable for
scenarios that make it hard to control the SWI-Prolog commandline which as using swipl-win
or running Prolog under some IDE such as Emacs. Loading a program that uses the above
initialization/2 directive into the toplevel using

?— [load].

does not start the entry point. Opening a . .p1 file using swipl-win does start the entry point.

2.11.1 Running an application

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program, and the operating system (Unix vs. Windows). There are four options

* On Unix-like systems one can use the shebang magic sequence to turn a Prolog source into an
executable. See section 2.11.1.

* On any system you can use a shell script (Unix sh or Windows cmd) script to start the applica-
tion. See section 2.11.1.

* On any system you can create a saved state that consists of the virtual machine code and a
startup sequence. Saved states can be stand-alone and with some precautions they can work
without SWI-Prolog itself installed. They start fast, but they are big and creating a state from a
program that uses native code extensions and (file) resources is not trivial while details depend
on the OS and required resources. See section 2.11.1.

* On any system you can add a Prolog file to a designated directory and allow it to be started
using

swipl name [arg ...]

New commands can be added to the Prolog installation, by Prolog packs, in a user specific
directory or in a system-wide directory. See section 2.11.1.

Using PrologScript

A Prolog source file can be used directly as a Unix program using the Unix #! magic start. The
Unix #! magic is allowed because if the first letter of a Prolog file is #, the first line is treated as
a comment.® To create a Prolog script, use one of the two alternatives below as first line. The first
can be used to bind a script to a specific Prolog installation, while the latter uses the default prolog
installed in $PATH.

#!/path/to/swipl
#!/usr/bin/env swipl

SThe #-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header comment.

SWI-Prolog 9.3 Reference Manual

50 CHAPTER 2. OVERVIEW

The interpretation of arguments to the executable in the HashBang line differs between Unix-derived
systems. For portability, the # ! must be followed immediately with an absolute path to the executable
and should have none or one argument. Neither the executable path, nor the argument shall use quotes
or spaces. When started this way, the Prolog flag argv contains the command line arguments that
follow the script invocation.

Starting with version 7.5.8, initialization/2 support the When options program and
main, allowing for the following definition of a Prolog script that evaluates an arithmetic expres-
sion on the command line. Note that main/0 is defined lib the library main. It calls main/1 with
the command line arguments after disabling signal handling.

#!/usr/bin/env swipl
:— initialization (main, main).

main (Argv) :-—
atomic_list_concat (Argv, ' ', SingleArqg),
term_to_atom(Term, SingleArqg),
Val is Term,
format (" "w™'n’, [Val]).

And here are two example runs:

% ./eval 1+2

w

% ./eval foo
ERROR: 1s/2: Arithmetic: ‘foo/0’ 1s not a function

Prolog script may be launched for debugging or inspection purposes using the —1 or —t. For example,
-1 merely loads the script, ignoring main and program initialization.

swipl -1 eval 1+1
<banner>

?- main.
2
true.

We can also force the program to enter the interactive toplevel after the application is completed using
-t prolog:

swipl -t prolog eval 1+1
2

?_

SWI-Prolog 9.3 Reference Manual

2.11. LOADING AND RUNNING PROJECTS 51

The Windows version simply ignores the # ! line.’

Creating a shell script

With the introduction of PrologScript (see section 2.11.1), using shell scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell script that simply
loads your application and calls the entry point is often a good choice. A skeleton for the script is
given below, followed by the Prolog code to obtain the program arguments. See library main and
argv_options/3 for details.

#!/bin/sh

base=<absolute-path-to-source>
SWIPL=swipl

exec SSWIPL "S$base/load.pl" —— "3s@"

:— use_module (library (main)) .
:— initialization(main,main).

main (Argv) :-—
argv_options (Argv, Positional, Options),

go (Positional, Options).

go (Positional, Options) :-

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a . bat file.

Creating a saved state

For larger programs, as well as for programs that are required to run on systems that do not have
the SWI-Prolog development system installed, creating a saved state is the best solution. A saved
state is created using gsave_program/[1,2] or the —c command line option. A saved state
is a file containing machine-independent® intermediate code in a format dedicated for fast loading.
Optionally, the emulator may be integrated in the saved state, creating a single file, but machine-
dependent, executable. This process is described in chapter 14.

"Older versions extracted command line arguments from the HashBang line. As of version 5.9 all relevant setup can
be achieved using directives. Due to the compatibility issues around HashBang line processing, we decided to remove it
completely.

8The saved state does not depend on the CPU instruction set or endianness. Saved states for 32- and 64-bits are not
compatible. Typically, saved states only run on the same version of Prolog on which they have been created.

SWI-Prolog 9.3 Reference Manual

52 CHAPTER 2. OVERVIEW

Compilation using the -c command line option

This mechanism loads a series of Prolog source files and then creates a saved state as
gsave_program/ 2 does. The command syntax is:

% swipl [option ...] [-o output] -c file.pl

The options argument are options to gsave_program/2 written in the format below. The option
names and their values are described with gsave_program/2.

——option-name=option-value

For example, to create a stand-alone executable that starts by executing main/0 and for which
the source is loaded through 1oad.pl, use the command

% swipl —--goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

o)

% swipl
<banner>

?— [load].
?— gsave_program (myprog,
[goal (main),
stand_alone (true)
1) .
?— halt.

SWI-Prolog app scripts

As of version 9.1.18, SWI-Prolog allows starting an application using the command below.

swipl [option ...] [path:]lname [arg ...]

This command line first processes Prolog options described in section 2.4. Note that most standard
Prolog commandline options are not relevant. The —f defaults to none, which implies that the user
init file is by default not loaded. If an application wishes to load the user init file, it should load
user_app_config (init) if this file exists (see exists_source/1).

Next, it locates path (name) using SWI-Prolog’s file search mechanism defined by
absolute_file name/3. After loading this file it finds the last goal registered for main us-
ing initialization/2 as described in section 2.11 - if there is no initization directive for
main, the program terminates with an error. By default, the application terminates after the en-
try point terminates. The entry point may enable the interactive Prolog REPL loop by calling
cli_enable development_system/0. Other forms of the initialization/2 directive
are also allowed, in addition to ‘main‘.

