%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright (C) 1990 Regents of the University of California. % All rights reserved. This program may be freely used and modified for % non-commercial purposes provided this copyright notice is kept unchanged. % Written by Peter Van Roy as a part of the Aquarius project. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Benchmark based on part of Aquarius Prolog compiler % Compiling unification into abstract machine code. top :- main(X). %, write(X), nl. % PM: rewritten to use phrase/3 % the Start variable allows bypassing phrase/3 type-checking main(Size) :- u(X, [1,Y], [X], Code), Start = 0, phrase(size(Code), Start, Size). % Unify variable X with term T and write the result: u(X, T, In, Code) :- phrase(unify(X, T, In, _), Code). % Unify the variable X with the term T, given that % In = set of variables initialized before the unification. % Returns the intermediate code for the unification and % Out = set of variables initialized after the unification. unify(X, T, In, Out) --> {\+myin(X, In)}, !, uninit(X, T, In, Out). unify(X, T, In, Out) --> {myin(X, In)}, !, init(X, T, In, Out, nonlast, _). %**** Uninit assumes X has not yet been initialized: uninit(X, T, In, Out) --> {my_compound(T)}, !, [move(Tag^h, X)], {termtag(T, Tag)}, unify_block(nonlast, T, _, In, Mid, _), {incl(X, Mid, Out)}. uninit(X, T, In, Out) --> {atomic(T)}, !, [move(tatm^T, X)], {incl(X, In, Out)}. uninit(X, T, In, Out) --> {var(T)}, !, unify_var(X, T, In, Out). %**** Init assumes X has already been initialized: init(X, T, In, Out, Last, LLbls) --> {nonvar(T)}, !, {termtag(T,Tag)}, [deref(X), switch(Tag,X,[trail(X) | Write],Read,fail)], {unify_writemode(X, T, In, Last, LLbls, Write, [])}, {unify_readmode(X, T, In, Out, LLbls, Read, [])}. init(X, T, In, Out, _, _) --> {var(T)}, !, unify_var(X, T, In, Out). %**** Unifying two variables together: unify_var(X, Y, In, In) --> { myin(X, In), myin(Y, In)}, !, [unify(X,Y,fail)]. unify_var(X, Y, In, Out) --> { myin(X, In), \+myin(Y, In)}, !, [move(X,Y)], {incl(Y, In, Out)}. unify_var(X, Y, In, Out) --> {\+myin(X, In), myin(Y, In)}, !, [move(Y,X)], {incl(X, In, Out)}. unify_var(X, Y, In, Out) --> {\+myin(X, In), \+myin(Y, In)}, !, [move(tvar^h,X), move(tvar^h,Y), add(1,h), move(Y,[h-1])], {incl(X, In, Mid), incl(Y, Mid, Out)}. %**** Unify_readmode assumes X is a dereferenced nonvariable % at run-time and T is a nonvariable at compile-time. unify_readmode(X, T, In, Out, LLbls) --> {structure(T)}, !, [equal([X],tatm^(F/N),fail)], {functor(T, F, N)}, unify_args(1, N, T, In, Out, 0, X, LLbls). unify_readmode(X, T, In, Out, LLbls) --> {cons(T)}, !, unify_args(1, 2, T, In, Out, -1, X, LLbls). unify_readmode(X, T, In, In, _) --> {atomic(T)}, !, [equal(X,tatm^T,fail)]. unify_args(I, N, _, In, In, _, _, _) --> {I>N}, !. unify_args(I, N, T, In, Out, D, X, [ _ | LLbls]) --> {I=N}, !, unify_arg(I, T, In, Out, D, X, last, LLbls). unify_args(I, N, T, In, Out, D, X, LLbls) --> {I [move([X+ID],Y)], {ID is I+D, incl(Y, In, Mid), arg(I, T, A)}, init(Y, A, Mid, Out, Last, LLbls). %**** Unify_writemode assumes X is a dereferenced unbound % variable at run-time and T is a nonvariable at compile-time. unify_writemode(X, T, In, Last, LLbls) --> {my_compound(T)}, !, [move(Tag^h,[X])], {termtag(T, Tag)}, unify_block(Last, T, _, In, _, LLbls). unify_writemode(X, T, _, _, _) --> {atomic(T)}, !, [move(tatm^T,[X])]. %**** Generate a minimal sequence of moves to create T on the heap: unify_block( last, T, Size, In, In, [Lbl | _ ]) --> !, [add(Size,h), jump(Lbl)], {size(T, 0, Size)}. unify_block(nonlast, T, Size, In, Out, [ _ | LLbls]) --> !, [add(Size,h)], {size(T, 0, Size), Offset is -Size}, block(T, Offset, 0, In, Out, LLbls). block(T, Inf, Outf, In, Out, LLbls) --> {structure(T)}, !, [move(tatm^(F/N), [h+Inf])], {functor(T, F, N), Midf is Inf+N+1, S is Inf+1}, make_slots(1, N, T, S, Offsets, In, Mid), block_args(1, N, T, Midf, Outf, Offsets, Mid, Out, LLbls). block(T, Inf, Outf, In, Out, LLbls) --> {cons(T)}, !, {Midf is Inf+2}, make_slots(1, 2, T, Inf, Offsets, In, Mid), block_args(1, 2, T, Midf, Outf, Offsets, Mid, Out, LLbls). block(T, Inf, Inf, In, In, []) --> {atomic(T)}, !. block(T, Inf, Inf, In, In, []) --> {var(T)}, !. block_args(I, N, _, Inf, Inf, [], In, In, []) --> {I>N}, !. block_args(I, N, T, Inf, Outf, [Inf], In, Out, [Lbl | LLbls]) --> {I=N}, !, [label(Lbl)], {arg(I, T, A)}, block(A, Inf, Outf, In, Out, LLbls). block_args(I, N, T, Inf, Outf, [Inf | Offsets], In,Out,LLbls) --> {I {I>N}, !. make_slots(I, N, T, S, [Off | Offsets], In, Out) --> {I= {var(V), \+myin(V, In)}, !, [move(tvar^(h+I),V)]. init_var(V, _, In) --> {var(V), myin(V, In)}, !. init_var(V, _, _) --> {nonvar(V)}, !. make_word(C, Off, Tag^(h+Off)) :- my_compound(C), !, termtag(C, Tag). make_word(V, _, V) :- var(V), !. make_word(A, _, tatm^A) :- atomic(A), !. % Calculate the size of T on the heap: size(T) --> {structure(T)}, !, {functor(T, _, N)}, call(add(1)), call(add(N)), size_args(1, N, T). size(T) --> {cons(T)}, !, call(add(2)), size_args(1, 2, T). size(T) --> {atomic(T)}, !. size(T) --> {var(T)}, !. size_args(I, N, _) --> {I>N}, !. size_args(I, N, T) --> {I=, A, S) :- myin(A, S). incl(A, S1, S) :- incl_2(S1, A, S). incl_2([], A, [A]). incl_2([B|S1], A, S) :- compare(Order, A, B), incl_3(Order, A, B, S1, S). incl_3(<, A, B, S1, [A,B|S1]). incl_3(=, _, B, S1, [B|S1]). incl_3(>, A, B, S1, [B|S]) :- incl_2(S1, A, S). my_compound(X) :- nonvar(X), \+atomic(X). cons(X) :- nonvar(X), X=[_|_]. structure(X) :- my_compound(X), X \= [_|_]. termtag(T, tstr) :- structure(T). termtag(T, tlst) :- cons(T). termtag(T, tatm) :- atomic(T). termtag(T, tvar) :- var(T).