SWI-Prolog 9.3 Reference Manual

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 53

All command line options after [path:] name are accessible in the Prolog flag argv.
The optional path defaults to app. By default, apps are searched in the directories below. See
file_search_path/2 for details.

1. The app directory of the SWI-Prolog installation

2. User and site configuration. On POSIX systems using the XDG file name conventions, this
isnormally ~/.local/share/swi-prolog/app/ and /usr/share/swi-prolog/

app.

3. The app directory of a Prolog pack.

The following apps are provided by the installation

app
Print information on installed apps. For example, to list all available apps, run

swipl app list

pack
Command line driven management of Prolog packs. This is a front-end to the Prolog library
prolog_pack. For example, to find packages related to type, use the command below.

swipl pack find type

2.12 Environment Control (Prolog flags)

The predicates current _prolog_flag/2 and set_prolog_flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign code environment, command line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current_prolog flag(?Key, -Value) [ISO]
The predicate current _prolog_flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all
defined Prolog flags. With Key instantiated, it unifies Value with the value of the Prolog flag or
fails if the Key is not a Prolog flag.

Flags marked changeable can be modified by the user using set prolog_flag/2. Flag
values are typed. Flags marked as bool can have the values t rue or false. The predicate
create_prolog_flag/3 may be used to create flags that describe or control behaviour of li-
braries and applications. The library settings provides an alternative interface for managing
notably application parameters.

Some Prolog flags are not defined in all versions, which is normally indicated in the documen-
tation below as “if present and true”. A boolean Prolog flag is true iff the Prolog flag is present
and the Value is the atom t rue. Tests for such flags should be written as below:

SWI-Prolog 9.3 Reference Manual

54

CHAPTER 2. OVERVIEW

(current_prolog_flag(windows, true)
—-> <Do MS-Windows things>
; <Do normal things>

)

Some Prolog flags are scoped to a source file. This implies that if they are set using a direc-
tive inside a file, the flag value encountered when loading of the file started is restored when
loading of the file is completed. Currently, the following flags are scoped to the source file:
generate_debug_info and optimise.

A new thread (see section 10) copies all flags from the thread that created the new thread (its
parent).’ As a consequence, modifying a flag inside a thread does not affect other threads.

abi_version (dict)
The flag value is a dict with keys that describe the version of the various Application
Binary Interface (ABI) components. See section 2.21 for details.

access_level (atom, changeable)
This flag defines a normal ‘user’ view (user, default) or a ‘system’ view. In system view
all system code is fully accessible as if it was normal user code. In user view, certain
operations are not permitted and some details are kept invisible. We leave the exact
consequences undefined, but, for example, system code can be traced using system access
and system predicates can be redefined.

address_bits (integer)
Address size of the hosting machine. Typically 32 or 64. Except for the maximum stack
limit, this has few implications to the user. See also the Prolog flag arch.

agc_close_streams (boolean, changeable)
When true (default false!?), that atom garbage collector streams that are garbage
collected while being open. In addition, a warning is printed. Below is an example of
such a warning.

WARNING: AGC: closed <stream> (0x560e29014400)

Note that closing I/O streams should not be left to the (atom) garbage collector because
it may take long before the atom garbage collector runs and because that atom garbage
collector is conservative, which implies that it is not guaranteed that all garbage atoms are
reclaimed. Code that uses 1/O streams should use setup_call_cleanup/3 using the
skeleton below, where process/1 is a predicate that reads from or writes to Stream.

setup_call_cleanup (
open(..., Stream),
process (Stream),
close (Stream)),

Note that the setting for this flag in the main thread applies.

°This is implemented using the copy-on-write technique.

!%Future versions are likely to change the default to t rue.

SWI-Prolog 9.3 Reference Manual

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 55

agc_margin (integer, changeable)
If this amount of atoms possible garbage atoms exist perform atom garbage collection at
the first opportunity. Initial value is 10,000. May be changed. A value of 0 (zero) disables
atom garbage collection. See also PL_register_atom () A

allow_dot_in_atom (bool, changeable)
If true (default false), dots may be embedded into atoms that are not quoted and
start with a letter. The embedded dot must be followed by an identifier continuation
character (i.e., letter, digit or underscore). The dot is allowed in identifiers in many
languages, which can make this a useful flag for defining DSLs. Note that this conflicts
with cascading functional notation. For example, Post .meta.author is read as
. (Post, ’meta.author’ if this flag is set to t rue.

allow_variable_name_as_functor (bool, changeable)

If true (default is false), Functor(arg) is read as if it were written
"Functor’ (arg). Some applications use the Prolog read/1 predicate for
reading an application-defined script language. In these cases, it is often difficult to
explain to non-Prolog users of the application that constants and functions can only start
with a lowercase letter. Variables can be turned into atoms starting with an uppercase
atom by calling read_term/2 using the option variable_names and binding the
variables to their name. Using this feature, F(x) can be turned into valid syntax for such
script languages. Suggested by Robert van Engelen. SWI-Prolog specific.

android (bool)
If present and true, it indicates we are running on the Android OS. The flag is not present
in other operating systems.

android_api (integer)
If running on Android, it indicates the compile-time API Level defined by the C macro
__ANDROID_API_ . Itis not defined if running on other operating systems. The API
level may or may not match the API level of the running device, since it is the API level
at compile time.

answer_write_options (term, changeable)
This flag is used by the interactive toplevel to print the value if bindings (an-
swers). The flag value is passed to write_term/2 when printing an answer
queries. Default is [quoted (true), portray(true), max.-depth(10),
attributes (portray)].

apple (bool)
If present and t rue, the operating system is MacOSX. Defined if the C compiler used
to compile this version of SWI-Prolog defines __APPLE___. Note that the unix is also
defined for MacOSX.

apple_universal_binary (bool)
If present and t rue, SWI-Prolog has been build as a universal binary. Universal binaries
contain native executable code for multiple architectures. Currently the supported
architectures are x86_64 and armé64. The archirecture prefix for components is
fat—-darwin while the arch depends on the actual CPU type.

'Given that SWI-Prolog has no limit on the length of atoms, 10,000 atoms may still occupy a lot of memory. Applications
using extremely large atoms may wish to call garbage_collect_atoms/0 explicitly or lower the margin.

SWI-Prolog 9.3 Reference Manual

56 CHAPTER 2. OVERVIEW

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used
to select foreign files for the right architecture. See also section 12.2.3 and
file_search_path/2. For Apple, see also apple_universal binary.

argv (list, changeable)
List is a list of atoms representing the application command line arguments. Application
command line arguments are those that have not been processed by Prolog during its
initialization. Note that Prolog’s argument processing stops at —— or the first non-option
argument. See also os_argv.'”

associated_file (atom)
Set if Prolog was started with a prolog file as argument. Used by e.g., edit /0 to edit the
initial file.

autoload (atom, changeable)
This flag controls autoloading predicates based on autoload/1 and autoload/2 as
well as predicates from autoload libraries. It has the following values:

false
Predicates are never auto-loaded. If predicates have been imported be-
fore using autoload/[1,2], load the referenced files immediately using
usemodule/[1,2]. Note that most of the development utilities such as
listing/1 have to be explicitly imported before they can be used at the toplevel.

explicit
Do not autoload from autoload libraries, but do use lazy loading for predicates
imported using autoload/[1,2].

user
As false, but to autoload library predicates into the global user module. This
makes the development tools and library implicitly available to the toplevel, but not
to modules.

user_or_explicit
Combines explicit with user, providing lazy loading of predicates imported
using autoload/ [1, 2] and implicit access to the whole library for the toplevel.
true
Provide full autoloading everywhere. This is the default.

back_quotes (codes,chars,string,symbol_char, changeable)
Defines the term-representation for back-quoted material. The default is codes. If
——traditional is given, the default is symbol_char, which allows using ‘ in
operators composed of symbols.'* See also section 5.2.

backtrace (bool, changeable)
If t rue (default), print a backtrace on an uncaught exception.

backtrace_depth (integer, changeable)
If backtraces on errors are enabled, this flag defines the maximum number of frames that
is printed (default 20).

2Prior to version 6.5.2, argv was defined as os_argv is now. The change was made for compatibility reasons and
because the current definition is more practical.
BOlder versions had a boolean flag backquoted_strings, which toggled between st ring and symbol_char

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 57

backtrace_goal_depth (integer, changeable)
The frame of a backtrace is printed after making a shallow copy of the goal. This flag
determines the depth to which the goal term is copied. Default is ‘3’.

backtrace_show_lines (bool, changeable)
If t rue (default), try to reconstruct the line number at which the exception happened.

bounded (bool)
ISO Prolog flag. If true, integer representation is bound by min_integer and
max_integer. If false integers can be arbitrarily large and the min_integer and
max_integer are not present. The flag max_integer_size may be used to enforce
an arbitrary limit rather than exhausting memory. See section 4.27.2.

break level (integer)
Current break-level. The initial top level (started with —t) has value 0. See break /0.
This flag is absent from threads that are not running a top-level loop.

bundle (bool)
True when SWI-Prolog is installed as a stand-alone bundle. This is set for both the
Windows and MacOS binary packages as distributed from the SWI-Prolog download
page. This is used to adjust the file search configuration.

c_cc (atom, changeable)
Name of the C compiler used to compile SWI-Prolog. Normally one of gcc, clang or
cc. See section 12.5.

c_cflags (atom, changeable)
CFLAGS used to compile SWI-Prolog. See section 12.5.

c_cxx (atom, changeable)
Name of the C++ compiler used to test the SWI-Prolog C++ binding. This is the default
C++ compiler used by swipl-1d (see section 12.5) as well as compiling packs using
the default setup. Note that SWI-Prolog itself does not contain C++ code and the C++
binding is header only. This implies that C++ ABI compatibility issues can not occur.

c_ldflags (atom, changeable)
LDFLAGS used to link SWI-Prolog. See section 12.5.

c libplso (atom, changeable)
Libraries needed to link extensions (shared object, DLL) to SWI-Prolog. Typically empty
on ELF systems and ~1swipl on COFF-based systems. See section 12.5.

c_libs (atom, changeable)
Libraries needed to link executables that embed SWI-Prolog. Typically —~1swipl if the
SWI-Prolog kernel is a shared (DLL). If the SWI-Prolog kernel is in a static library, this
flag also contains the dependencies.

char_conversion (bool, changeable)
Determines whether character conversion takes place while reading terms. See also
char_conversion/2.

character_escapes (bool, changeable)
If true (default), read/1 interprets \ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed. See
section 2.15.1.

SWI-Prolog 9.3 Reference Manual

58 CHAPTER 2. OVERVIEW

character_escapes_unicode (bool, changeable)
If true (default), write/1 and friends write escaped characters using the \ uXXXX or
\UXXXXXXXX syntax rather than the ISO Prolog \ x<hex>\ syntax. SWI-Prolog reads
both.

cmake_build_type (atom)
Provides the cmake build type used to build this version of SWI-Prolog.

colon_sets_calling_context (bool)
Using the construct (module):(goal) sets the calling context for executing (goal). This
flag is defined by ISO/IEC 13211-2 (Prolog modules standard). See section 6.

color_term (bool, changeable)
This flag is managed by library ansi_term, which is loaded at startup if the two con-
ditions below are both true. Note that this implies that setting this flag to false from
the system or personal initialization file (see section 2.2 disables colored output. The
predicate message_property/2 can be used to control the actual color scheme
depending in the message type passed to print message/ 2.

* stream property (current_output, tty(true))
* \+ current_prolog_flag(color_term, false)
compile_meta_arguments (atom, changeable)

This flag controls compilation of arguments passed to meta-calls marked ‘O’ or
meta_predicate/1). Supported values are:

]

(see

false
(default). Meta-arguments are passed verbatim. If the argument is a control structure
((A,B), (A;B), (A-;B;C), etc.) it is compile to an temporary clause allocated on the
environment stack when the meta-predicate is called.

control
Compile meta-arguments that contain control structures to an auxiliary predicate.
This generally improves performance as well as the debugging experience.

always
Always create an intermediate clause, even for system predicates.'*

compiled_at (atom)
Describes when the system has been compiled. Only available if the C compiler used to
compile SWI-Prolog provides the __DATE__ and __TIME__ macros.

conda (bool)
Set to t rue when built in a Conda environment.

console_menu (bool)
Setto true in swipl-win.exe to indicate that the console supports menus. See also
section 4.35.4.

cpu_count (integer, changeable)
Number of physical CPUs or cores in the system. The flag is marked read-
write both to allow pretending the system has more or less processors. See also

'“This may be used in the future for replacing the normal head of the generated predicate with a special reference (similar
to database references as used by, e.g., assert/2) that provides direct access to the executable code, thus avoiding runtime
lookup of predicates for meta-calling.

SWI-Prolog 9.3 Reference Manual

https://cmake.org/
https://docs.conda.io/

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 59

thread_setconcurrency/2 and the library thread. This flag is not available on
systems where we do not know how to get the number of CPUs. This flag is not included
in a saved state (see gsave_program/1).

dde (bool)
Set to t rue if this instance of Prolog supports DDE as described in section 4.44.

debug (bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy points (see spy/1) and break points. In addition, last-call optimisation is disabled
and the system is more conservative in destroying choice points to simplify debugging.
Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

debug_on _error (bool, changeable)
If t rue, start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See also the Prolog flag report_error.
Default is t rue.

debug_on_interrupt (bool, changeable)
If t rue, start the debugger on Control-C."”. The initial value is false and the value is
set to t rue when entering the interactive top level. See ~——debug-on—-interrupt to
start handling interrupts immediately.

debugger_show_context (bool, changeable)
If true, show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

debugger_write_options (term, changeable)
This argument is given as option-list to write_term/2 for printing goals by
the debugger. Modified by the ‘w’, ‘p” and ‘(N) d’ commands of the debug-
ger. Default is [quoted(true), portray(true), max_depth(10),
attributes (portray)].

determinism_error (atom, changeable)
This flag defines the behaviour when the predicate determinism is not according to its
declaration. See det /1. Possible values are error (default), warning and silent.

dialect (atom)
Fixed to swi. The code below is a reliable and portable way to detect SWI-Prolog.

is _dialect (swi) :-—
catch (current_prolog_flag(dialect, swi), _, fail).

dir_sep (atom)
Separator for directories in a file name the OS. Normally /, but \ on Windows.

double_quotes (codes,chars,atom,string, changeable)
This flag determines how double quoted strings are read by Prolog and is —like
character_escapes and back_quotes— maintained for each module. The default
is string, which produces a string as described in section 5.2. If ——traditional
is given, the default is codes, which produces a list of character codes, integers that

More precisely when receiving STGINT

SWI-Prolog 9.3 Reference Manual

60 CHAPTER 2. OVERVIEW

represent a Unicode code-point. The value chars produces a list of one-character atoms
and the value at om makes double quotes the same as single quotes, creating a atom. See
also section 5.

editor (atom, changeable)
Determines the editor used by edit /1. See section 4.4.1 for details on selecting the
editor used.

emacs_inferior_process (bool)
If true, SWI-Prolog is running as an inferior process of (GNU/X-)Emacs. SWI-Prolog
assumes this is the case if the environment variable EMACS is t and INFERIOR is yes.

encoding (atom, changeable)
Default encoding used for opening files in text mode. The initial value is deduced from
the environment. See section 2.18.1 for details.

executable (arom)
Pathname of the running executable. Used by gsave_program/2 as default emulator.

executable_format (arom)
Format of the SWI-Prolog executable, e.g. e1f for when swipl is an ELF binary file.

exit_status (integer)
Set by halt /1 to its argument, making the exit status available to hooks registered with
at_halt/1.

file_name_case_handling (atom, changeable)
This flag defines how Prolog handles the case of file names. The flag is used for case
normalization and to determine whether two names refer to the same file.'® It has one of
the following values:

case_sensitive
The filesystem is fully case sensitive. Prolog does not perform any case modification
or case insensitive matching. This is the default on Unix systems.

case_preserving
The filesystem is case insensitive, but it preserves the case with which the user has
created a file. This is the default on Windows systems.

case_insensitive
The filesystem doesn’t store or match case. In this scenario Prolog maps all file
names to lower case.

file_ name_variables (bool, changeable)
If true (default false), expand \$\arg{varname} and ~ in arguments of built-in
predicates that accept a file name (open/3,exists_file/1,access_file/2,etc.).
The predicate expand_-file_name/2 can be used to expand environment variables
and wildcard patterns. This Prolog flag is intended for backward compatibility with older
versions of SWI-Prolog.

file_search_cache_time (number, changeable)
Time in seconds for which search results from absolute_file_name/3 are cached.
Within this time limit, the system will first check that the old search result satisfies the

'S BUG: Note that file name case handling is typically a properly of the filesystem, while Prolog only has a global flag to
determine its file handling.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 61

conditions. Default is 10 seconds, which typically avoids most repetitive searches for
(library) files during compilation. Setting this value to O (zero) disables the cache.

float_max (float)
The biggest representable floating point number.

float_max_integer (float)
The highest integer that can be represented precisely as a floating point number.

float_min (float)
The smallest representable floating point number above 0.0. See also nexttoward/2.

float_overflow (atom, changeable)
One of error (default) or infinity. The first is ISO compliant. Using infinity,
floating point overflow is mapped to positive or negative Inf. See section 4.27.2. This
flag also affects read_term/3 and friends, causing them to read too large floating point
number as infinity.

float_rounding (atom, changeable)
Defines how arithmetic rounds to a float. Defined values are to_nearest (default),
to_positive, to.negative or to_zero. For most scenarios the function
roundtoward/2 provides a safer and faster alternative.

float_undefined (atom, changeable)
One of error (default) or nan. The first is ISO compliant. Using nan, undefined
operations such as sqrt(-2.0) is mapped to NaN. See section 4.27.2.

float_underflow (atom, changeable)
One of error or ignore (default). The second is ISO compliant, binding the result to
0.0.

float_zero_div (atom, changeable)
One of error (default) or infinity. The first is ISO compliant. Using infinity,
division by 0.0 is mapped to positive or negative Inf. See section 4.27.2.

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage collection, nor
stack shifts will take place, even not on explicit request. May be changed.

gc_thread (bool)
If t rue (default if threading is enabled), atom and clause garbage collection are executed
in a separate thread with the alias gc. Otherwise the thread that detected sufficient
garbage executes the garbage collector. As running these global collectors may take
relatively long, using a separate thread improves real time behaviour. The gc thread can
be controlled using set _prolog_gc_thread/1, which either enables the gc thread or
kills the gc thread and waits for it to die.

generate_debug_info (bool, changeable)
If t rue (default) generate code that can be debugged using t race/0, spy/1, etc. Can
be set to false using the ——no—-debug. This flag is scoped within a source file. Many
of the libraries have : - set_prolog_flag(generate_debug_info, false)
to hide their details from a normal trace.'”

'7In the current implementation this only causes a flag to be set on the predicate that causes children to be hidden from
the debugger. The name anticipates further changes to the compiler.

SWI-Prolog 9.3 Reference Manual

62 CHAPTER 2. OVERVIEW

gmp_version (integer)
If Prolog is linked with GMP, this flag gives the major version of the GMP library used.
See also section 12.4.11. This flag is not present when linked to LibBF. Use non-existence
of the Prolog flag bounded to test for big integer and rational number support.

gui (bool)
Set to t rue if XPCE is around and can be used for graphics.

heartbeat (integer, changeable)
If not zero, call prolog:heartbeat /0 every N inferences. IV is rounded to a multiple
of 16.

history (integer, changeable)
If integer > 0, support Unix csh (1) -like history as described in section 2.8. Otherwise,
only support reusing commands through the command line editor. The default is to set
this Prolog flag to O if a command line editor is provided (see Prolog flag readline)
and 15 otherwise.

home (atom)
SWI-Prolog’s notion of the home directory. SWI-Prolog uses its home directory to find
its startup file as (home)/boot .prc and to find its library as (home)/library.
Some installations may put architecture independent files in a shared home and also
define shared_home. System files can be found using absolute_file name/3 as
swi(file). See file_search_path/2.

hwnd (integer)
In swipl-win.exe, this refers to the MS-Windows window handle of the console
window.

integer_rounding _function (down,toward zero)
ISO Prolog flag describing rounding by // and rem arithmetic functions. Value depends
on the C compiler used.

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible with normal SWI-Prolog
behaviour. Currently it has the following effect:

* The //2 (float division) always returns a float, even if applied to integers that can be
divided.

* In the standard order of terms (see section 4.6.1), all floats are before all integers.

* atom_length/2 yields a type error if the first argument is a number.

* clause/ [2, 3] raises a permission error when accessing static predicates.

* abolish/[1, 2] raises a permission error when accessing static predicates.

» Syntax is closer to the ISO standard:

— Within functional notation and list notation terms must have priority below
1000. That means that rules and control constructs appearing as arguments need

bracketing. A term like [a :- b, c]. must now be disambiguated to mean
[(a := b), cl.or[(a := b, c)].

— Operators appearing as operands must be bracketed. Instead of
X == -, true. write == (-), true. Currently, this is not en-

tirely enforced.

SWI-Prolog 9.3 Reference Manual

https://bellard.org/libbf/

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 63

— Backslash-escaped newlines are interpreted according to the ISO standard. See
section 2.15.1.

large files (bool)
If present and t rue, SWI-Prolog has been compiled with large file support (LFS) and is
capable of accessing files larger than 2GB. This flag is always t rue on 64-bit hardware
and true on 32-bit hardware if the configuration detected support for LFS. Note that it
may still be the case that the file system on which a particular file resides puts limits on
the file size.

last_call_optimisation (bool, changeable)
Determines whether or not last-call optimisation is enabled. Normally the value of this
flag is the negation of the debug flag. As programs may run out of stack if last-call
optimisation is omitted, it is sometimes necessary to enable it during debugging.

libswipl (atom, changeable)

Path where the SWI-Prolog shared library 1ibswipl, the SWI-Prolog shared object
that provides Prolog, resides. On some systems this can be determined reliably from
the running system. On these systems the flag is read-only. On other systems it is the
configured target installation location and thus this value can be wrong if the installation
has been relocated. As we do not have a cross-platform reliable way to compute this path
the flag is read-write on such platforms.'®

Currently, this flag is reliable on Windows and POSIX systems providing the d1addr ()
function. This function is provided on Linux and MacOS.

malloc (atom)
Set after a successful identification of the used malloc () implementation. Currently
possibly values are tcmalloc and ptmalloc. See section 4.43.2 for details.

max_answers_for_subgoal (integer, changeable)
Limit the number of answers in a table. The atom infinite clears the flag. By default
this flag is not defined. See section 7.10 for details.

max_answers_for_subgoal_action (atom, changeable)
The action taken when a table reaches the number of answers specified in
max_answers_for_subgoal. Supported values are bounded. rationality,
error (default) or suspend.

max_arity (unbounded)
ISO Prolog flag describing there is no maximum arity to compound terms.

max_char_code (integer)
Highest (Unicode) code point that is supported. SWI-Prolog supports all Unicode code
points from O (zero) upto and including the value of this flag. Currently Oxffff on
Windows (UCS-2) and 0x10£ff ff on most other platforms.

max_integer (integer)
Maximum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.27.2.

max_integer _size (integer, changeable)
When this tripwire is set, memory allocation on behalf of big integers and rational num-
bers is limited to given number of bytes. The minimum value is 1,000. When unset, the

8When running from the build environment, this flag is adjusted to reflect the location in the build tree.

SWI-Prolog 9.3 Reference Manual

64

CHAPTER 2. OVERVIEW

allocation limit is determined by the stack limit as we cannot represent larger numbers or
malloc () failures. Notably services that may process arbitrary arithmetic expressions
on behalf of a client may set this limit to avoid resource exhaustion.

max_procedure_arity (integer)
Maximum arity for a predicate. An attempt to define or call such a predicate results in a
representation_error (max_procedure_arity) exception. Currently set to
1024.

max_rational_size (integer, changeable)
Limit the size in bytes for rational numbers. This tripwire can be used to identify cases
where setting the Prolog flag prefer_rationals to true creates excessively big
rational numbers and, if precision is not required, one should use floating point arithmetic.
Note that rationals are also implicitly limited by the Prolog flag max_integer_size.

max_rational_size_action (atom, changeable)
Action when the max_rational_size tripwire is exceeded. Possible values are error
(default), which throws a tripwire resource error and £ 1oat, which converts the rational
number into a floating point number. Note that rational numbers may exceed the range
for floating point numbers.

max_table_answer size (integer, changeable)
Limit the size of an answer substitution for tabling. The atom infinite clears the flag.
By default this flag is not defined. See section 7.10 for details.

max_table_answer _size_action (atom, changeable)
The action taken if an answer substitution larger than max _table_answer_size is
added to a table. Supported values are error (default), bounded_rationality,
suspendand fail.

max_table_subgoal_size (integer, changeable)
Limit the size of a goal term accessing a table. The atom infinite clears the flag. By
default this flag is not defined. See section 7.10 for details.

max_table_subgoal_size_action (atom, changeable)
The action taken if a tabled goal exceeds max_table_subgoal_size. Supported
values are error (default), abstract and suspend.

max_tagged _integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require one
word storage. Larger integers are represented as ‘indirect data’ and require significantly
more space.

message_context (list(atom), changeable)
Context information to add to messages of the levels error and warning. The list may
contain the elements thread to add the thread that generates the message to the message,
time or t ime(Format) to add a time stamp. The default time format is $T.%3£f. The
defaultis [thread]. See also format_time/3 and print_message/2.

min_integer (integer)
Minimum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.27.2.

min_tagged_integer (integer)
Start of the tagged-integer value range.

SWI-Prolog 9.3 Reference Manual

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 65

mitigate_spectre (bool, changeable)

When true (default false), enforce mitigation against the Spectre timing-based secu-
rity vulnerability. Spectre based attacks can extract information from memory owned by
the process that should remain invisible, such as passwords or the private key of a web
server. The attacks work by causing speculative access to sensitive data, and leaking the
data via side-channels such as differences in the duration of successive instructions. An
example of a potentially vulnerable application is SWISH. SWISH allows users to run
Prolog code while the swish server must protect the privacy of other users as well as its
HTTPS private keys, cookies and passwords.

Currently, enabling this flag reduces the resolution of get_time/1 and
statistics/2 CPU time to 20us.

WARNING: Although a coarser timer makes a successful attack of this type harder, it
does not reliably prevent such attacks in general. Full mitigation may require compiler
support to disable speculative access to sensitive data.

msys2 (bool)
If present, SWI-Prolog is the MS-Windows version running under a MSYS2 shell.

occurs_check (atom, changeable)

This flag controls unification that creates an infinite tree (also called cyclic term) and can
have three values. Using false (default), unification succeeds, creating an infinite tree.
Using t rue, unification behaves as unify with_occurs_check/2, failing silently.
Using error, an attempt to create a cyclic term results in an occurs_check exception.
The latter is intended for debugging unintentional creations of cyclic terms. Note that this
flag is a global flag modifying fundamental behaviour of Prolog. Changing the flag from
its default may cause libraries to stop functioning properly.

on_error (atom, changeable)
Determines how to act on an error printed using print_message/2, i.e., an error that
is reported to the user. The possible values are print (default), status and halt.
Using halt the process halts immediately with status 1. Otherwise execution continues.
Using status halt/0 exits with status 1 if one or more errors were printed by the
process. In compile mode (see —c) the default is status. This flag can be set from the
commandline using ——on-error. See also section 4.3.2.

on_warning (atom, changeable)
As on_error, but for warnings. The default is always print. The commandline option
is ——on-warning.

open_shared_object (bool)
If true, open_shared_object/2 and friends are implemented, providing access to
shared libraries (. so files) or dynamic link libraries (. DLL files).

optimise (bool, changeable)
If t rue, compile in optimised mode. The initial value is t rue if Prolog was started with
the —O command line option. The opt imise flag is scoped to a source file.
Currently optimised compilation implies compilation of arithmetic, and deletion of redun-
dant t rue/ 0 that may result from expand_goal/2.
Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.

SWI-Prolog 9.3 Reference Manual

https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://swish.swi-prolog.org
https://www.msys2.org/

66 CHAPTER 2. OVERVIEW

Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

optimise_unify (bool, changeable)
If t rue (default), allow the compiler to (re)move explicit unification calls (=/2). While
this behaviour can significantly improve performance, it is not yet handled properly by
the source-level debugger. See section 2.17.3.

os_argy (list, changeable)
List is a list of atoms representing the command line arguments used to invoke SWI-
Prolog. Please note that all arguments are included in the list returned. See argv to get
the application options.

packs (bool)
If true, extension packs (add-ons) are attached. Can be set to false using the
——no-packs.

path_max (integer)
Maximum length of a file pathname as reported by the OS. This length does typically not
directly define the number of characters in the file name. The actual limit may be shorter
due to jargonencoding (e.g., on POSIX systems it typically defines the length limit of the
(often) UTF-8 encoded name). The underlying file system may impose additional limits.

path_sep (atom)
Separator for file search paths such as the environment variable PATH for the OS. Nor-
mally :, but ; on Windows.

pid (int)
Process identifier of the running Prolog process. Existence of this flag is implementation-
defined.

pipe (bool, changeable)
If true, open (pipe (command), mode, Stream), etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

portable_vmi (bool, changeable)
If t rue (default), generate . g1 £ files and saved states that run both on 32 bit and 64-bit
hardware. If false, some optimized virtual machine instructions are only used if the
integer argument is within the range of a tagged integer for 32-bit machines.

posix_shell (atom, changeable)
Path to a POSIX compatible shell. This default is typically /bin/sh. This flag is used
by shell/1 and gsave_program/2.

prefer_rationals (bool, changeable)
Only provided if the system is compiled with unbounded and rational arithmetic support
(see bounded). If t rue, prefer arithmetic to produce rational numbers over floats. This
implies:
* Division (/ /2) of two integers produces a rational number.

* Power (" /2) of two integers produces a rational number, also if the second operant
is a negative number. For example, 2~ (-2) evaluates to 1/4.

Using true can create excessively large rational numbers. = The Prolog flag
max_rational_size can be used to detect and act on this tripwire.

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 67

If false, rational numbers can only be created using the functions rational/1,
rationalize/1 and rdiv/2 or by reading them. See also rational_syntax,
section 2.15.1 and section 4.27.2.

The current default is false. We consider changing this to t rue in the future. Users are
strongly encouraged to set this flag to t rue and report issues this may cause.

print_write_options (term, changeable)
Specifies the options for write term/2 used by print/1 and print /2.

prompt_alternatives_on (atom, changeable)
Determines prompting for alternatives in the Prolog top level. Defaultis determinism,
which implies the system prompts for alternatives if the goal succeeded while leaving
choice points. Many classical Prolog systems behave as groundness: they prompt for
alternatives if and only if the query contains variables.

protect_static_code (bool, changeable)
If true (default false), clause/2 does not operate on static code, providing some
basic protection from hackers that wish to list the static code of your Prolog program.
Once the flag is true, it cannot be changed back to false. Protection is default in
ISO mode (see Prolog flag i so). Note that many parts of the development environment
require clause/2 to work on static code, and enabling this flag should thus only be
used for production code.

qcompile (atom, changeable)
This option provides the default for the gcompile(+Arom) option of load_files/2.
rational syntax (atom, changeable)
Determines the read and write syntax for rational numbers. Possible values are natural
(e.g., 1/3) or compatibility (e.g., 1r3). The compatibility syntax is always
accepted. This flag is module sensitive.
The default for this flag is currently compatibility, which reads and writes rational
numbers as e.g., 1r3." We will consider natural as a default in the future. Users are
strongly encouraged to set this flag to natural and report issues this may cause.

rationals (atom)
This flag is present and has the value t rue if the system supports rational numbers. For
SWI-Prolog this flag is always set if the flag bounded is false.

readline (atom, changeable)
Specifies which form of command line editing is provided. Possible values are below. The
flag may be set from the user’s init file (see section 2.3) to one of false, readline or
editline. This causes the toplevel not to load a command line editor (false) or load
the specified one. If loading fails the flag is set to false.

false
No command line editing is available.

readline
The library readline is loaded, providing line editing based on the GNU readline
library.

editline
The library editline is loaded, providing line editing based on the BSD libedit.
This is the default if edit1line is available and can be loaded.

PThere is still some discussion on the separating character. See section 2.15.1.

SWI-Prolog 9.3 Reference Manual

68

CHAPTER 2. OVERVIEW

swipl_win
SWI-Prolog uses its own console (swipl-win.exe on Windows, the Qt based
swipl-win on MacOS) which provides line editing.

report_error (bool, changeable)
If true, print error messages; otherwise suppress them. May be changed. See also the
debug_on_error Prolog flag. Default is t rue, except for the runtime version.

resource_database (atom)
Set to the absolute filename of the attached state. Typically this is the file boot32.prc,
the file specified with —x or the running executable. See also resource/3.

runtime (bool)
If present and t rue, SWI-Prolog is compiled with -DO_RUNTIME, disabling various
useful development features (currently the tracer and profiler).

sandboxed _load (bool, changeable)
If true (default false), load_files/2 calls hooks to allow library(sandbox) to
verify the safety of directives.

saved_program (bool)
If present and true, Prolog has been started from a state saved with
gsave_program/[1,2].

shared_home (arom)
Indicates that part of the SWI-Prolog system files are installed in (prefix) / share/swipl
instead of in the home at the (prefix)/1ib/swipl. This flag indicates the location
of this shared home and the directory is added to the file search path swi. See
file_search_path/2 and the flag home.

shared_object_extension (atom)
Extension used by the operating system for shared objects. .so for most Unix systems
and .d11 for Windows. Used for locating files using the file type executable.
See also absolute_file_name/3.

shared_object_search_path (arom)
Name of the environment variable used by the system to search for shared objects.

shared _table_space (integer, changeable)
Space reserved for storing shared answer tables. See section 7.9 and the Prolog flag
table_space.

shift_check (bool, changeable)
When true (default false), check for suspicious delimited continuations captured by
shift_for_copy/1.

signals (bool)
Determine whether Prolog is handling signals (software interrupts). This flag is false
if the hosting OS does not support signal handling or the command line option
—--no-signals is active. See section 12.4.25 for details.

source_search_working_directory (rw)
f set to true, loading a relative file name from source code searches relative to the
location of the source file as well as relative to the working directory. Searching relative

SWI-Prolog 9.3 Reference Manual

2.12, ENVIRONMENT CONTROL (PROLOG FLAGS) 69

to the working directory is deprecated and a warning is printed if the file is found this
way. Furture versions are likely to change the default to false.”

stack limit (int, changeable)
Limits the combined sizes of the Prolog stacks for the current thread. See also
-—stack-limit and section 2.19.1.

stream_type_check (atom, changeable)
Defines whether and how strictly the system validates that byte I/O should not be applied
to text streams and text I/O should not be applied to binary streams. Values are false
(no checking), t rue (full checking) and 1oose. Using checking mode 1ocose (default),
the system accepts byte I/O from text stream that use ISO Latin-1 encoding and accepts
writing text to binary streams.

string_stack_tripwire (int, changeable)
Maintenance for foreign language string management. Prints a warning if the string stack
depth hits the tripwire value. See section 12.4.14 for details.

system_thread_id (int)
Available in multithreaded version (see section 10) where the operating system provides
system-wide integer thread identifiers. The integer is the thread identifier used by the
operating system for the calling thread. On Linux systems this is the PID of the thread.

table_incremental (bool, changeable)
Set the default for whether to use incremental tabling or not. Initially set to false. See
table/1.

table_shared (bool, changeable)
Set the default for whether to use shared tabling or not. Initially set to false. See
table/1.

table_space (integer, changeable)
Space reserved for storing answer tables for tabled predicates (see table/1).”! When
exceeded a resource_error(table_space) exception is raised.

table_subsumptive (bool, changeable)
Set the default choice between variant tabling and subsumptive tabling. Initially set to
false. See table/1.

threads (bool, changeable)
True when threads are supported. If the system is compiled without thread support the
value is false and read-only. Otherwise the value is t rue unless the system was started
with the ——no-threads. Threading may be disabled only if no threads are running.
See also the gc_thread flag.

timezone (integer)
Offset in seconds west of GMT of the current time zone. Set at initialization time from
the timezone variable associated with the POSIX tzset () function. See also
format_time/3.

tmp_dir (atom, changeable)
Path to the temporary directory. initialised from the environment variable TMP or TEMP

2Searching the working directory was supported up to version 9.3.8. Version 9.3.9 disabled this and version 9.3.10
re-enables it with a warning.
2'BUG: Currently only counts the space occupied by the nodes in the answer tries.

SWI-Prolog 9.3 Reference Manual

70 CHAPTER 2. OVERVIEW

in windows. If this variable is not defined a default is used. This default is typically /tmp
or c:/temp in windows.

toplevel _goal (term, changeable)
Defines the goal that is executed after running the initialization goals and entry point
(see —g, initialization/2 and section 2.11.1. The initial value is default,
starting a normal interactive session. This value may be changed using the com-
mand line option —t. The explicit value prolog is equivalent to default. If
initialization(Goal,main) is used and the toplevel is default, the toplevel is set
to halt (see halt/0).

toplevel list_wfs_residual_program (bool, changeable)
If t rue (default) and the answer is undefined according to the Well Founded Semantics
(see section 7.6), list the residual program before the answer. Otherwise the answer
terminated with undefined. See also undefined/0.

toplevel_mode (atom, changeable)
If backtracking (default), the toplevel backtracks after completing a query. If
recursive, the toplevel is implemented as a recursive loop. This implies that global
variables set using b_setval/2 are maintained between queries. In recursive mode,
answers to toplevel variables (see section 2.9) are kept in backtrackable global variables
and thus not copied. In backtracking mode answers to toplevel variables are kept in the
recorded database (see section 4.14.2).

The recursive mode has been added for interactive usage of CHR (see section 9),”” which
maintains the global constraint store in backtrackable global variables.

toplevel_name _variables (bool, changeable)
If true (default), give names to variables at the toplevel instead of printing them as
_NNN. The variables are named _A, _B, ... Variables that appear only once (singletons) are
printed as _.

toplevel _print_anon (bool, changeable)
If t rue, top-level variables starting with an underscore (_) are printed normally. If false
(default) the binding of such variables are omitted from the answer. This may be used to
hide bindings in complex queries from the top level. For example, the binding for _List
below is not printed.

?- numlist (1,1 000 000,_List), sum_1list(_List, Sum).
Sum = 500000500000.

toplevel _print factorized (bool, changeable)
If true (default false) show the internal sharing of subterms in the answer substi-
tution. The example below reveals internal sharing of leaf nodes in red-black trees as
implemented by the rbtrees predicate rb_new/1:

?— set_prolog_flag(toplevel_print_factorized, true).
?— rb_new (X) .
X = t(_S1, _S1), % where

_S1 = black(’’, _G387, _G388, '’).

22Suggested by Falco Nogatz

SWI-Prolog 9.3 Reference Manual

2.12. ENVIRONMENT CONTROL (PROLOG FLAGS) 71

If this flag is false, the $ where notation is still used to indicate cycles as illustrated
below. This example also shows that the implementation reveals the internal cycle length,
and not the minimal cycle length. Cycles of different length are indistinguishable in Prolog

(as illustrated by S == R).

?- 3 =5s8(S), R=1s(s(R)), S == R.
S = s(8),

R = s(s(R))

toplevel_prompt (atom, changeable)
Define the prompt that is used by the interactive top level. The following ~ (tilde) se-
quences are replaced:

~m Type in module if not user (see module/1)

~1 Break level if not O (see break/0)

~d Debugging state if not normal execution (see debug/0, trace/0)
~! History event if history is enabled (see flag history)

toplevel _residue_vars (bool, changeable)
When true (default false), print residual variables as detected by
call_residue_vars/2 that do not appear in the bindings returned by the goal.

toplevel_var size (int, changeable)
Maximum size counted in literals of a term returned as a binding for a variable in a
top-level query that is saved for re-use using the $ variable reference. When 0 (zero), the
variable recording and reuse is disabled. See section 2.9.

trace_gc (bool, changeable)
If true (default false), garbage collections and stack-shifts will be reported on the
terminal. May be changed. Values are reported in bytes as G+1', where G is the global
stack value and T’ the trail stack value. ‘Gained’ describes the number of bytes reclaimed.
‘used’ the number of bytes on the stack after GC and ‘free’ the number of by